JPH06129686A - Refrigerant control valve and refrigerating cycle equipment - Google Patents

Refrigerant control valve and refrigerating cycle equipment

Info

Publication number
JPH06129686A
JPH06129686A JP4281863A JP28186392A JPH06129686A JP H06129686 A JPH06129686 A JP H06129686A JP 4281863 A JP4281863 A JP 4281863A JP 28186392 A JP28186392 A JP 28186392A JP H06129686 A JPH06129686 A JP H06129686A
Authority
JP
Japan
Prior art keywords
valve
refrigerant
valve rod
pipe
control valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4281863A
Other languages
Japanese (ja)
Other versions
JP3150791B2 (en
Inventor
Akihiko Sugiyama
明彦 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP28186392A priority Critical patent/JP3150791B2/en
Publication of JPH06129686A publication Critical patent/JPH06129686A/en
Application granted granted Critical
Publication of JP3150791B2 publication Critical patent/JP3150791B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide a refrigerant control valve of multifunction and high efficiency which can execute selection of a plurality of flow passages and pressure reduction therefor by putting a plurality of valve functions together in one, and refrigerating cycle equipment using this valve. CONSTITUTION:This valve is equipped with a tubular case body 22 in which a plurality of refrigerant passages 23 to 26 are provided at intervals in the axial direction, a plurality of valve seats 27 to 29 provided at positions partitioning the refrigerant passages in this case body 22, respectively, a valve rod 33 inserted through an axial part of the case body, a driving mechanism 34 for driving this valve rod 33 forward and backward along the axial direction, and a plurality of valve elements 30 to 32 provided on the valve rod 33 and coming into contact with and separating from the valve seats with the forward-backward movement of the valve rod 33 respectively. An open mode in which each refrigerant passage is made to communicate with the adjacent one by the movement in one direction of the valve rod 33 and a close mode in which all the refrigerant passages are closed are set for the driving mechanism 34 and at least one 31 of the valve elements is made operable for opening in the close mode by constructing it so that it is actuated in the direction of opening by a spring, while a secondary-side valve chamber 45 of this valve element is made an expansion chamber.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、流路切換え機能および
減圧機能を合せ持つ冷媒制御弁、およびその冷媒制御弁
を用いた除湿機能付き冷凍サイクル装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerant control valve having both a flow path switching function and a pressure reducing function, and a refrigeration cycle apparatus having a dehumidifying function using the refrigerant control valve.

【0002】[0002]

【従来の技術】従来、除湿機能付きヒートポンプ式の冷
凍サイクル装置として、例えば図5に示す構成のものが
知られている。
2. Description of the Related Art Conventionally, as a heat pump type refrigeration cycle device with a dehumidifying function, for example, a structure shown in FIG. 5 is known.

【0003】この冷凍サイクル装置では、コンプレッサ
1、四方弁2、室外熱交換器3、減圧機構としての膨脹
弁4、および一対の室内熱交換器5,6が冷媒配管7に
よって順次に接続されて閉じた冷凍サイクルが構成され
ている。冷媒配管7には、膨脹弁4を迂回するバイパス
配管8と、このバイパス配管8を開閉するバイパス弁9
とが設けられている。
In this refrigeration cycle apparatus, a compressor 1, a four-way valve 2, an outdoor heat exchanger 3, an expansion valve 4 as a pressure reducing mechanism, and a pair of indoor heat exchangers 5 and 6 are sequentially connected by a refrigerant pipe 7. A closed refrigeration cycle is constructed. The refrigerant pipe 7 has a bypass pipe 8 that bypasses the expansion valve 4 and a bypass valve 9 that opens and closes the bypass pipe 8.
And are provided.

【0004】室内側では冷媒配管7が二手に分岐し、そ
の各分岐配管7a,7bに前記の室内熱交換器5,6が
それぞれ接続されている。また、分岐配管7a,7bに
は各室内熱交換器5,6を直列に接続する補助配管10
が設けられ、この補助配管10に減圧機構として膨脹弁
(またはキャピラリチューブ)11が設けられている。
On the indoor side, the refrigerant pipe 7 is branched into two parts, and the indoor heat exchangers 5 and 6 are connected to the branch pipes 7a and 7b, respectively. Auxiliary pipe 10 for connecting the indoor heat exchangers 5 and 6 in series to the branch pipes 7a and 7b.
The auxiliary pipe 10 is provided with an expansion valve (or capillary tube) 11 as a pressure reducing mechanism.

【0005】各分岐配管7a,7bには、母管からの分
岐部12a,12bと補助配管10の分岐点13a,1
3bとの間に位置して、開閉弁14,15が設けられて
いる。
In each of the branch pipes 7a and 7b, branch portions 12a and 12b from the mother pipe and branch points 13a and 1 of the auxiliary pipe 10 are provided.
The on-off valves 14 and 15 are provided between the valve 3 and 3b.

【0006】冷房時には、バイパス弁9が閉、膨脹弁1
1が開、各開閉弁14,15が開の状態で、冷媒が図5
に実線矢印aで示すように、コンプレッサ1、四方弁
2、室外熱交換器3、膨脹弁4および各室内熱交換器
5,6に順次に流れる。
During cooling, the bypass valve 9 is closed and the expansion valve 1 is closed.
1 is open and the on-off valves 14 and 15 are open.
As indicated by the solid arrow a, the flow sequentially flows to the compressor 1, the four-way valve 2, the outdoor heat exchanger 3, the expansion valve 4, and the indoor heat exchangers 5 and 6.

【0007】暖房時には、各弁9,11,14,15が
前記と同状態で、冷媒が冷房時と逆に図5に破線矢印b
で示す方向に流れる。
During heating, the respective valves 9, 11, 14, 15 are in the same state as described above, and the refrigerant is reverse to that during cooling, and the broken line arrow b in FIG.
Flow in the direction indicated by.

【0008】除湿時には、バイパス弁9が開、各開閉弁
14,15が閉とされると共に膨脹弁11が機能し、こ
の状態で冷媒が冷房時と略同方向(矢印a方向)に流れ
る。すなわち、白矢印cで示すように、冷媒はバイパス
配管8および補助配管10を流れ、母管部分の膨脹弁4
は機能しない。また、分岐配管7a,7bにおいては白
矢印dで示すように、冷媒が一方の室内熱交換器5、補
助配管10の膨脹弁11および他方の能室内熱交換器6
に順次に流れる。すなわち、膨脹弁11の上流側に位置
する一方の室内熱交換器5は再熱用として機能し、膨脹
弁11では減圧作用が行われ、膨脹弁11の下流側に位
置する他方の室内熱交換器6は冷却用として機能する。
冷却用の室内熱交換器6は、室内ユニットの風上に配置
されて除湿を行い、再熱用の室内熱交換器5は、風下側
に配置されて冷却された空気を再熱する。
During dehumidification, the bypass valve 9 is opened, the on-off valves 14 and 15 are closed, and the expansion valve 11 functions. In this state, the refrigerant flows in substantially the same direction (direction of arrow a) as during cooling. That is, as shown by the white arrow c, the refrigerant flows through the bypass pipe 8 and the auxiliary pipe 10, and the expansion valve 4 in the mother pipe portion
Does not work. Further, in the branch pipes 7a and 7b, as shown by a white arrow d, the refrigerant is one indoor heat exchanger 5, the expansion valve 11 of the auxiliary pipe 10 and the other indoor heat exchanger 6
Flow in sequence. That is, one indoor heat exchanger 5 located on the upstream side of the expansion valve 11 functions for reheating, the decompression action is performed in the expansion valve 11, and the other indoor heat exchange located on the downstream side of the expansion valve 11 is performed. The vessel 6 functions for cooling.
The indoor heat exchanger 6 for cooling is arranged on the windward side of the indoor unit to dehumidify, and the indoor heat exchanger 5 for reheating is arranged on the leeward side to reheat the cooled air.

【0009】[0009]

【発明が解決しようとする課題】このような従来の冷凍
サイクル装置においては、系統内に複数の弁(9,1
4,15)および減圧機構(4,11)が設けられてい
るため、部品数が多くなり、構成が複雑である。したが
って、製作に多くの手間がかかり、製作コストも高くな
る。
In such a conventional refrigeration cycle apparatus, a plurality of valves (9, 1) are provided in the system.
4, 15) and the pressure reducing mechanism (4, 11) are provided, the number of parts increases and the configuration is complicated. Therefore, it takes a lot of time and effort to manufacture, and the manufacturing cost becomes high.

【0010】本発明はこのような事情に鑑みてなされた
もので、第1の目的は、複数の弁機能を一つにまとめて
複数の流路切換えおよび減圧が行える多機能・高能率の
冷媒制御弁を提供することにある。
The present invention has been made in view of the above circumstances, and a first object thereof is a multifunctional and highly efficient refrigerant which can combine a plurality of valve functions into one and switch a plurality of flow paths and reduce the pressure. To provide a control valve.

【0011】第2の目的は、前記の冷媒制御弁を用いる
ことにより、従来に比して流路切換え用の弁および減圧
機構の数が低減でき、これにより部品数の減少、構成の
簡素化、製作手間の軽減および製作コストの低廉化等が
図れる冷凍サイクル装置を提供することにある。
A second object is that the use of the above-mentioned refrigerant control valve can reduce the number of flow path switching valves and the pressure reducing mechanism as compared with the conventional one, thereby reducing the number of parts and simplifying the structure. Another object of the present invention is to provide a refrigeration cycle device which can reduce the manufacturing labor and the manufacturing cost.

【0012】[0012]

【課題を解決するための手段】前記の目的を達成するた
め、本発明に係る冷媒制御弁は、複数の冷媒通路が軸方
向に間隔的に設けられた筒状のケース体と、このケース
体内の各冷媒通路を仕切る位置に設けられた複数の弁座
と、前記ケース体の軸心部に挿通された弁棒と、この弁
棒を軸方向に沿って進退駆動する駆動機構と、前記弁棒
に設けられ、その弁棒の進退に伴って前記各弁座に接離
する複数の弁体とを備え、前記駆動機構には前記弁棒の
一方向移動により前記冷媒通路を隣接するもの毎にそれ
ぞれ連通させる開モードと、全ての冷媒通路を閉とする
閉モードとを設定し、かつ前記弁体の少なくとも一つを
スプリングにより開方向に付勢した構成として前記閉モ
ードに対して開動作可能とするとともに、その弁体の二
次側弁室を膨脹室としたことを特徴とする。
In order to achieve the above object, a refrigerant control valve according to the present invention comprises a cylindrical case body having a plurality of refrigerant passages provided at intervals in the axial direction, and the case body. A plurality of valve seats provided at positions for partitioning the respective refrigerant passages, a valve rod inserted in the axial center portion of the case body, a drive mechanism for driving the valve rod forward and backward along the axial direction, and the valve. A plurality of valve elements provided on the rod and moving toward and away from each of the valve seats as the valve rod advances and retracts, and the drive mechanism is configured to adjoin the refrigerant passages by unidirectional movement of the valve rods. And an open mode in which all the refrigerant passages are closed, and at least one of the valve elements is urged in the opening direction by a spring to perform an open operation with respect to the closed mode. In addition to making it possible, the secondary side valve chamber of the valve body is the expansion chamber Characterized in that it was.

【0013】また、本発明に係る冷凍サイクル装置は、
コンプレッサ、室外熱交換器、減圧機構および少なくと
も一対の室内熱交換器を冷媒配管によって接続した冷凍
サイクル装置であって、除湿運転時に前記各室内熱交換
器を再熱用および冷却用として直列接続状態で冷媒流通
に供するものにおいて、前記冷媒配管を室内側で分岐さ
せるとともに、その分岐配管に冷媒通路を接続させて請
求項1記載の冷媒制御弁を組込み、この冷媒制御弁の各
冷媒通路に接続した前記分岐配管のうち、前記冷媒制御
弁の閉モードで開動作可能となる弁体に通じる配管で除
湿時に一次側となるものに前記再熱用の室内熱交換器を
接続するとともに、除湿時に二次側となるものに前記冷
却用の室内熱交換器を接続したことを特徴とする。
Further, the refrigeration cycle apparatus according to the present invention is
A refrigeration cycle apparatus in which a compressor, an outdoor heat exchanger, a pressure reducing mechanism, and at least a pair of indoor heat exchangers are connected by a refrigerant pipe, and the indoor heat exchangers are connected in series for reheating and cooling during dehumidifying operation. In which the refrigerant pipe is branched, a refrigerant passage is connected to the branched pipe, and the refrigerant passage is connected to the refrigerant control valve according to claim 1, and the refrigerant passage is connected to each refrigerant passage of the refrigerant control valve. Among the branched pipes, while connecting the indoor heat exchanger for reheating to the one that becomes the primary side at the time of dehumidification with the pipe leading to the valve element that can be opened in the closed mode of the refrigerant control valve, at the time of dehumidification The indoor heat exchanger for cooling is connected to the secondary side.

【0014】[0014]

【作用】本発明の冷媒制御弁によれば、複数の弁体を開
モードまたは閉モードに設定することによって、冷媒通
路を一対ずつ対応させた状態で開閉することができ、複
数の切換え弁に相当する流路切換え機能が得られる。
According to the refrigerant control valve of the present invention, by setting a plurality of valve bodies in the open mode or the closed mode, it is possible to open and close the refrigerant passages in a pair corresponding to each other. A corresponding flow path switching function is obtained.

【0015】また、弁体の少なくとも一つをスプリング
により開方向に付勢した構成として、閉モードに対して
開動作可能とし、その弁体の二次側弁室を膨脹室とした
ことにより、高圧冷媒の供給時には閉モードでも冷媒流
通が行えるとともに、その冷媒の膨脹作用が行える。し
たがって、流路切換え機能とともに減圧機能も有するも
のとなり、複数種類の弁機能を合せ持つものとなる。
Further, at least one of the valve bodies is biased in the opening direction by a spring so that it can be opened in the closed mode and the secondary side valve chamber of the valve body is an expansion chamber. When the high-pressure refrigerant is supplied, the refrigerant can be circulated in the closed mode and the refrigerant can be expanded. Therefore, it has a pressure reducing function as well as a flow path switching function, and has a plurality of types of valve functions.

【0016】また、本発明の冷凍サイクル装置によれ
ば、上述した複数種類の弁機能を合せ持つ冷媒制御弁を
組込み、1つの弁を流路切換え用の開閉弁および膨脹弁
として利用するようにしたので、従来のように独立した
構成の開閉弁や膨脹弁あるいは補助配管等を設ける必要
がない。したがって、部品数の減少、構成の簡素化、製
作手間の軽減および製作コストの低下等が図れるように
なる。
Further, according to the refrigeration cycle apparatus of the present invention, the refrigerant control valve having a plurality of types of valve functions described above is incorporated, and one valve is used as an opening / closing valve for switching a flow path and an expansion valve. Therefore, it is not necessary to provide an on-off valve, an expansion valve, an auxiliary pipe or the like having an independent structure as in the conventional case. Therefore, it is possible to reduce the number of parts, simplify the structure, reduce the manufacturing labor, and reduce the manufacturing cost.

【0017】[0017]

【実施例】以下、本発明の一実施例を図1〜図4を参照
して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS.

【0018】図1は本実施例による冷媒制御弁の概略構
成、およびこの冷媒制御弁を組込んだ除湿機能付きヒー
トポンプ式の冷凍サイクル装置の系統構成を示し、図2
〜図4は前記冷媒制御弁の詳細構成および動作状態を示
している。
FIG. 1 shows a schematic configuration of a refrigerant control valve according to the present embodiment and a system configuration of a heat pump type refrigeration cycle apparatus with a dehumidifying function incorporating the refrigerant control valve.
4 shows the detailed configuration and operating state of the refrigerant control valve.

【0019】これらの図に示すように、本実施例の冷媒
制御弁21は、縦長な筒状のケース体22を備え、この
ケース体22に軸方向に間隔をおいて4つの冷媒通路2
3,24,25,26が設けられている。この各冷媒通
路23,24,25,26間に位置して、リング状の弁
座27,28,29が設けられ、各弁座27,28,2
9には筒状またはリング状の弁体30,31,32がそ
れぞれ上下方向から係合するようになっている。
As shown in these drawings, the refrigerant control valve 21 of the present embodiment is provided with a vertically long cylindrical case body 22, and four refrigerant passages 2 are axially spaced from this case body 22.
3, 24, 25 and 26 are provided. Ring-shaped valve seats 27, 28, 29 are provided between the refrigerant passages 23, 24, 25, 26, respectively.
Cylindrical or ring-shaped valve bodies 30, 31, 32 are engaged with the shaft 9 from above and below.

【0020】各弁体30,31,32は、ケース体22
の軸心部に配置された縦長な弁棒33で支持され、弁棒
33はケース22の上端に設けた駆動機構としてのパル
スモータ34で軸方向(上下方向)に駆動される。
Each of the valve bodies 30, 31, 32 is a case body 22.
The valve rod 33 is supported by a vertically elongated valve rod 33 arranged at the axial center of the valve rod 33, and the valve rod 33 is driven in the axial direction (vertical direction) by a pulse motor 34 as a drive mechanism provided at the upper end of the case 22.

【0021】最上部の弁体(第1弁体)30は、最上段
の冷媒通路(第1冷媒通路)23およびその下段の冷媒
通路(第2冷媒通路)24を開閉するもので、筒状をな
し、テーパ状の下端部周縁が最上段の弁座(上段弁座)
27に上方から係合する。この第1弁体30は、弁棒3
3に対して上下方向に一定範囲摺動可能とされている。
The uppermost valve body (first valve body) 30 opens and closes the uppermost-stage refrigerant passage (first refrigerant passage) 23 and the lower-stage refrigerant passage (second refrigerant passage) 24, and has a tubular shape. And the tapered lower edge is the uppermost valve seat (upper valve seat)
27 is engaged from above. The first valve body 30 is a valve rod 3
It is slidable in a certain range in the vertical direction with respect to 3.

【0022】この第1弁体30は、その内面側に設けた
フランジ35を、弁棒33に設けた係止リング36に当
接して、上方に連動可能とされている。また、このフラ
ンジ35と、弁棒33の上段に形成した段部33aとの
間に、圧縮コイルスプリング37が介在され、これによ
り第1弁体30は常時、弁棒33に対して押下げ方向に
付勢されている。なお、この第1弁体30と弁棒33と
の接合空間はシールリング38によって閉塞されてい
る。
The first valve body 30 is configured so that a flange 35 provided on the inner surface side of the first valve body 30 is brought into contact with a locking ring 36 provided on the valve rod 33 so that the first valve body 30 can be interlocked upward. Further, the compression coil spring 37 is interposed between the flange 35 and the stepped portion 33a formed in the upper stage of the valve rod 33, whereby the first valve body 30 is always pushed down with respect to the valve rod 33. Is urged by. The joint space between the first valve body 30 and the valve rod 33 is closed by a seal ring 38.

【0023】中間部の弁体(第2弁体)31は、第2冷
媒通路24とその下段の冷媒通路(第3冷媒通路)25
とを開閉するもので、リング状をなし、テーパ状の下端
部周縁が中段の弁座(中段弁座)28に上方から係合す
るようになっている。この第2弁体31は、弁棒33に
固定され、弁棒33と一体的に昇降動作する。
The intermediate valve body (second valve body) 31 includes a second refrigerant passage 24 and a lower refrigerant passage (third refrigerant passage) 25.
Are opened and closed, and have a ring-like shape, and the peripheral edge of the tapered lower end is engaged with the middle-stage valve seat (middle-stage valve seat) 28 from above. The second valve body 31 is fixed to the valve rod 33 and moves up and down integrally with the valve rod 33.

【0024】最下部の弁体(第3弁体)32は、第3冷
媒通路25およびその下段の冷媒通路(第4冷媒通路)
26とを開閉するもので、筒状をなし、テーパ状の下端
部周縁が下段の弁座(下段弁座)29に上方から係合す
るとともに、同形状の上端部周縁が中段弁座28に下方
から係合するようになっている。
The lowermost valve body (third valve body) 32 includes a third refrigerant passage 25 and a lower refrigerant passage (fourth refrigerant passage).
26 is opened and closed, and has a cylindrical lower end peripheral edge engages with a lower valve seat (lower valve seat) 29 from above, and an upper end peripheral edge with the same shape acts as a middle valve seat 28. It is designed to engage from below.

【0025】この第3弁体32は、弁棒33に対して上
下方向に一定範囲摺動可能とされている。そして、この
第3弁体32の内面側に設けたフランジ39が、弁棒3
3に設けた上下一対の係止リング40,41に圧縮コイ
ルスプリング42,43を介してそれぞれ弾性的に当接
し、これにより第3弁体32は弁棒33に対して一定の
付勢力で上下方向に追従動作するようになっている。な
お、この第3弁体32と弁棒33との接合空間も、シー
ルリング44によって閉塞されている。
The third valve body 32 is slidable in a certain range in the vertical direction with respect to the valve rod 33. The flange 39 provided on the inner surface side of the third valve body 32 is
3 is elastically contacted with a pair of upper and lower engaging rings 40 and 41 via compression coil springs 42 and 43, respectively, whereby the third valve body 32 is vertically moved against the valve rod 33 by a constant urging force. It follows the direction. The joint space between the third valve body 32 and the valve rod 33 is also closed by the seal ring 44.

【0026】このような構成によって、ケース体22の
内部には弁室が形成される。以下、これらの弁室につい
ては、上段弁座27と中段弁座28との間の空間を上部
弁室45といい、中段弁座28と下段弁座29との間の
空間を中間弁室46といい、下段弁座29の下方空間を
下部弁室47という。
With this structure, a valve chamber is formed inside the case body 22. Hereinafter, regarding these valve chambers, a space between the upper valve seat 27 and the middle valve seat 28 is referred to as an upper valve chamber 45, and a space between the middle valve seat 28 and the lower valve seat 29 is referred to as an intermediate valve chamber 46. The space below the lower valve seat 29 is referred to as the lower valve chamber 47.

【0027】次に弁作用を説明する。Next, the valve action will be described.

【0028】図2は弁棒33がパルスモータ34によっ
て最大限上方に移動した開モードを示している。この開
モードでは、全ての弁体30,31,32が弁棒33と
ともに上昇し、その各弁体30,31,32はそれぞれ
下側の弁座27,28,29から離間する。ただし、第
3弁体32の上端部周縁が中段弁座28に下方から当接
し、第2冷媒通路24と第3冷媒通路25とは遮断状態
となる。したがって、この状態では、互いに隣接する第
1冷媒通路23と第2冷媒通路24、および第3冷媒通
路25と第4冷媒通路26とがそれぞれ連通する。
FIG. 2 shows the open mode in which the valve rod 33 is moved upward by the pulse motor 34 to the maximum extent. In this open mode, all the valve bodies 30, 31, 32 rise together with the valve rod 33, and the respective valve bodies 30, 31, 32 are separated from the lower valve seats 27, 28, 29, respectively. However, the peripheral edge of the upper end portion of the third valve body 32 contacts the middle valve seat 28 from below, and the second refrigerant passage 24 and the third refrigerant passage 25 are shut off. Therefore, in this state, the first refrigerant passage 23 and the second refrigerant passage 24, and the third refrigerant passage 25 and the fourth refrigerant passage 26, which are adjacent to each other, communicate with each other.

【0029】図3は弁棒33がパルスモータ34によっ
て最大限下方に移動した閉モードを示している。この閉
モードでは、全ての弁体30,31,32が弁棒33と
ともに下降し、その各弁体30,31,32はそれぞれ
下側の弁座27,28,29に当接する。したがって、
この状態では、各冷媒通路23,24,25,26がそ
れぞれ各弁座部27,28,29で閉塞された状態とな
っている。
FIG. 3 shows a closed mode in which the valve rod 33 is moved downward by the pulse motor 34 to the maximum extent. In this closed mode, all the valve bodies 30, 31, 32 descend together with the valve rod 33, and the respective valve bodies 30, 31, 32 come into contact with the lower valve seats 27, 28, 29, respectively. Therefore,
In this state, the refrigerant passages 23, 24, 25 and 26 are closed by the valve seat portions 27, 28 and 29, respectively.

【0030】図4は、閉モードから一部の弁が開となる
一部開モードへの移行状態を示している。すなわち、図
3に示す閉モードでは、第1,第3弁体30,32が上
方からそれぞれ圧縮コイルスプリング37,42によっ
て弾性的に押下げられ、同スプリングは縮んだ状態とな
っている。また、この状態では第3冷媒通路25と中間
弁室46とが連通している。
FIG. 4 shows a transition state from the closed mode to the partially open mode in which some valves are opened. That is, in the closed mode shown in FIG. 3, the first and third valve bodies 30 and 32 are elastically pressed from above by the compression coil springs 37 and 42, respectively, and the springs are in a contracted state. Further, in this state, the third refrigerant passage 25 and the intermediate valve chamber 46 communicate with each other.

【0031】この状態で、弁棒33を押下げ用の圧縮ス
プリング37,42が伸び切る状態まで上方に移動させ
ると、第1弁体30および第3弁体32が上段弁座27
および下段弁座29に当接したままで、第2弁体31が
上昇する。
In this state, when the valve rod 33 is moved upward to a state where the pressing compression springs 37 and 42 are fully extended, the first valve body 30 and the third valve body 32 cause the upper valve seat 27 to move.
The second valve body 31 rises while being in contact with the lower valve seat 29.

【0032】このようにして、弁棒33とともに第2弁
体31を上昇させた状態を示したのが図4である。この
状態では第2弁体31が開となり、上部弁室45と中間
弁室46とが連通し、第3冷媒通路25と第2冷媒通路
24とが連通する。
FIG. 4 shows a state in which the second valve body 31 is raised together with the valve rod 33 in this way. In this state, the second valve body 31 is opened, the upper valve chamber 45 and the intermediate valve chamber 46 communicate with each other, and the third refrigerant passage 25 and the second refrigerant passage 24 communicate with each other.

【0033】次にこのような構成の冷媒制御弁21を用
いた冷凍サイクル装置について説明する。
Next, a refrigeration cycle apparatus using the refrigerant control valve 21 having such a configuration will be described.

【0034】本実施例の冷凍サイクル装置では、コンプ
レッサ51、四方弁52、室外熱交換器53、減圧機構
としての膨脹弁54、および一対の室内熱交換器55,
56が冷媒配管57によって順次に接続されている。冷
媒配管57には、膨脹弁54を迂回するバイパス配管5
8と、このバイパス配管58を開閉するバイパス弁59
とが設けられている。
In the refrigeration cycle apparatus of this embodiment, the compressor 51, the four-way valve 52, the outdoor heat exchanger 53, the expansion valve 54 as a pressure reducing mechanism, and the pair of indoor heat exchangers 55,
56 are sequentially connected by a refrigerant pipe 57. The refrigerant pipe 57 includes a bypass pipe 5 that bypasses the expansion valve 54.
8 and a bypass valve 59 for opening and closing the bypass pipe 58
And are provided.

【0035】室内側では冷媒配管57が膨脹弁54側で
分岐部60を介して二つの分岐配管57a,57bに分
岐し、その一方の分岐管57aが冷媒制御バルブ21の
第1冷媒通路23に直接接続されるとともに、他方の分
岐管57bが第1の室内熱交換器55に接続された後、
冷媒制御バルブ21の第3冷媒通路25に接続されてい
る。また、冷媒配管57は四方弁52側では分岐部61
を介して二つの分岐配管57c,57dに分岐し、その
一方の分岐管57cが第2の室内熱交換器56に接続さ
れた後冷媒制御バルブ21の第2冷媒通路24に接続さ
れるとともに、他方の分岐管57dが冷媒制御バルブ2
1の第4冷媒通路26に直接接続されている。
On the indoor side, the refrigerant pipe 57 branches into two branch pipes 57a and 57b on the expansion valve 54 side via a branch portion 60, and one branch pipe 57a is connected to the first refrigerant passage 23 of the refrigerant control valve 21. After being directly connected and the other branch pipe 57b being connected to the first indoor heat exchanger 55,
It is connected to the third refrigerant passage 25 of the refrigerant control valve 21. Further, the refrigerant pipe 57 has a branch portion 61 on the four-way valve 52 side.
Via the two branch pipes 57c, 57d, one of the branch pipes 57c is connected to the second indoor heat exchanger 56 and is connected to the second refrigerant passage 24 of the refrigerant control valve 21, and The other branch pipe 57d is the refrigerant control valve 2
It is directly connected to the first fourth refrigerant passage 26.

【0036】しかして、冷房時にはバイパス弁59が
閉、冷媒制御弁21が図2に示す開モードの状態で、冷
媒が図1に実線矢印aで示すように、コンプレッサ5
1、四方弁52、室外熱交換器53、膨脹弁54、各室
内熱交換器55,56に順次に流れる。この場合、開モ
ードの状態にある冷媒制御弁21では、第1冷媒通路2
3と第2冷媒通路24とが上部弁室45を介して連通す
るとともに、第3冷媒通路25と第4冷媒通路26とが
下部弁室47を介して連通するので、冷媒配管57の分
岐部60から一方の分岐配管57aに流入した冷媒は、
冷媒制御弁21の第1冷媒通路23から第2冷媒通路2
4を通り、第2の室内熱交換器56を経て分岐配管57
cおよび分岐部61に至る。また、冷媒配管57の分岐
部60から他方の分岐配管57bに流入した冷媒は、第
1の室内熱交換器55を経て冷媒制御弁21の第3冷媒
通路25から第4冷媒通路26を通り、分岐配管57d
および分岐部61に至る。各室内熱交換器55,56で
はそれぞれ室内空気の冷却作用が並列的(2パス)に行
われる。
However, during cooling, the bypass valve 59 is closed, the refrigerant control valve 21 is in the open mode shown in FIG. 2, and the refrigerant is compressed by the compressor 5 as indicated by the solid arrow a in FIG.
1, the four-way valve 52, the outdoor heat exchanger 53, the expansion valve 54, and the indoor heat exchangers 55 and 56 sequentially flow. In this case, in the refrigerant control valve 21 in the open mode, the first refrigerant passage 2
3 and the second refrigerant passage 24 communicate with each other via the upper valve chamber 45, and the third refrigerant passage 25 and the fourth refrigerant passage 26 communicate with each other via the lower valve chamber 47, so that the branch portion of the refrigerant pipe 57. The refrigerant flowing from 60 to the one branch pipe 57a is
From the first refrigerant passage 23 of the refrigerant control valve 21 to the second refrigerant passage 2
4 through the second indoor heat exchanger 56, branch pipe 57
c and branch portion 61. The refrigerant flowing from the branch portion 60 of the refrigerant pipe 57 into the other branch pipe 57b passes through the first indoor heat exchanger 55, the third refrigerant passage 25 of the refrigerant control valve 21 and the fourth refrigerant passage 26, Branch pipe 57d
And the branch portion 61. In each of the indoor heat exchangers 55 and 56, the cooling action of the indoor air is performed in parallel (two passes).

【0037】暖房時には、冷媒が前記冷房時と逆に、図
1に破線矢印bで示す方向に流れる。この場合、冷媒制
御弁21は図2に示す開モードのままであり、暖房作用
が2パスで行われる。
During heating, the refrigerant flows in the direction indicated by the broken line arrow b in FIG. 1, contrary to the case of cooling. In this case, the refrigerant control valve 21 remains in the open mode shown in FIG. 2, and the heating operation is performed in two passes.

【0038】除湿時には、冷媒が冷房時と略同様に図1
の実線矢印aの如く流れるが、バイパス弁59が開とさ
れ、図1に白矢印cで示すように、冷媒はバイパス配管
58を流れ、母管部分の膨脹弁54は機能しない。
At the time of dehumidification, the refrigerant is similar to that at the time of cooling, as shown in FIG.
, The bypass valve 59 is opened, the refrigerant flows through the bypass pipe 58, and the expansion valve 54 of the mother pipe portion does not function, as shown by the white arrow c in FIG.

【0039】一方、冷媒制御弁21は、図3に示す閉モ
ードの状態に対して、弁棒33とともに第2弁体31を
上昇させた図4に示す状態にある。
On the other hand, the refrigerant control valve 21 is in the state shown in FIG. 4 in which the second valve body 31 is raised together with the valve rod 33 with respect to the state of the closed mode shown in FIG.

【0040】この状態では、冷媒は分岐部60を介して
分岐配管57a,57bに流れ込むが、一方の分岐配管
57aは冷媒制御弁21の閉じた冷媒通路23に連通し
ているので、流れは遮断される。
In this state, the refrigerant flows into the branch pipes 57a and 57b through the branch portion 60, but since one branch pipe 57a communicates with the closed refrigerant passage 23 of the refrigerant control valve 21, the flow is blocked. To be done.

【0041】これに対し、他方の分岐配管57bでは冷
媒が再熱用室内熱交換器55を経て冷媒制御弁21の第
3冷媒通路25から中間弁室46および上段弁室45を
経て第2冷媒通路24から流出する。この際、第2弁体
31の開度によって流路断面積は変化するので、これに
より上段弁室45は膨脹室となって、冷媒は減圧作用を
受けることになる。
On the other hand, in the other branch pipe 57b, the refrigerant passes through the reheat indoor heat exchanger 55, the third refrigerant passage 25 of the refrigerant control valve 21, the intermediate valve chamber 46 and the upper valve chamber 45, and the second refrigerant. It flows out of the passage 24. At this time, the flow passage cross-sectional area changes depending on the opening degree of the second valve body 31, so that the upper valve chamber 45 becomes an expansion chamber, and the refrigerant is decompressed.

【0042】そして、第2冷媒通路24から流出した冷
媒は冷却用の室内熱交換器56に流入し、ここで蒸発作
用を受け、ここで除湿機能を発揮するものである。つま
り、冷却用の室内熱交換器56は、室内ユニットの風上
に配置されて除湿を行い、再熱用の室内熱交換器55
は、風下側に配置されて冷却された空気を再熱する。
Then, the refrigerant flowing out from the second refrigerant passage 24 flows into the indoor heat exchanger 56 for cooling, is subjected to an evaporation action here, and exhibits a dehumidifying function here. That is, the indoor heat exchanger 56 for cooling is disposed on the windward side of the indoor unit to perform dehumidification, and the indoor heat exchanger 55 for reheating.
Are located leeward to reheat the cooled air.

【0043】本実施例の冷媒制御弁21によれば、3つ
の弁体30,31,32を開モードまたは閉モードに設
定することによって、冷媒通路23,24,25,26
を一対ずつ対応させた状態で開閉することができ、2つ
の切換え弁に相当する流路切換え機能が得られる。
According to the refrigerant control valve 21 of the present embodiment, the refrigerant passages 23, 24, 25, 26 are set by setting the three valve bodies 30, 31, 32 in the open mode or the closed mode.
The two can be opened and closed in a paired manner, and a flow passage switching function corresponding to two switching valves can be obtained.

【0044】また、圧縮コイルスプリング37,42に
よって第1弁体30および第3弁体32をそれぞれの弁
座27,29に当接させたままで、第2弁体31を開動
作可能とし、その第2弁体31の二次側弁室である上部
弁室45を膨脹室としたことにより、冷媒の膨脹作用が
行える。したがって、流路切換え機能とともに減圧機能
も有するものとなり、複数種類の弁機能を合せ持つもの
となる。
The compression valve springs 37 and 42 allow the second valve body 31 to open while the first valve body 30 and the third valve body 32 are kept in contact with the respective valve seats 27 and 29. Since the upper valve chamber 45, which is the secondary valve chamber of the second valve body 31, is the expansion chamber, the refrigerant can be expanded. Therefore, it has a pressure reducing function as well as a flow path switching function, and has a plurality of types of valve functions.

【0045】さらに、本実施例の冷凍サイクル装置によ
れば、2種類の切換え弁機能と膨脹弁機能とを合せ持つ
冷媒制御弁21を組込み、これによって1つの弁を流路
切換え用の開閉弁および膨脹弁として利用するようにし
たので、従来のように独立した構成の開閉弁(図5の1
4,15)や膨脹弁(同図の11)あるいは補助配管
(同図の10)等を設ける必要がない。したがって、部
品数の減少、構成の簡素化、製作手間の軽減および製作
コストの低下等が図れるようになる。
Further, according to the refrigeration cycle apparatus of the present embodiment, the refrigerant control valve 21 having both two kinds of switching valve function and expansion valve function is incorporated, whereby one valve is opened / closed for switching the flow path. Since it is also used as an expansion valve, an on-off valve (1 in FIG.
4, 15), an expansion valve (11 in the same figure), an auxiliary pipe (10 in the same figure) and the like need not be provided. Therefore, it is possible to reduce the number of parts, simplify the structure, reduce the manufacturing labor, and reduce the manufacturing cost.

【0046】なお、前記実施例ではヒートポンプ式冷凍
サイクル装置に適用したが、本発明は冷凍専用サイクル
装置に適用できることは勿論である。
Although the above-mentioned embodiment is applied to the heat pump type refrigeration cycle device, the present invention can be applied to a refrigeration dedicated cycle device.

【0047】また、前記実施例では冷媒制御弁を2つの
開閉弁機能および1つの膨脹弁機能を有する構成とした
が、これらの機能は適宜増大等して実施例することが可
能である。
Further, in the above embodiment, the refrigerant control valve has two on-off valve functions and one expansion valve function, but these functions can be appropriately increased to implement the embodiment.

【0048】さらに、弁体や弁座、冷媒通路の構成等に
ついても、前記実施例以外に種々の変形、応用が可能で
ある。
Further, with respect to the structure of the valve body, the valve seat, the refrigerant passage, etc., various modifications and applications are possible other than the above embodiment.

【0049】[0049]

【発明の効果】以上のように、本発明に係る冷媒制御弁
によれば、複数の弁機能を一つにまとめて複数の流路切
換えおよび減圧が行える多機能・高能率の冷媒制御弁を
提供することができ、また、本発明に係る冷凍サイクル
装置によれば、従来に比して流路切換え用の弁および減
圧機構の数が低減でき、これにより部品数の減少、構成
の簡素化、製作手間の軽減および製作コストの低廉化等
が図れる。
As described above, according to the refrigerant control valve of the present invention, a multifunctional and highly efficient refrigerant control valve capable of combining a plurality of valve functions into one and switching a plurality of flow paths and reducing the pressure is provided. According to the refrigeration cycle apparatus of the present invention, the number of flow path switching valves and the pressure reducing mechanism can be reduced as compared with the related art, thereby reducing the number of parts and simplifying the configuration. The manufacturing labor can be reduced and the manufacturing cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示すもので、冷媒制御弁の
概略構成および冷凍サイクル装置の系統を示す図。
FIG. 1 is a diagram showing an embodiment of the present invention and showing a schematic configuration of a refrigerant control valve and a system of a refrigeration cycle apparatus.

【図2】同実施例による冷媒制御弁の拡大断面図で、開
モードを示す図。
FIG. 2 is an enlarged cross-sectional view of the refrigerant control valve according to the same embodiment, showing an open mode.

【図3】同実施例による冷媒制御弁の拡大断面図で、閉
モードを示す図。
FIG. 3 is an enlarged cross-sectional view of the refrigerant control valve according to the same embodiment, showing a closed mode.

【図4】同実施例による冷媒制御弁の拡大断面図で、一
部開モードを示す図。
FIG. 4 is an enlarged cross-sectional view of the refrigerant control valve according to the same embodiment, showing a partially open mode.

【図5】従来例を示す系統図。FIG. 5 is a system diagram showing a conventional example.

【符号の説明】[Explanation of symbols]

21 冷媒制御弁 22 ケース体 23,24,25,26 冷媒通路 27,28,29 弁座 30,31,32 弁体 33 弁棒 34 駆動機構(パルスモータ) 37,42 スプリング(圧縮コイルスプリング) 45 膨脹室(上段弁室) 51 コンプレッサ 53 室外熱交換器 54 減圧機構(膨脹弁) 55 再熱用室内熱交換器 56 冷却用室内熱交換器 57 冷媒配管 57a,57b,57c,57d 分岐配管 21 Refrigerant control valve 22 Case body 23, 24, 25, 26 Refrigerant passage 27, 28, 29 Valve seat 30, 31, 32 Valve body 33 Valve rod 34 Drive mechanism (pulse motor) 37, 42 Spring (compression coil spring) 45 Expansion chamber (upper valve chamber) 51 Compressor 53 Outdoor heat exchanger 54 Decompression mechanism (expansion valve) 55 Reheat indoor heat exchanger 56 Cooling indoor heat exchanger 57 Refrigerant piping 57a, 57b, 57c, 57d Branch piping

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 複数の冷媒通路が軸方向に間隔的に設け
られた筒状のケース体と、このケース体内の各冷媒通路
を仕切る位置に設けられた複数の弁座と、前記ケース体
の軸心部に挿通された弁棒と、この弁棒を軸方向に沿っ
て進退駆動する駆動機構と、前記弁棒に設けられ、その
弁棒の進退に伴って前記各弁座に接離する複数の弁体と
を備え、前記駆動機構には前記弁棒の一方向移動により
前記冷媒通路を隣接するもの毎にそれぞれ連通させる開
モードと、全ての冷媒通路を閉とする閉モードとを設定
し、かつ前記弁体の少なくとも一つをスプリングにより
開方向に付勢した構成として前記閉モードに対して開動
作可能とするとともに、その弁体の二次側弁室を膨脹室
としたことを特徴とする冷媒制御弁。
1. A cylindrical case body in which a plurality of refrigerant passages are provided at intervals in the axial direction, a plurality of valve seats provided at positions separating the respective refrigerant passages in the case body, and the case body. A valve rod inserted into the shaft center portion, a drive mechanism for driving the valve rod forward and backward along the axial direction, and a valve mechanism provided on the valve rod and moving toward and away from the valve seats as the valve rod advances and retracts. A plurality of valve bodies are provided, and the drive mechanism is set to an open mode in which the refrigerant passages are connected to each other by one-way movement of the valve rod and a closed mode in which all the refrigerant passages are closed. In addition, at least one of the valve bodies is configured to be urged in the opening direction by a spring to enable the opening operation in the closed mode, and the secondary side valve chamber of the valve body is an expansion chamber. Characteristic refrigerant control valve.
【請求項2】 コンプレッサ、室外熱交換器、減圧機構
および少なくとも一対の室内熱交換器を冷媒配管によっ
て接続した冷凍サイクル装置であって、除湿運転時に前
記各室内熱交換器を再熱用および冷却用として直列接続
状態で冷媒流通に供するものにおいて、前記冷媒配管を
室内側で分岐させるとともに、その分岐配管に冷媒通路
を接続させて請求項1記載の冷媒制御弁を組込み、この
冷媒制御弁の各冷媒通路に接続した前記分岐配管のう
ち、前記冷媒制御弁の閉モードで開動作可能となる弁体
に通じる配管で除湿時に一次側となるものに前記再熱用
の室内熱交換器を接続するとともに、除湿時に二次側と
なるものに前記冷却用の室内熱交換器を接続したことを
特徴とする冷凍サイクル装置。
2. A refrigeration cycle apparatus in which a compressor, an outdoor heat exchanger, a pressure reducing mechanism and at least a pair of indoor heat exchangers are connected by a refrigerant pipe, wherein each indoor heat exchanger is used for reheating and cooling during dehumidifying operation. A refrigerant control valve according to claim 1, wherein the refrigerant pipe is branched in a series connection state for indoor use, and the refrigerant pipe is branched inside, and a refrigerant passage is connected to the branched pipe. The indoor heat exchanger for reheating is connected to one of the branch pipes connected to each of the refrigerant passages, which pipe is connected to the valve body that can be opened in the closed mode of the refrigerant control valve and is the primary side during dehumidification. In addition, the refrigeration cycle apparatus characterized in that the indoor heat exchanger for cooling is connected to the secondary side at the time of dehumidification.
JP28186392A 1992-10-20 1992-10-20 Refrigerant control valve and refrigeration cycle device Expired - Fee Related JP3150791B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28186392A JP3150791B2 (en) 1992-10-20 1992-10-20 Refrigerant control valve and refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28186392A JP3150791B2 (en) 1992-10-20 1992-10-20 Refrigerant control valve and refrigeration cycle device

Publications (2)

Publication Number Publication Date
JPH06129686A true JPH06129686A (en) 1994-05-13
JP3150791B2 JP3150791B2 (en) 2001-03-26

Family

ID=17645048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28186392A Expired - Fee Related JP3150791B2 (en) 1992-10-20 1992-10-20 Refrigerant control valve and refrigeration cycle device

Country Status (1)

Country Link
JP (1) JP3150791B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987004729A1 (en) * 1986-02-10 1987-08-13 Godo Steel, Ltd. System for scrubbing gas used for preheating of scrap for steelmaking
JP2003090635A (en) * 2001-09-19 2003-03-28 Denso Corp Ejector cycle
JP2012237532A (en) * 2011-05-13 2012-12-06 Tgk Co Ltd Composite valve

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987004729A1 (en) * 1986-02-10 1987-08-13 Godo Steel, Ltd. System for scrubbing gas used for preheating of scrap for steelmaking
JP2003090635A (en) * 2001-09-19 2003-03-28 Denso Corp Ejector cycle
JP2012237532A (en) * 2011-05-13 2012-12-06 Tgk Co Ltd Composite valve

Also Published As

Publication number Publication date
JP3150791B2 (en) 2001-03-26

Similar Documents

Publication Publication Date Title
JP6758500B2 (en) Air conditioner
EP1816416A1 (en) Air conditioner
JPH08145507A (en) Refrigerant flow control valve and refrigerating equipment using refrigerant flow control valve
JP6769409B2 (en) Integrated valve device
JPH08170864A (en) Heat pump air conditioning apparatus and defrosting method
JPH06129686A (en) Refrigerant control valve and refrigerating cycle equipment
US4055056A (en) Reversible refrigerant system and four-way reversing valve therefor or the like
JP7367972B2 (en) pilot valve
JP2011089732A (en) Heat pump device
JP2005076983A (en) Air conditioning system
JPH0720528Y2 (en) Open / close valve
JPS63199980A (en) Pilot proportional valve
JP4025006B2 (en) Bidirectional valve
JPH0311667Y2 (en)
JPH0424364Y2 (en)
KR100329923B1 (en) Apparatus for selecting directional refrigerant passage of a cooling and heat pump type air-conditioner
JPH042377Y2 (en)
JP2002031438A (en) Air conditioner and manufacturing method therefor
JPH0426850Y2 (en)
JPH045967Y2 (en)
JPS609502Y2 (en) four way switching valve
JP2643708B2 (en) Air conditioner
JPS5832300B2 (en) Heat pump type refrigeration equipment
JP3415289B2 (en) Three-way valve
JP2817513B2 (en) Air conditioner

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees