JP3780627B2 - Underwater TOC monitor - Google Patents

Underwater TOC monitor Download PDF

Info

Publication number
JP3780627B2
JP3780627B2 JP13287797A JP13287797A JP3780627B2 JP 3780627 B2 JP3780627 B2 JP 3780627B2 JP 13287797 A JP13287797 A JP 13287797A JP 13287797 A JP13287797 A JP 13287797A JP 3780627 B2 JP3780627 B2 JP 3780627B2
Authority
JP
Japan
Prior art keywords
toc
water
concentration
underwater
monitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13287797A
Other languages
Japanese (ja)
Other versions
JPH10307114A (en
Inventor
正義 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP13287797A priority Critical patent/JP3780627B2/en
Publication of JPH10307114A publication Critical patent/JPH10307114A/en
Application granted granted Critical
Publication of JP3780627B2 publication Critical patent/JP3780627B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、水中TOC(有機体炭素)モニターに関する。さらに詳しくは、本発明は、電子工業用超純水のように、不純物濃度が極めて低い液体試料について、簡便かつ正確にそのTOC濃度を測定することができる水中TOCモニターに関する。
【0002】
【従来の技術】
電子工業用超純水は純度が極めて高く、そのTOC濃度は、数μg/リットルあるいはそれ以下の濃度のように極めて低い。このような試料水中に存在するTOC成分は、従来は、試料水に紫外線を照射してTOC成分を分解し、生成する二酸化炭素に由来する重炭酸イオンの濃度を、電気伝導度セルを用いて連続的に測定し、この値を指標としてTOC濃度をモニターしてきた。また、TOC濃度をより正確に把握するためには、試料水を採水し、これに酸化剤を添加して加熱分解し、生成する二酸化炭素を赤外線ガス分析計により分析してTOC濃度を算出してきた。
しかし、従来の超純水のTOCモニターに使用されている紫外線分解式TOC計は、TOC濃度が数μg/リットルまでしか測定感度と精度がないため、TOC濃度が数μg/リットル以下の超純水については測定ができない。また、加熱分解式TOC計は、数μg/リットル以下の超純水についても測定は可能であるが、装置が大きくなるため現場設置型のモニターとしては適していない。
そのため、TOC濃度が極めて低い超純水について、小型軽量で、迅速、簡便かつ正確にTOC濃度を測定することができる水中TOCモニターが求められている。
【0003】
【発明が解決しようとする課題】
本発明は、TOC濃度の極めて低い超純水について、迅速かつ正確に、そのTOC濃度を現場で連続的に測定することができる水中TOCモニターを提供することを目的としてなされたものである。
【0004】
【課題を解決するための手段】
本発明者は、上記の課題を解決すべく鋭意研究を重ねた結果、超純水中のTOC成分を紫外線照射により分解して得られる紫外線照射処理水中の電解質を、連続再生型イオン交換装置により濃縮したのち、得られる濃縮水の電気伝導率を測定することにより、迅速かつ正確に試料水中のTOC濃度を測定し得ることを見いだし、この知見に基づいて本発明を完成するに至った。
すなわち、本発明は、超純水中のTOC濃度を連続的に測定する装置であって、試料水中のTOC成分を分解する紫外線照射装置と、該紫外線照射処理水中の電解質を濃縮して濃縮水とする連続再生型イオン交換装置と、該濃縮水の電気伝導率を測定する電気伝導率計とを有することを特徴とする水中TOCモニターを提供するものである。
【0005】
【発明の実施の形態】
本発明の水中TOCモニターは、TOC濃度の低い超純水、特に電子工業において用いられる超純水のように、TOC濃度が数μg/リットル以下であるような超純水に対して、好適に使用することができる。
図1は、本発明の水中TOCモニターの系統図である。本発明の水中TOCモニターは、紫外線照射装置1、連続再生型イオン交換装置2及び電気伝導率計3を有する。連続再生型イオン交換装置とは、イオン交換膜を陽陰交互に並べ、両端に電極を配して、膜間に混合型イオン交換樹脂を充填した装置で、膜面と垂直方向に印加電圧をかけながら、水試料を膜面と平行に通水することで、電解質(イオン)を除去すると同時に、樹脂を連続的に再生することができるイオン交換装置である。
試料水は、超純水配管から直接、あるいは、いったん試料水として採取したのち、紫外線照射装置1へ送られる。使用する紫外線照射装置は、超純水中のTOC成分を二酸化炭素まで分解し得るものであれば特に制限はなく、例えば、本態様の紫外線照射装置のように、周辺に設けられた紫外線ランプ4により、中央部の通水路5を流れる試料水に紫外線を照射し、試料水中に含まれるTOC成分を分解して二酸化炭素とし、水中に重炭酸イオンが存在する紫外線照射処理水とすることができる。
【0006】
紫外線照射処理水は、次いで連続再生型イオン交換装置2に送られる。本態様の連続再生型イオン交換装置2においては、相対する面に陰極6及び陽極7が設けられ、その間が交互に設けた2枚の陰イオン交換膜8及び2枚の陽イオン交換膜9により仕切られて、2個の濃縮室10、1個の脱イオン室11、2個の電極室12に分けられ、さらに混合型イオン交換樹脂13が各室に充填されている。陽極と陰極の間に電位差を与えると、陽イオンは陽イオン交換膜を通るが、陰イオン交換膜によって阻止され、陰イオンは陰イオン交換膜を通るが、陽イオン交換膜によって阻止されるので、脱イオン室及び電極室から濃縮室に水中の重炭酸イオンが移動し、濃縮室において濃縮される。脱イオン室、濃縮室、電極室に充填された混合型イオン交換樹脂は、高い導電性を有するブリッジとして働き、重炭酸イオンの移動を促進する。水中の重炭酸イオンが移動し、イオンが除去された脱イオン室の水及び電極表面で化学反応が起こる可能性のある電極室の水は、ドレン配管14を経由して放流される。
【0007】
本発明において、TOC成分の分解により生じた二酸化炭素に由来する重炭酸イオンの濃縮倍率には特に制限はなく、超純水中のTOC成分の濃度、電気伝導率計の測定精度などに応じて適宜選定することができる。重炭酸イオンの濃縮倍率は、例えば、濃縮室及び脱イオン室における紫外線照射処理水の流量を変えることにより選定することができる。重炭酸イオンの濃縮倍率は、濃縮水の電気伝導率と、脱イオン室から発生するドレン水の電気伝導率から、算出することができる。
連続再生型イオン交換装置において、重炭酸イオンが濃縮された濃縮水は、次いで、電気伝導率計3に送られる。超純水中のTOC成分に由来する重炭酸イオンは、連続再生型イオン交換装置により濃縮され、高濃度となっているので、電気伝導率計により精度よく測定することができる。あらかじめ、試料水中のTOC成分の量と、濃縮水の電気伝導率の関係を、濃縮倍率をパラメーターとして求め、検量線を作成しておくことにより、電気伝導率の値から、容易に試料水中のTOC成分の濃度を求めることができる。
【0008】
本発明において、水中の重炭酸イオンを効率的に濃縮する手段であれば制限なく使用することができるが、連続再生型イオン交換装置を特に好適に使用することができる。
本発明の水中TOCモニターによれば、TOC濃度の極めて低い超純水であっても、TOC成分の分解により生成する水中の重炭酸イオンを濃縮して、超純水中のTOC濃度を精度よく求めることができる。本発明の水中TOCモニターを、超純水系統配管に接続し、試料水を連続的に採取することにより、試料水への有機物混入による汚染を防ぎ、モニター内での試料水の通水を停止させることなく、連続的にTOC濃度を測定することができる。本発明の水中TOCモニターは、構造も単純であるので、容易に現場に持ち運び、大きなスペースを占めることなく、簡便に使用することができる。
【0009】
【発明の効果】
本発明の水中TOCモニターによれば、TOC成分の分解により生成する水中の重炭酸イオンを濃縮して電気伝導率を測定するので、電子工業などで用いられる超純水中の数μg/リットル以下の極めて低濃度のTOC成分を、簡便かつ連続的に、しかも高感度で精度よく測定することができる。
【図面の簡単な説明】
【図1】図1は、本発明の水中TOCモニターの系統図である。
【符号の説明】
1 紫外線照射装置
2 連続再生型イオン交換装置
3 電気伝導率計
4 紫外線ランプ
5 通水路
6 陰極
7 陽極
8 陰イオン交換膜
9 陽イオン交換膜
10 濃縮室
11 脱イオン室
12 電極室
13 混合型イオン交換樹脂
14 ドレン配管
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an underwater TOC (Organic Carbon) monitor. More specifically, the present invention relates to an underwater TOC monitor that can easily and accurately measure the TOC concentration of a liquid sample having an extremely low impurity concentration, such as ultrapure water for electronic industry.
[0002]
[Prior art]
The ultrapure water for electronic industry has a very high purity, and its TOC concentration is extremely low, such as a concentration of several μg / liter or less. Conventionally, the TOC component present in the sample water is decomposed by irradiating the sample water with ultraviolet rays, and the concentration of bicarbonate ions derived from the generated carbon dioxide is determined using an electric conductivity cell. Measured continuously, TOC concentration was monitored using this value as an index. In addition, in order to grasp the TOC concentration more accurately, sample water is sampled, an oxidant is added to the sample water, it is thermally decomposed, and the generated carbon dioxide is analyzed with an infrared gas analyzer to calculate the TOC concentration. I have done it.
However, the ultraviolet decomposition type TOC meter used for the conventional TOC monitor of ultrapure water has a measurement sensitivity and accuracy of only TOC concentration up to several μg / liter. Water cannot be measured. In addition, the thermal decomposition TOC meter can measure even ultra-pure water of several μg / liter or less, but is not suitable as a field-installed monitor because the apparatus becomes large.
Therefore, there is a need for an underwater TOC monitor that can measure the TOC concentration of ultrapure water with a very low TOC concentration, which is small and light, and that can be measured quickly, simply and accurately.
[0003]
[Problems to be solved by the invention]
The present invention has been made for the purpose of providing an underwater TOC monitor capable of measuring the TOC concentration of ultrapure water having an extremely low TOC concentration quickly and accurately on site.
[0004]
[Means for Solving the Problems]
As a result of intensive research to solve the above-mentioned problems, the present inventor obtained an electrolyte in ultraviolet irradiation treated water obtained by decomposing TOC components in ultrapure water by ultraviolet irradiation using a continuous regeneration type ion exchange apparatus. After concentration, it was found that the TOC concentration in the sample water can be measured quickly and accurately by measuring the electrical conductivity of the resulting concentrated water, and the present invention has been completed based on this finding.
That is, the present invention is an apparatus for continuously measuring the TOC concentration in ultrapure water, an ultraviolet irradiation apparatus for decomposing TOC components in sample water, and an electrolyte in the ultraviolet irradiation treated water by concentrating the electrolyte. An underwater TOC monitor comprising: a continuous regeneration type ion exchange apparatus, and an electric conductivity meter for measuring the electric conductivity of the concentrated water.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
The underwater TOC monitor of the present invention is suitable for ultrapure water having a low TOC concentration, particularly ultrapure water having a TOC concentration of several μg / liter or less, such as ultrapure water used in the electronics industry. Can be used.
FIG. 1 is a system diagram of the underwater TOC monitor of the present invention. The underwater TOC monitor of the present invention includes an ultraviolet irradiation device 1, a continuous regeneration type ion exchange device 2, and an electric conductivity meter 3. Continuously regenerative ion exchange device is a device in which ion exchange membranes are arranged alternately in the positive and negative directions, electrodes are arranged at both ends, and mixed ion exchange resin is filled between the membranes. This is an ion exchange device capable of continuously regenerating the resin while removing the electrolyte (ion) by passing a water sample in parallel with the membrane surface.
The sample water is collected directly from the ultrapure water pipe or once as sample water and then sent to the ultraviolet irradiation device 1. The ultraviolet irradiation device to be used is not particularly limited as long as it can decompose the TOC component in the ultrapure water to carbon dioxide. For example, the ultraviolet lamp 4 provided in the periphery like the ultraviolet irradiation device of this embodiment. By irradiating the sample water flowing through the central water passage 5 with ultraviolet rays, the TOC component contained in the sample water is decomposed into carbon dioxide, and the ultraviolet irradiation treatment water in which bicarbonate ions exist in the water can be obtained. .
[0006]
The ultraviolet irradiation treated water is then sent to the continuous regeneration type ion exchange device 2. In the continuous regeneration type ion exchange apparatus 2 of this embodiment, the cathode 6 and the anode 7 are provided on the opposite surfaces, and the two anion exchange membranes 8 and the two cation exchange membranes 9 are alternately provided between them. The two compartments are divided into two concentration chambers 10, one deionization chamber 11, and two electrode chambers 12, and each chamber is filled with a mixed ion exchange resin 13. When a potential difference is applied between the anode and the cathode, the cation passes through the cation exchange membrane, but is blocked by the anion exchange membrane, and the anion passes through the anion exchange membrane, but is blocked by the cation exchange membrane. The bicarbonate ions in the water move from the deionization chamber and the electrode chamber to the concentration chamber and are concentrated in the concentration chamber. The mixed ion exchange resin filled in the deionization chamber, the concentration chamber, and the electrode chamber functions as a bridge having high conductivity and promotes the movement of bicarbonate ions. Water in the deionization chamber from which the bicarbonate ions in the water have moved and the water in the electrode chamber in which a chemical reaction may occur on the surface of the electrode is discharged via the drain pipe 14.
[0007]
In the present invention, the concentration ratio of bicarbonate ions derived from carbon dioxide generated by the decomposition of the TOC component is not particularly limited, depending on the concentration of the TOC component in ultrapure water, the measurement accuracy of the conductivity meter, and the like. It can be selected as appropriate. The concentration rate of bicarbonate ions can be selected, for example, by changing the flow rate of ultraviolet irradiation treatment water in the concentration chamber and the deionization chamber. The concentration ratio of bicarbonate ions can be calculated from the electrical conductivity of the concentrated water and the electrical conductivity of the drain water generated from the deionization chamber.
In the continuous regeneration type ion exchanger, the concentrated water enriched with bicarbonate ions is then sent to the electrical conductivity meter 3. Bicarbonate ions derived from the TOC component in ultrapure water are concentrated by the continuous regeneration type ion exchange device and have a high concentration, and therefore can be measured with high accuracy by an electric conductivity meter. The relationship between the amount of the TOC component in the sample water and the electrical conductivity of the concentrated water is obtained in advance using the concentration factor as a parameter, and a calibration curve is created. The concentration of the TOC component can be determined.
[0008]
In the present invention, any means for efficiently concentrating bicarbonate ions in water can be used without limitation, but a continuous regeneration type ion exchange apparatus can be particularly preferably used.
According to the underwater TOC monitor of the present invention, even in ultrapure water having a very low TOC concentration, bicarbonate ions generated in the water by decomposition of the TOC component are concentrated to accurately adjust the TOC concentration in the ultrapure water. Can be sought. By connecting the underwater TOC monitor of the present invention to the ultrapure water system piping and continuously collecting the sample water, the sample water is prevented from being contaminated by mixing organic substances, and the sample water flow in the monitor is stopped. The TOC concentration can be measured continuously without causing it to occur. Since the underwater TOC monitor of the present invention has a simple structure, it can be easily carried to the site and used easily without occupying a large space.
[0009]
【The invention's effect】
According to the underwater TOC monitor of the present invention, the electrical conductivity is measured by concentrating the bicarbonate ions generated by the decomposition of the TOC component, so that it is several μg / liter or less in ultrapure water used in the electronics industry and the like. The TOC component at a very low concentration can be measured easily and continuously with high sensitivity and high accuracy.
[Brief description of the drawings]
FIG. 1 is a system diagram of an underwater TOC monitor of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Ultraviolet irradiation apparatus 2 Continuous regeneration type ion exchange apparatus 3 Electric conductivity meter 4 Ultraviolet lamp 5 Water flow path 6 Cathode 7 Anode 8 Anion exchange membrane 9 Cation exchange membrane 10 Concentration chamber 11 Deionization chamber 12 Electrode chamber 13 Mixed ion Exchange resin 14 Drain piping

Claims (1)

超純水中のTOC濃度を連続的に測定する装置であって、試料水中のTOC成分を分解する紫外線照射装置と、該紫外線照射処理水中の電解質を濃縮して濃縮水とする連続再生型イオン交換装置と、該濃縮水の電気伝導率を測定する電気伝導率計とを有することを特徴とする水中TOCモニター。An apparatus for continuously measuring the TOC concentration in ultrapure water, an ultraviolet irradiation apparatus for decomposing TOC components in sample water, and a continuously regenerative ion that concentrates the electrolyte in the ultraviolet irradiation treated water to obtain concentrated water An underwater TOC monitor comprising an exchange device and an electric conductivity meter for measuring the electric conductivity of the concentrated water.
JP13287797A 1997-05-07 1997-05-07 Underwater TOC monitor Expired - Fee Related JP3780627B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13287797A JP3780627B2 (en) 1997-05-07 1997-05-07 Underwater TOC monitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13287797A JP3780627B2 (en) 1997-05-07 1997-05-07 Underwater TOC monitor

Publications (2)

Publication Number Publication Date
JPH10307114A JPH10307114A (en) 1998-11-17
JP3780627B2 true JP3780627B2 (en) 2006-05-31

Family

ID=15091656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13287797A Expired - Fee Related JP3780627B2 (en) 1997-05-07 1997-05-07 Underwater TOC monitor

Country Status (1)

Country Link
JP (1) JP3780627B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106644973A (en) * 2016-10-10 2017-05-10 宁波市雨辰环保科技有限公司 Fully-functional online water quality monitor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110832313B (en) * 2017-06-21 2023-08-15 株式会社岛津制作所 Water quality measuring device and water quality measuring method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106644973A (en) * 2016-10-10 2017-05-10 宁波市雨辰环保科技有限公司 Fully-functional online water quality monitor

Also Published As

Publication number Publication date
JPH10307114A (en) 1998-11-17

Similar Documents

Publication Publication Date Title
JP2510368B2 (en) Method and apparatus for determining carbon dissolved in water
Kingsbury et al. Impact of natural organic matter and inorganic solutes on energy recovery from five real salinity gradients using reverse electrodialysis
US5902751A (en) Method and apparatus for the measurement of dissolved carbon
US5798271A (en) Apparatus for the measurement of dissolved carbon in deionized water
US9176106B2 (en) Total organic carbon meter provided with system blank function
US6183695B1 (en) Reagentless oxidation reactor and methods for using same
WO1991006848A1 (en) Method of measuring total quantity of organic substances in ultrapure water and ultrapure water treating system utilizing said method in preparation of ultrapure water
US6228325B1 (en) Methods and apparatus for measurement of the carbon and heteroorganic content of water including single-cell instrumentation mode for same
US5750073A (en) Reagentless oxidation reactor in a carbon measuring system
Okada et al. Electrolysis for ozone water production
WO1997021096A1 (en) Method and apparatus for the measurement of dissolved carbon
JP3780627B2 (en) Underwater TOC monitor
JP2004077299A (en) Device and method for concentrating test water
Kontturi et al. Separation of ions using countercurrent electrolysis in a thin, porous membrane
JPH10307113A (en) Underwater toc monitor
CN211627444U (en) In-situ online electrochemical spectroscopy monitoring device for ion exchange membrane pollution
Schieffer et al. Anodic stripping voltammetry with collection at tubular electrodes for the analysis of tap water
JPH08117744A (en) Method for detecting break of ion exchange apparatus
JP3900504B2 (en) Ultrapure water ion monitor
Lane et al. On-line microdistillation-based preconcentration technique for ammonia measurement
JPH0320666A (en) Method of detecting decomposable organic carbon compound
JP2007240366A (en) Total carbonic acid concentration measuring instrument and measuring method
Urano et al. Selectivity of ion transport in desalination by electrodialysis
TW202323790A (en) Method and device for analyzing ionic components in ultrapure water
JPH08262005A (en) Method and apparatus for determination of ammonia in solution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060227

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees