JPH0613479Y2 - Particle measuring device - Google Patents
Particle measuring deviceInfo
- Publication number
- JPH0613479Y2 JPH0613479Y2 JP3581486U JP3581486U JPH0613479Y2 JP H0613479 Y2 JPH0613479 Y2 JP H0613479Y2 JP 3581486 U JP3581486 U JP 3581486U JP 3581486 U JP3581486 U JP 3581486U JP H0613479 Y2 JPH0613479 Y2 JP H0613479Y2
- Authority
- JP
- Japan
- Prior art keywords
- solution
- sample
- detector
- electrolytic solution
- particle measuring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Investigating Or Analysing Biological Materials (AREA)
Description
【考案の詳細な説明】 <産業上の利用分野> 本考案は、超純水中に浮遊している微細な塵埃やバクテ
リア等の微粒子状不純物の箇数及び大きさを測定した
り、血液中の血球の数などを測定する為の微粒子測定装
置に関し、更に詳しくはサンプル容器内に設置した検出
器の細孔を微粒子が通過する時の電気抵抗変化を電圧パ
ルスとして取出し計測するようにした電気パルス法によ
る微粒子測定装置に関するものである。[Detailed Description of the Invention] <Industrial field of application> The present invention is intended to measure the number and size of fine particulate impurities such as fine dust and bacteria suspended in ultrapure water, and to measure in blood. Regarding the fine particle measuring device for measuring the number of blood cells, etc., more specifically, the electric resistance change when the fine particles pass through the pores of the detector installed in the sample container is measured as a voltage pulse. The present invention relates to a particle measuring device using a pulse method.
<従来の技術> 電気パルス法による微粒子測定装置の原理を説明すれ
ば、サンプル容器内にマイナス電極と細孔を有する検出
器を設置せしめ、該検出器の内部にプラス電極と標準液
(電解液)を入れると共に、サンプル容器内に電解液を
混和させたサンプル液を入れ、サンプル容器内の電解液
と検出器内の標準液(電解液)を通して上記電極間に電
流が流れるようにしておき、検出器の内部を陰圧状態に
してその細孔からサンプル容器内の液(電解液+サンプ
ル液)を通過させ、その時サンプル液中の微粒子が検出
器の細孔を通過すると前記両電極間の電気抵抗が変化す
るので、この変化を電圧パルスとして取出し計測するよ
うにしたものである。<Prior Art> Explaining the principle of a particle measuring apparatus by the electric pulse method, a negative electrode and a detector having a pore are installed in a sample container, and a positive electrode and a standard solution (electrolyte solution) are placed inside the detector. ), The sample solution mixed with the electrolyte solution is placed in the sample container, and an electric current is allowed to flow between the electrodes through the electrolyte solution in the sample container and the standard solution (electrolyte solution) in the detector, When the inside of the detector is in a negative pressure state, the liquid (electrolyte solution + sample liquid) in the sample container is passed through the pores, and when the fine particles in the sample liquid pass through the pores of the detector, the space between the electrodes is Since the electric resistance changes, this change is taken out as a voltage pulse and measured.
従来のこの種微粒子測定装置では、検出器内に入れる標
準液(電解液)及びサンプル液に混和させる電解液とし
て生理食塩水(濃度15〜20%)を用いていた。In this type of conventional fine particle measuring apparatus, physiological saline (concentration: 15 to 20%) is used as an electrolytic solution to be mixed with a standard solution (electrolytic solution) to be placed in the detector and a sample solution.
しかし乍ら、電解液として生理食塩水を使用した場合、
その濃度が低いと導電度が下がり安定した測定値が得ら
れないためその導電度を高めるべく濃度を高くすると、
電解液が通る容器や配管等に塩化ナトリウムが析出した
り、容器や配管等を腐蝕させやすい欠点があると共に、
半導体製造プロセスにこの種測定装置を組込むと電解液
(生理食塩水)中のナトリウムイオンが半導体に悪影響
を与える不具合があった。However, when using saline as the electrolyte,
If the concentration is low, the conductivity will decrease and a stable measured value cannot be obtained, so if the concentration is increased to increase the conductivity,
With the drawback that sodium chloride will be deposited in the container or piping through which the electrolytic solution passes, or that the container or piping will easily be corroded,
When this kind of measuring device is incorporated into a semiconductor manufacturing process, there is a problem that sodium ions in an electrolytic solution (physiological saline) adversely affect the semiconductor.
<考案が解決しようとする問題点> 本考案はこの様な従来の不具合に鑑みてなされたもので
あり、電解液が通る容器や配管等に析出したり、これら
容器や配管を腐蝕させる虞れがないと共に、半導体製造
プロセスに組込んでも半導体に悪影響を与える虞れがな
く、しかも使用する電解液の導電度が良く低濃度で済む
微粒子測定装置を提供せんとするものである。<Problems to be Solved by the Invention> The present invention has been made in view of such a conventional problem, and there is a possibility that the electrolytic solution may be deposited on a container or a pipe, or may corrode the container or the pipe. In addition, there is no such problem, and even if it is incorporated into a semiconductor manufacturing process, there is no risk of adversely affecting the semiconductor, and the conductivity of the electrolyte solution used is good, and a low-concentration particle measurement device is required.
<問題点を解決するための手段> 係る目的を達成する本考案微粒子測定装置は、サンプル
液を入れたサンプル容器内に標準液(電解液)を入れた
検出器を設置させ、該検出器の細孔をサンプル液中の微
粒子が通過する時の電気抵抗変化を電圧パルスとして取
出し計測するようにした微粒子測定装置において、前記
サンプル液に混和させる電解液及び標準液(電解液)に
塩化アンモニウムを用いた事を特徴としたものである。<Means for Solving Problems> A particulate matter measuring device of the present invention which achieves the above object has a detector in which a standard solution (electrolytic solution) is placed in a sample container in which the sample solution is placed. In a fine particle measuring device designed to measure and measure the change in electrical resistance as a voltage pulse when the fine particles in the sample solution pass through the pores, ammonium chloride is added to the electrolyte solution and standard solution (electrolyte solution) mixed with the sample solution. It is characterized by using it.
<実施例> 以下、本考案実施の一例を図面に基づいて説明する。<Embodiment> An embodiment of the present invention will be described below with reference to the drawings.
本考案の微粒子測定装置の構成部材としては従来の装置
と同様である。即ち、サンプル液aを入れるサンプル容
器1と、このサンプル容器1内に設置される検出器2及
び外部電極(マイナス電極)3と、サンプル容器1内に
サンプル液aを供給するサンプル液供給管4と、前記検
出器2内に設置される内部電極(プラス電極)5並びに
内部に標準液(電解液)bを供給する標準液供給管6
と、検出器2の内部を陰圧状態にするためのバキューム
装置7と、前記外部電極3及び内部電極5と電気的に接
続された検出装置8とで構成される。尚、図中2aは微粒
子が通過する細孔である。The constituent members of the particle measuring device of the present invention are the same as those of the conventional device. That is, the sample container 1 for containing the sample liquid a, the detector 2 and the external electrode (minus electrode) 3 installed in the sample container 1, and the sample liquid supply pipe 4 for supplying the sample liquid a into the sample container 1 And an internal electrode (plus electrode) 5 installed in the detector 2 and a standard solution supply pipe 6 for supplying a standard solution (electrolytic solution) b to the inside.
And a vacuum device 7 for bringing the inside of the detector 2 into a negative pressure state, and a detection device 8 electrically connected to the external electrode 3 and the internal electrode 5. In the figure, 2a is a pore through which fine particles pass.
而して、本考案はサンプル液aに混和させる電解液及び
検出器2の内部に入れる標準液(電解液)bとして、所
要濃度(通常4〜15%)の塩化アンモニウムを使用する
ものである。即ち、通常の塩化アンモニウムを水(純
水)に溶して4〜15%の塩化アンモニウム水となし、こ
れをサンプル液aに混和させる電解液並びに検出器2の
内部に入れる標準液(電解液)bとして使用するもので
ある。これら電解液はバッチ式にサンプル容器1内や検
出器2内に入れても良いし、オンライン式に供給しても
良い。図示実施例では、サンプル液供給管4に透析装置
9と脱気装置10を介してユースポイント又はタンク11と
接続させ、その透析装置9内にユースポイント又はタン
ク11からサンプル液を導入させると共に、適当な濃度
(例えば15%塩化アンモニウム)の電解液cが入った液
槽12から電解液cを通すことによって、透析装置9を通
るサンプル液中に電解液cが透析の原理によって浸透拡
散しサンプル液aが所用濃度の電解液となり、更にこの
サンプル液aは脱気装置10を通って脱気し、そのままサ
ンプル液供給管4を通ってサンプル容器1内にオンライ
ンで供給するようにしたものである。尚、透析装置9は
ポリビニルアルコール系中空繊維膜(半透膜)を多数本
束ねて、容器内に収納したモジュールを主要部とした公
知のものであり、中空繊維膜(管)内にサンプル液を通
し、その外に適当な濃度の電解液cを通すことにより、
中空繊維膜の透析作用によってサンプル液a中に電解液
cが浸透拡散して所要濃度の電解液とするようにしたも
のである。Thus, the present invention uses ammonium chloride having a required concentration (usually 4 to 15%) as the electrolytic solution to be mixed with the sample solution a and the standard solution (electrolytic solution) b to be put inside the detector 2. . That is, normal ammonium chloride is dissolved in water (pure water) to form 4 to 15% ammonium chloride water, and the electrolyte solution is mixed with the sample solution a and the standard solution (electrolyte solution) to be put inside the detector 2. ) B is used. These electrolytic solutions may be put in the sample container 1 or the detector 2 in a batch manner, or may be supplied in an online manner. In the illustrated embodiment, the sample solution supply pipe 4 is connected to a point of use or a tank 11 via a dialyzer 9 and a deaerator 10, and a sample solution is introduced into the dialyzer 9 from the point of use or tank 11. By passing the electrolytic solution c from the liquid tank 12 containing the electrolytic solution c having an appropriate concentration (for example, 15% ammonium chloride), the electrolytic solution c permeates and diffuses in the sample solution passing through the dialysis device 9 according to the principle of dialysis. The liquid a becomes an electrolytic solution having a required concentration, and the sample liquid a is further degassed through the degassing device 10 and directly supplied into the sample container 1 through the sample liquid supply pipe 4 as it is. is there. The dialysis device 9 is a known device having a module in which a large number of polyvinyl alcohol-based hollow fiber membranes (semipermeable membranes) are bundled and housed in a container as a main part. , And an electrolytic solution c of an appropriate concentration outside the
The electrolyte solution c is permeated and diffused into the sample solution a by the dialysis action of the hollow fiber membrane to obtain an electrolyte solution having a required concentration.
尚、図中13は検出器2内に標準液(電解液)bを供給す
る電解液給水ビンであり、14は検出器2内の標準液cを
吸い出す排液管、15はサンプル容器1内のサンプル液a
をオーバーフローさせて排出させる排水管である。In the figure, 13 is an electrolytic solution water supply bottle for supplying the standard solution (electrolytic solution) b into the detector 2, 14 is a drain pipe for sucking out the standard solution c in the detector 2, and 15 is the inside of the sample container 1. Sample liquid a
It is a drainage pipe that overflows and discharges.
<考案の効果> 本考案微粒子測定装置は斯様に、サンプル液に混和させ
る電解液及び標準液(電解液)として塩化アンモニウム
を用いたので、これら電解液が通る容器や配管等を腐蝕
させたり、半導体製造プロセスに組込んでも半導体に悪
影響を与える虞れがなくなる。<Effects of the Invention> Since the particle measuring apparatus of the present invention uses ammonium chloride as the electrolytic solution and the standard solution (electrolytic solution) to be mixed with the sample solution, the containers and pipes through which the electrolytic solution passes can be corroded. Even if it is incorporated into the semiconductor manufacturing process, there is no fear of adversely affecting the semiconductor.
しかも、塩化アンモニウムは従来使用していた生理食塩
水より導電度が良いため、電解液として使用する場合に
その濃度が低くても所用の安定した測定値が得られ(生
理食塩水の場合通常15〜20%程度の濃度としないと安定
した測定値が得られず、塩化アンモニウムでは4〜15%
程度の濃度で安定した測定値が得られる。)。従って、
電解液が通る容器や配管等に塩化アンモニウムが析出し
て来る虞れがなくなると共に、材料コスト及び使用電気
量の低減化を図ることが出来る。Moreover, since ammonium chloride has better conductivity than conventionally used physiological saline, a stable and stable measurement value can be obtained even when its concentration is low when it is used as an electrolytic solution (usually 15 Stable measured values cannot be obtained unless the concentration is about 20%, and ammonium chloride is 4-15%.
Stable measurement values can be obtained at moderate concentrations. ). Therefore,
It is possible to reduce the material cost and the amount of electricity used, as well as the possibility that ammonium chloride will be deposited in a container or a pipe through which the electrolytic solution passes.
よって、所期の目的を達成し得る。Therefore, the intended purpose can be achieved.
図面は本考案実施の一例を示す模式図であり、図中1は
サンプル容器、2は検出器、2aは細孔、aはサンプル液
(サンプル液+電解液)、bは標準液(電解液)、であ
る。The drawing is a schematic view showing an example of the present invention, in which 1 is a sample container, 2 is a detector, 2a is a pore, a is a sample solution (sample solution + electrolytic solution), and b is a standard solution (electrolytic solution). ),
Claims (1)
液(電解液)を入れた検出器を設置させ、該検出器の細
孔をサンプル液中の微粒子が通過する時の電気抵抗変化
を電圧パルスとして取出し計測するようにした微粒子測
定装置において、前記サンプル液に混和させる電解液及
び標準液(電解液)に塩化アンモニウムを用いた事を特
徴とする微粒子測定装置。1. A detector containing a standard solution (electrolyte solution) is installed in a sample container containing a sample solution, and a change in electrical resistance is observed when fine particles in the sample solution pass through the pores of the detector. A fine particle measuring apparatus which is configured to extract and measure as a voltage pulse, wherein ammonium chloride is used as an electrolyte solution and a standard solution (electrolyte solution) to be mixed with the sample solution.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3581486U JPH0613479Y2 (en) | 1986-03-11 | 1986-03-11 | Particle measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3581486U JPH0613479Y2 (en) | 1986-03-11 | 1986-03-11 | Particle measuring device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62146950U JPS62146950U (en) | 1987-09-17 |
JPH0613479Y2 true JPH0613479Y2 (en) | 1994-04-06 |
Family
ID=30845643
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3581486U Expired - Lifetime JPH0613479Y2 (en) | 1986-03-11 | 1986-03-11 | Particle measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0613479Y2 (en) |
-
1986
- 1986-03-11 JP JP3581486U patent/JPH0613479Y2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS62146950U (en) | 1987-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1090880A1 (en) | Electrolytic ozone generating method, system and ozone water producing system | |
CN103736397B (en) | A kind of forward osmosis membrane performance testing device | |
WO1991006848A1 (en) | Method of measuring total quantity of organic substances in ultrapure water and ultrapure water treating system utilizing said method in preparation of ultrapure water | |
TW323306B (en) | ||
JP2015177912A (en) | Manufacturing apparatus of dialysate | |
US3705716A (en) | Monitoring silver recovery | |
JPH0613479Y2 (en) | Particle measuring device | |
US4651087A (en) | Apparatus for measuring impurities in ultrapure water | |
JPS61124850A (en) | Apparatus for measuring impurities in ultra-pure water | |
Nash et al. | Zeta potential in the development of pharmaceutical suspensions | |
JPS6053842A (en) | Circulation type electrolyte cell | |
JP5285135B2 (en) | Water treatment system and water treatment method | |
JPH09145653A (en) | Method and instrument for measuring content of total organic carbon of high-conductivity sample water | |
JP3903524B2 (en) | Electrolyzed water generator | |
CN208292799U (en) | A kind of pure water processor | |
JP3708208B2 (en) | pH sensor and ion water generator | |
CN206751571U (en) | A kind of ultra-pure water process units | |
Spiegler et al. | Measurement of Transport Interaction in Membranes | |
CN203419763U (en) | Ultra-pure water preparation system with degassing device and monitoring of nitrogen sealing | |
JP3440674B2 (en) | Ion water generator | |
CN209989475U (en) | Novel hydrolysis ozone generator | |
CN217188880U (en) | Special supplementary quick dialysis unit in laboratory | |
CN209161706U (en) | A kind of purifying water treatment system of automatic detection water quality | |
JP2794758B2 (en) | Silver production equipment with low palladium content | |
JPH08292172A (en) | Electrochemical water quality measuring device and electrolytic water generating apparatus having the same |