JPH06128565A - Production of rare earth phosphate phosphor - Google Patents
Production of rare earth phosphate phosphorInfo
- Publication number
- JPH06128565A JPH06128565A JP27592792A JP27592792A JPH06128565A JP H06128565 A JPH06128565 A JP H06128565A JP 27592792 A JP27592792 A JP 27592792A JP 27592792 A JP27592792 A JP 27592792A JP H06128565 A JPH06128565 A JP H06128565A
- Authority
- JP
- Japan
- Prior art keywords
- phosphor
- rare earth
- earth phosphate
- state
- particle size
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Luminescent Compositions (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、三波長域発光形蛍光ラ
ンプの緑色発光成分等として用いられる希土類リン酸塩
蛍光体の製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a rare earth phosphate phosphor used as a green light emitting component of a three-wavelength band fluorescent lamp.
【0002】[0002]
【従来の技術】近年、一般照明用蛍光ランプとして、高
演色性と高効率性を同時に満足する三波長域発光形蛍光
ランプが開発され、普及している。この三波長域発光形
蛍光ランプは、比較的狭帯域の発光スペクトル分布を有
する、青色、緑色および赤色の各色に発光する蛍光体を
任意の割合で混合し、この混合蛍光体により蛍光膜を形
成することによって、白色または希望する色の発光を得
る蛍光ランプである。2. Description of the Related Art In recent years, as a fluorescent lamp for general illumination, a three-wavelength light emitting type fluorescent lamp which simultaneously satisfies high color rendering properties and high efficiency has been developed and has become popular. This three-wavelength band emission type fluorescent lamp mixes phosphors that emit light of each of blue, green and red colors, which have a relatively narrow band emission spectrum distribution, at an arbitrary ratio, and forms a phosphor film by this mixed phosphor. It is a fluorescent lamp that emits white light or a desired color.
【0003】上記したような三波長域発光形蛍光ランプ
の緑色発光成分としては、例えば希土類リン酸塩蛍光体
が用いられている。この希土類リン酸塩蛍光体の製造方
法としては、希土類元素のシュウ酸塩を焙焼して希土類
酸化物とし、これとリン酸アンモニウムを混合した後、
還元性雰囲気中にて1000〜1200℃の温度で焼成すること
によって、蛍光体を得る方法がよく知られている。A rare earth phosphate phosphor, for example, is used as the green light emitting component of the above-mentioned three-wavelength band fluorescent lamp. As a method for producing the rare earth phosphate phosphor, a rare earth element oxalate is roasted to obtain a rare earth oxide, and after mixing this with ammonium phosphate,
A method of obtaining a phosphor by firing at a temperature of 1000 to 1200 ° C. in a reducing atmosphere is well known.
【0004】しかし、上記した希土類リン酸塩蛍光体の
製造方法では、希土類酸化物の形状がほぼ長方形の角張
ったものとなるため、このような形状の酸化物を原材料
として用いた場合には、得られる蛍光体の形状も長方形
の角張ったものとなる。このような形状の蛍光体を用い
て蛍光膜を形成すると、粒子形状の影響で滑かな蛍光面
が得られないという問題があった。このような蛍光面の
膜肌の粗れは、ランプ点灯中の光束維持率の低下を招い
てしまう。However, in the above-mentioned method for producing a rare earth phosphate phosphor, since the shape of the rare earth oxide is a substantially rectangular and angular shape, when an oxide having such a shape is used as a raw material, The shape of the obtained phosphor is also rectangular and rectangular. When a phosphor film is formed using a phosphor having such a shape, there is a problem that a smooth phosphor screen cannot be obtained due to the influence of the particle shape. The roughness of the film surface of the phosphor screen causes a decrease in the luminous flux maintenance factor during the lighting of the lamp.
【0005】また、リン酸化合物と希土類元素の酸化物
や炭酸塩等とを、溶液中で反応させて希土類リン酸塩を
製造する方法も知られている。しかし、この希土類リン
酸塩の製造方法においては、反応後の乾燥を通常の乾燥
方式で行うと、得られる希土類リン酸塩が固結、凝集し
てしまい、その後の処理工程が困難になると共に、蛍光
体特性の変動が大きく、また安定した粒子形状のものを
得ることが困難であるという問題があった。Also known is a method for producing a rare earth phosphate by reacting a phosphoric acid compound with an oxide or carbonate of a rare earth element in a solution. However, in this method for producing a rare earth phosphate, if the drying after the reaction is carried out by an ordinary drying method, the obtained rare earth phosphate will be solidified and aggregated, and the subsequent treatment steps will be difficult. However, there are problems that the phosphor characteristics vary greatly and that it is difficult to obtain a stable particle shape.
【0006】[0006]
【発明が解決しようとする課題】上述したように、従来
の希土類リン酸塩蛍光体の製造方法では、得られる蛍光
体の形状が長方形の角張ったものとなって、滑かな蛍光
面が得られず、ランプ点灯中の光束維持率が低下すると
いうような問題を招いたり、あるいは製造工程で希土類
リン酸塩が凝集、固化して、粒子形状や蛍光体特性の再
現性が低いというような問題を招いていた。As described above, according to the conventional method for producing a rare earth phosphate phosphor, the obtained phosphor has a rectangular rectangular shape, and a smooth phosphor screen is obtained. The problem is that the luminous flux maintenance factor decreases during lamp operation, or the rare earth phosphate aggregates and solidifies during the manufacturing process, resulting in low reproducibility of particle shape and phosphor characteristics. Was invited.
【0007】本発明は、このような課題に対処するため
になされたもので、ほぼ球状で粒度分布が安定した希土
類リン酸塩蛍光体を再現性よく得ることを可能にした希
土類リン酸塩蛍光体の製造方法を提供することを目的と
している。The present invention has been made in order to solve such a problem, and has made it possible to obtain a rare earth phosphate phosphor having a substantially spherical shape and a stable particle size distribution with good reproducibility. It is intended to provide a method of manufacturing a body.
【0008】[0008]
【課題を解決するための手段と作用】本発明の希土類リ
ン酸塩蛍光体の製造方法は、 一般式:(M1-x-y Cex Tby )PO4 (式中、 MはLa、 YおよびGdから選ばれた少なくとも 1
種の元素を示し、 xおよび yは x>0 、 y>0 、 0.1≦
x+y≦0.7 を満足する数を表す)で実質的に表される希
土類リン酸塩蛍光体を、希土類元素を含む化合物とリン
酸化合物とを溶液中で反応させて製造するにあたり、前
記反応後の乾燥を、噴霧状態、流動状態および凍結状態
のうちの 1種の状態にて行うことを特徴としている。Means and Actions for Solving the Problems The method for producing a rare earth phosphate phosphor of the present invention comprises the following general formula: (M 1-xy Ce x Tb y ) PO 4 (wherein M is La, Y and At least 1 selected from Gd
Represents the element of the species, where x and y are x> 0, y> 0, 0.1 ≦
x + y ≦ 0.7) represents a rare earth phosphate phosphor substantially represented by the following reaction in producing a compound containing a rare earth element and a phosphoric acid compound in a solution. The feature is that the subsequent drying is performed in one of a spraying state, a fluidized state and a frozen state.
【0009】本発明の製造方法においては、まず原料と
して希土類元素の化合物、例えば硝酸塩、酸化物、炭酸
塩、塩化物等を、La、 YおよびGdから選ばれた少なくと
も 1種の元素とCeとTbについてそれぞれ用意し、これら
を所定量含む水溶液にリン酸化合物を加える。用いるリ
ン酸化合物としては、固体あるいは液体のいずれでもよ
い。ただし、リン酸化合物は理論量に対して 1.001〜
1.400倍の範囲で、過剰に加えることが好ましい。In the production method of the present invention, a compound of a rare earth element such as a nitrate, an oxide, a carbonate or a chloride is first used as a raw material and at least one element selected from La, Y and Gd and Ce. Tb is prepared for each, and a phosphoric acid compound is added to an aqueous solution containing these in predetermined amounts. The phosphoric acid compound used may be either solid or liquid. However, 1.001-
It is preferable to add excessively in the range of 1.400 times.
【0010】次に、上記リン酸化合物をほぼ完全に溶解
した後、例えばNH4 OH液を用いて溶液のpHを 4〜 8程度
に調整する。pHの調整は沈殿物の大きさに影響を与え、
アルカリ側に調整すると沈殿粒子が大きくなり、その後
の乾燥工程に悪影響を及ぼす。次いで、室温から 100℃
程度の温度範囲で、例えば 2時間以上反応させた後、洗
浄を行う。この洗浄は、上澄液の電導度が0.3ms/cm以下
になるまで繰り返し行うことが好ましい。洗浄が不十分
であると、すなわち残留陽イオン量が多いと、その後の
乾燥工程で粗大な凝集粒が生じやすくなる。Next, after the phosphoric acid compound is almost completely dissolved, the pH of the solution is adjusted to about 4 to 8 using, for example, NH 4 OH solution. Adjusting the pH affects the size of the precipitate,
When adjusted to the alkaline side, the precipitated particles become large, which adversely affects the subsequent drying process. Then from room temperature to 100 ° C
After the reaction is carried out in a temperature range of about 2 hours or more, washing is performed. This washing is preferably repeated until the electric conductivity of the supernatant becomes 0.3 ms / cm or less. If the washing is insufficient, that is, if the amount of residual cations is large, coarse agglomerated particles are likely to be generated in the subsequent drying step.
【0011】このようにして洗浄した後、噴霧状態、流
動状態および凍結状態のうちの 1種の状態にて乾燥を行
う。このような乾燥方式を用いることによって、粒径の
揃った微細な凝集粒子として希土類リン酸塩を得ること
ができ、その後の焼成工程(結晶成長工程)が容易にな
ると共に、粒子形状が球状に近く、かつ粒子径の揃った
蛍光体を得ることが可能となる。なお、流動乾燥とは、
例えば円板上で乾燥しようとするスラリーを動かしなが
ら乾燥を行う方法である。また、凍結乾燥とは、乾燥し
ようとするスラリーを凍結させた後、真空引きして乾燥
を行う方法である。After washing in this way, drying is carried out in one of a spraying state, a fluidized state and a frozen state. By using such a drying method, it is possible to obtain rare earth phosphate as fine agglomerated particles having a uniform particle size, which facilitates the subsequent firing step (crystal growth step) and makes the particle shape spherical. It is possible to obtain a phosphor having a close particle size and a uniform particle size. The fluidized drying is
For example, it is a method of drying while moving the slurry to be dried on a disc. Freeze-drying is a method in which the slurry to be dried is frozen and then vacuumed to dry.
【0012】また、乾燥後の焼成工程は、得られた希土
類リン酸塩に融剤として、アルカリ金属の化合物とホウ
酸塩化合物を加えた後、例えば窒素と水素を含む還元性
雰囲気中にて、1000℃〜1300℃の温度で 1〜 5時間の条
件で行う。これによって、上述したように、粒子形状が
球状に近く、かつ粒子径の揃った蛍光体が得られる。In the baking step after drying, after adding an alkali metal compound and a borate compound as a flux to the obtained rare earth phosphate, for example, in a reducing atmosphere containing nitrogen and hydrogen. , 1 ℃ to 1300 ℃ for 1 to 5 hours. Thereby, as described above, a phosphor having a particle shape close to a spherical shape and a uniform particle diameter can be obtained.
【0013】[0013]
【実施例】以下、本発明の実施例について説明する。EXAMPLES Examples of the present invention will be described below.
【0014】実施例1、比較例1 LaCl3 137.4g、CeCl3 74.0g およびTbCl3 37.1g を含む
水溶液に、 (NH4 ) 2HPO4 132.1gを加え、完全に溶解さ
せた後、NH4 OH水でpHを 7に調整した後、室温で24時間
反応させた。次いで、上澄液の電導度が0.3ms/cm以下に
なるまで洗浄を行った後、濾過した。この濾過によって
得た濾過ケーキに対して、トラップ温度 -50℃の条件下
で凍結乾燥を施した。[0014] Example 1, Comparative Example 1 LaCl 3 137.4 g, in an aqueous solution containing CeCl 3 74.0 g and TbCl 3 37.1g, (NH 4) 2 HPO 4 132.1g was added, to complete dissolution, NH 4 After adjusting the pH to 7 with OH water, the mixture was reacted at room temperature for 24 hours. Then, the supernatant was washed until the electric conductivity was 0.3 ms / cm or less, and then filtered. The filter cake obtained by this filtration was freeze-dried under conditions of a trap temperature of -50 ° C.
【0015】次に、得られた軟らかい希土類リン酸塩
に、 LiFと H3 BO3 をそれぞれ30重量% 、 1.0重量% 加
え、乾式で混合した後、アルミナルツボに入れて、窒素
95容量% と水素 5容量% とからなる還元性雰囲気中に
て、1250℃× 4時間の条件で焼成した。得られた蛍光体
の組成は、 (La0.56Ce0.30Tb0.14) PO4 である。Next, 30% by weight and 1.0% by weight of LiF and H 3 BO 3 , respectively, were added to the obtained soft rare earth phosphate and mixed by a dry method, then put in an alumina crucible, and nitrogen was added.
Firing was performed in a reducing atmosphere consisting of 95% by volume and 5% by volume of hydrogen at 1250 ° C. for 4 hours. The composition of the obtained phosphor is (La 0.56 Ce 0.30 Tb 0.14 ) PO 4 .
【0016】このようにして得た蛍光体は、紫外線励起
により、発光のピーク波長が 545nm付近にある緑色発光
を示した。また、この蛍光体を走査型電子顕微鏡(SE
M)で観察したところ、粒子の大きさが揃い、ほぼ球状
であることを確認した。The phosphor thus obtained exhibited green light emission with an emission peak wavelength around 545 nm when excited by ultraviolet rays. In addition, the fluorescent substance was used as a scanning electron microscope (SE
As a result of observation under M), it was confirmed that the particles had a uniform size and were substantially spherical.
【0017】また、この蛍光体の粒度分布の 50%Dを測
定したところ、 3.5μm であった。上記した条件で再現
実験をさらに 2回行い、それぞれで得た蛍光体の粒度分
布の50%Dを測定したところ、いずれも 3.5μm とな
り、 3回とも同じ値が得られ、粒子径の安定性が高いこ
とを確認した。The 50% D of the particle size distribution of this phosphor was measured and found to be 3.5 μm. Repeating the reproduction experiment twice under the above conditions and measuring 50% D of the particle size distribution of the phosphor obtained in each case, it was 3.5 μm for all, and the same value was obtained for all three times, and the stability of the particle size was obtained. Was confirmed to be high.
【0018】一方、本発明との比較として、上記実施例
1と同一原料を用いて、同様な方法で反応、洗浄、濾過
まで行った後、濾過後のケーキに対して 100℃で熱風乾
燥を施したところ、得られた希土類リン酸塩は凝集、固
化してしまった。そこで、この固化物を乳鉢にて粉砕し
た後、上記実施例と同一条件で焼成した。得られた蛍光
体の組成は、 (La0.56Ce0.30Tb0.14) PO4 である。On the other hand, as a comparison with the present invention, using the same raw materials as in Example 1 above, the reaction, washing and filtration were carried out in the same manner, and the cake after filtration was dried with hot air at 100 ° C. Upon application, the obtained rare earth phosphate aggregated and solidified. Therefore, this solidified product was crushed in a mortar and then fired under the same conditions as in the above-mentioned example. The composition of the obtained phosphor is (La 0.56 Ce 0.30 Tb 0.14 ) PO 4 .
【0019】この比較例による蛍光体をSEMで観察し
たところ、球状のものと球状の壊れたものとが混在して
いた。また、上記した蛍光体、および同一条件による 2
回の再現実験で得た蛍光体の粒度分布の 50%Dをそれぞ
れ測定したところ、 2.5μm、 4.0μm 、 3.4μm と変
動が大きかった。When the phosphor according to this comparative example was observed with an SEM, it was found that spherical particles and spherical broken particles were mixed. In addition, 2
When 50% D of the particle size distribution of the phosphor obtained in the reproduction experiment was measured, the fluctuations were large, 2.5 μm, 4.0 μm and 3.4 μm.
【0020】次に、上述した実施例で得た蛍光体と、上
記比較例のうち 50%Dが 3.4μm の蛍光体とを用いて、
それぞれ蛍光ランプを作製し、1000時間点灯後の発光強
度を調べた。比較例による蛍光体を用いた蛍光ランプの
発光強度を100%としたとき、実施例による蛍光体を用い
た蛍光ランプは106%と、良好な光束維持率を示した。 実施例2〜4、比較例2〜4 実施例1で用いたランタンを含む希土類の塩化物原料に
代えて、表1に示す炭酸塩原料(実施例2)、酸化物原
料(実施例3)、硝酸塩原料(実施例4)をそれぞれ用
いて、表1に示す各条件により水溶液中での反応までを
行った。この後、実施例1と同一条件で乾燥、焼成を行
って、表1にそれぞれ組成を示す蛍光体を作製した。ま
た、比較例2〜4として、同様な原料を用いて比較例1
と同一条件で、それぞれ蛍光体を作製した。Next, using the phosphor obtained in the above-mentioned example and the phosphor having 50% D of 3.4 μm in the above-mentioned comparative example,
Each of the fluorescent lamps was manufactured, and the emission intensity after 1000 hours of lighting was examined. When the emission intensity of the fluorescent lamp using the phosphor according to the comparative example was set to 100%, the fluorescent lamp using the phosphor according to the example showed a good luminous flux maintenance factor of 106%. Examples 2 to 4, Comparative Examples 2 to 4 Instead of the lanthanum-containing rare earth chloride raw material used in Example 1, carbonate raw materials (Example 2) and oxide raw materials (Example 3) shown in Table 1 were used. Using the nitrate raw materials (Example 4), reaction up to an aqueous solution was performed under the conditions shown in Table 1. Then, drying and firing were performed under the same conditions as in Example 1 to produce phosphors having the compositions shown in Table 1. In addition, as Comparative Examples 2 to 4, Comparative Example 1 using the same raw material
Phosphors were produced under the same conditions as above.
【0021】これら実施例2〜4の各蛍光体( 2回の再
現実験を含む)と、比較例2〜4の各蛍光体( 2回の再
現実験を含む)の粒度分布の 50%Dの測定結果を表2に
示す。また、実施例1と同様にして作製した各蛍光ラン
プの1000時間点灯後の発光強度を表2に示す。表2から
明らかなように、実施例2〜4の各蛍光体はいずれも粒
子径の安定性が高く、かつ光束維持率に優れるものであ
った。50% D of the particle size distribution of each of the phosphors of Examples 2 to 4 (including two reproduction experiments) and each of the phosphors of Comparative Examples 2 to 4 (including two reproduction experiments). The measurement results are shown in Table 2. Table 2 shows the emission intensity of each fluorescent lamp produced in the same manner as in Example 1 after 1000 hours of lighting. As is clear from Table 2, each of the phosphors of Examples 2 to 4 had a high particle diameter stability and an excellent luminous flux maintenance factor.
【0022】実施例5、比較例5 Y(NO3 )3 192.5g、 Ce(NO3 )3 65.2g および Tb(N
O3 )3 34.5g を含む水溶液に、 (NH4 ) 2 HPO4 116.1
gを加え、完全に溶解させた後、NH4 OH水でpHを5.0に調
整した後、60℃で 2時間反応させた。次いで、上澄液の
電導度が0.3ms/cm以下になるまで洗浄を行った後、濾過
した。この濾過によって得た濾過ケーキに対して、コニ
カルドライヤを用いて、乾燥温度 130℃の条件下で噴霧
乾燥を施した。Example 5, Comparative Example 5 Y (NO 3 ) 3 192.5 g, Ce (NO 3 ) 3 65.2 g and Tb (N
O 3 ) 3 34.5 g in (NH 4 ) 2 HPO 4 116.1
After g was added and completely dissolved, the pH was adjusted to 5.0 with NH 4 OH water, and the mixture was reacted at 60 ° C. for 2 hours. Then, the supernatant was washed until the electric conductivity was 0.3 ms / cm or less, and then filtered. The filter cake obtained by this filtration was spray-dried using a conical dryer at a drying temperature of 130 ° C.
【0023】次に、得られた軟らかい希土類リン酸塩
に、LiClと H3 BO3 をそれぞれ30重量% 、 1.0重量% 加
え、乾式で混合した後、アルミナルツボに入れて、実施
例1と同一条件で焼成した。得られた蛍光体の組成は、
(Y0.7 Ce0.2 Tb0.1 ) PO4 である。Next, to the obtained soft rare earth phosphate, 30% by weight and 1.0% by weight of LiCl and H 3 BO 3 , respectively, were added and mixed by a dry method, then put in an alumina crucible and the same as in Example 1. It was fired under the conditions. The composition of the obtained phosphor is
(Y 0.7 Ce 0.2 Tb 0.1 ) PO 4 .
【0024】このようにして得た蛍光体は、紫外線励起
により、発光のピーク波長が 545nm付近にある緑色発光
を示した。また、この蛍光体をSEMで観察したとこ
ろ、粒子の大きさが揃い、ほぼ球状であることを確認し
た。The phosphor thus obtained showed green light emission with an emission peak wavelength around 545 nm when excited by ultraviolet rays. When this phosphor was observed by SEM, it was confirmed that the particles had a uniform size and were substantially spherical.
【0025】また、この蛍光体の粒度分布の 50%Dを測
定したところ、 2.5μm であった。上記した条件で再現
実験をさらに 2回行い、それぞれで得た蛍光体の粒度分
布の50%Dを測定したところ、いずれも 2.5μm とな
り、 3回とも同じ値が得られ、粒子径の安定性が高いこ
とを確認した。The 50% D of the particle size distribution of this phosphor was measured and found to be 2.5 μm. Repeating the reproduction experiment twice under the above conditions and measuring 50% D of the particle size distribution of the phosphor obtained in each case, it was 2.5 μm for all, and the same value was obtained for all three times, and the stability of the particle size was obtained. Was confirmed to be high.
【0026】一方、本発明との比較として、上記実施例
5と同一原料を用いて、比較例1と同様にして蛍光体を
作製した。得られた蛍光体の組成は、(Y0.7 Ce0.2 Tb
0.1 )PO4 である。On the other hand, as a comparison with the present invention, a phosphor was prepared in the same manner as in Comparative Example 1 using the same raw material as in Example 5 above. The composition of the obtained phosphor is (Y 0.7 Ce 0.2 Tb
0.1 ) PO 4 .
【0027】この比較例5による蛍光体をSEMで観察
したところ、球状のものと球状の壊れたものとが混在し
ていた。また、上記した比較例5による蛍光体、および
同一条件による 2回の再現実験で得た蛍光体の粒度分布
の 50%Dをそれぞれ測定したところ、 2.5μm 、 3.0μ
m 、 3.7μm と変動が大きかった。When the phosphor according to Comparative Example 5 was observed with an SEM, spherical particles and spherical broken particles were mixed. Further, when the 50% D of the particle size distribution of the phosphor according to Comparative Example 5 and the phosphor obtained in two reproduction experiments under the same conditions were measured, they were 2.5 μm and 3.0 μm, respectively.
There was a large variation of m and 3.7 μm.
【0028】次に、上述した実施例5で得た蛍光体と、
上記比較例5のうち 50%Dが 2.5μm の蛍光体とを用い
て、それぞれ蛍光ランプを作製し、1000時間点灯後の発
光強度を調べた。比較例5による蛍光体を用いた蛍光ラ
ンプの発光強度を100%としたとき、実施例5による蛍光
体を用いた蛍光ランプは105%と、良好な光束維持率を示
した。Next, the phosphor obtained in Example 5 described above,
Fluorescent lamps were produced using 50% D of the phosphor of 2.5 μm in Comparative Example 5, and the emission intensity after 1000 hours of lighting was examined. When the emission intensity of the fluorescent lamp using the phosphor according to Comparative Example 5 was 100%, the fluorescent lamp using the phosphor according to Example 5 showed a good luminous flux maintenance factor of 105%.
【0029】実施例6〜8、比較例6〜8 実施例5で用いたイットリウムを含む希土類の硝酸塩原
料に代えて、表1に示す酸化物原料(実施例6)、塩化
物原料(実施例7)、炭酸塩原料(実施例8)をそれぞ
れ用いて、表1に示す各条件により水溶液中での反応ま
でを行った。この後、実施例5と同一条件で乾燥、焼成
を行って、表1にそれぞれ組成を示す蛍光体を作製し
た。また、比較例6〜8として、同様な原料を用いて比
較例5と同一条件で、それぞれ蛍光体を作製した。Examples 6 to 8 and Comparative Examples 6 to 8 Instead of the rare earth nitrate raw material containing yttrium used in Example 5, the oxide raw material (Example 6) and the chloride raw material (Example) shown in Table 1 were used. 7) and carbonate raw material (Example 8) were used, and the reaction up to the aqueous solution was performed under the conditions shown in Table 1. Then, drying and firing were performed under the same conditions as in Example 5 to produce phosphors having the compositions shown in Table 1. In addition, as Comparative Examples 6 to 8, phosphors were produced using the same raw material under the same conditions as in Comparative Example 5.
【0030】これら実施例6〜8の各蛍光体( 2回の再
現実験を含む)と、比較例6〜8の各蛍光体( 2回の再
現実験を含む)の粒度分布の 50%Dの測定結果を表2に
示す。また、実施例1と同様にして作製した各蛍光ラン
プの1000時間点灯後の発光強度を表2に示す。表2から
明らかなように、実施例6〜8の各蛍光体はいずれも粒
子径の安定性が高く、かつ光束維持率に優れるものであ
った。50% D of the particle size distribution of each of the phosphors of Examples 6 to 8 (including two reproduction experiments) and each of the phosphors of Comparative Examples 6 to 8 (including two reproduction experiments). The measurement results are shown in Table 2. Table 2 shows the emission intensity of each fluorescent lamp produced in the same manner as in Example 1 after 1000 hours of lighting. As is clear from Table 2, each of the phosphors of Examples 6 to 8 had high particle size stability and excellent luminous flux maintenance factor.
【0031】実施例9、比較例9 Gd2 (CO3 )3 86.5g 、Ce2 (CO3 )3 92g およびTb2
(CO3 )3 62g を含む水溶液に、 (NH4 ) 2 HPO4 98g
を加え、完全に溶解させた後、NH4 OH水でpHを4に調整
した後、40℃で10時間反応させた。次いで、上澄液の電
導度が0.3ms/cm以下になるまで洗浄を行った後、濾過し
た。この濾過によって得た濾過ケーキに対して、ディス
クドライヤを用いて、乾燥温度 280℃の条件下で流動乾
燥を施した。Example 9, Comparative Example 9 Gd 2 (CO 3 ) 3 86.5 g, Ce 2 (CO 3 ) 3 92 g and Tb 2
To an aqueous solution containing (CO 3 ) 3 62g, (NH 4 ) 2 HPO 4 98g
Was added and completely dissolved, and then the pH was adjusted to 4 with aqueous NH 4 OH, and then the mixture was reacted at 40 ° C. for 10 hours. Then, the supernatant was washed until the electric conductivity was 0.3 ms / cm or less, and then filtered. The filter cake obtained by this filtration was subjected to fluidized drying using a disc dryer at a drying temperature of 280 ° C.
【0032】次に、得られた軟らかい希土類リン酸塩
に、Li2 CO3 と H3 BO3 をそれぞれ30重量% 、 1.0重量
% 加え、乾式で混合した後、アルミナルツボに入れて、
実施例1と同一条件で焼成した。得られた蛍光体の組成
は、 (Gd0.35Ce0.40Tb0.25) PO4 である。Next, Li 2 CO 3 and H 3 BO 3 were added to the obtained soft rare earth phosphate at 30% by weight and 1.0% by weight, respectively.
%, Add dry mix, put in an alumina crucible,
The firing was performed under the same conditions as in Example 1. The composition of the obtained phosphor is (Gd 0.35 Ce 0.40 Tb 0.25 ) PO 4 .
【0033】このようにして得た蛍光体は、紫外線励起
により、発光のピーク波長が 545nm付近にある緑色発光
を示した。また、この蛍光体をSEMで観察したとこ
ろ、粒子の大きさが揃い、ほぼ球状であることを確認し
た。The phosphor thus obtained exhibited green light emission with an emission peak wavelength around 545 nm when excited by ultraviolet rays. When this phosphor was observed by SEM, it was confirmed that the particles had a uniform size and were substantially spherical.
【0034】また、この蛍光体の粒度分布の 50%Dを測
定したところ、 2.0μm であった。上記した条件で再現
実験をさらに 2回行い、それぞれで得た蛍光体の粒度分
布の50%Dを測定したところ、いずれも 2.0μm とな
り、 3回とも同じ値が得られ、粒子径の安定性が高いこ
とを確認した。The 50% D of the particle size distribution of this phosphor was measured and found to be 2.0 μm. Repeating the experiment twice under the above conditions and measuring 50% D of the particle size distribution of the phosphor obtained in each case, it was 2.0 μm for all, and the same value was obtained for all three times, and the particle size stability Was confirmed to be high.
【0035】一方、本発明との比較として、上記実施例
9と同一原料を用いて、比較例1と同様にして蛍光体を
作製した。得られた蛍光体の組成は、 (Gd0.35Ce0.40Tb
0.25)PO4 である。On the other hand, as a comparison with the present invention, a phosphor was prepared in the same manner as in Comparative Example 1 using the same raw material as in Example 9 above. The composition of the obtained phosphor is (Gd 0.35 Ce 0.40 Tb
0.25 ) PO 4 .
【0036】この比較例9による蛍光体をSEMで観察
したところ、球状のものと球状の壊れたものとが混在し
ていた。また、上記した比較例9による蛍光体、および
同一条件で実施した 2回の再現実験で得た蛍光体の粒度
分布の 50%Dをそれぞれ測定したところ、 2.0μm 、
3.0μm 、 4.0μm と変動が大きかった。When the phosphor according to Comparative Example 9 was observed with an SEM, spherical particles and spherical broken particles were mixed. Further, when the 50% D of the particle size distribution of the phosphor according to Comparative Example 9 described above and the phosphor obtained in two reproduction experiments performed under the same conditions were measured, respectively, it was 2.0 μm.
The fluctuations were large at 3.0 μm and 4.0 μm.
【0037】次に、上述した実施例9で得た蛍光体と、
上記比較例9のうち 50%Dが 2.0μm の蛍光体とを用い
て、それぞれ蛍光ランプを作製し、1000時間点灯後の発
光強度を調べた。比較例9による蛍光体を用いた蛍光ラ
ンプの発光強度を100%としたとき、実施例9による蛍光
体を用いた蛍光ランプは104.5%と、良好な光束維持率を
示した。Next, the phosphor obtained in Example 9 above,
Fluorescent lamps were prepared using the phosphors of 50% D of 2.0 μm in Comparative Example 9 above, and the emission intensity after 1000 hours of lighting was examined. When the emission intensity of the fluorescent lamp using the phosphor according to Comparative Example 9 was set to 100%, the fluorescent lamp using the phosphor according to Example 9 showed a good luminous flux maintenance factor of 104.5%.
【0038】実施例10〜12、比較例10〜12 実施例9で用いたガドリウムを含む希土類の炭酸塩原料
に代えて、表1に示す塩化物原料(実施例10)、酸化
物原料(実施例11)、硝酸塩原料(実施例12)をそ
れぞれ用いて、表1に示す各条件により水溶液中での反
応までを行った。この後、実施例9と同一条件で乾燥、
焼成を行って、表1にそれぞれ組成を示す蛍光体を作製
した。また、比較例10〜12として、同様な原料を用
いて比較例9と同一条件で、それぞれ蛍光体を作製し
た。Examples 10-12, Comparative Examples 10-12 In place of the gadolinium-containing rare earth carbonate raw materials used in Example 9, chloride raw materials (Example 10) and oxide raw materials (Example) shown in Table 1 were used. Example 11) and a nitrate raw material (Example 12) were used, and the reaction in an aqueous solution was performed under the conditions shown in Table 1. After this, drying under the same conditions as in Example 9,
By firing, phosphors having the compositions shown in Table 1 were produced. Further, as Comparative Examples 10 to 12, phosphors were produced under the same conditions as in Comparative Example 9 using the same raw materials.
【0039】これら実施例10〜12の各蛍光体( 2回
の再現実験を含む)と、比較例10〜12の各蛍光体
( 2回の再現実験を含む)の粒度分布の 50%Dの測定結
果を表2に示す。また、実施例1と同様にして作製した
各蛍光ランプの1000時間点灯後の発光強度を表2に示
す。表2から明らかなように、実施例10〜12の各蛍
光体はいずれも粒子径の安定性が高く、かつ光束維持率
に優れるものであった。A 50% D particle size distribution of each of the phosphors of Examples 10 to 12 (including two reproduction experiments) and each of the phosphors of Comparative Examples 10 to 12 (including two reproduction experiments) was used. The measurement results are shown in Table 2. Table 2 shows the emission intensity of each fluorescent lamp produced in the same manner as in Example 1 after 1000 hours of lighting. As is clear from Table 2, each of the phosphors of Examples 10 to 12 had a high particle size stability and an excellent luminous flux maintenance factor.
【0040】[0040]
【表1】 [Table 1]
【表2】 [Table 2]
【0041】[0041]
【発明の効果】以上説明したように、本発明の希土類リ
ン酸塩蛍光体の製造方法によれば、容易な工程で、粒子
形状が球状に近く、かつ粒子径の揃った蛍光体を再現性
よく得ることが可能となる。As described above, according to the method for producing a rare earth phosphate phosphor of the present invention, a phosphor having a particle shape close to a sphere and a uniform particle diameter can be reproducible in an easy process. It is possible to get well.
【0042】[0042]
Claims (1)
種の元素を示し、 xおよび yは x>0 、 y>0 、 0.1≦
x+y≦0.7 を満足する数を表す)で実質的に表される希
土類リン酸塩蛍光体を、希土類元素を含む化合物とリン
酸化合物とを溶液中で反応させて製造するにあたり、 前記反応後の乾燥を、噴霧状態、流動状態および凍結状
態のうちの 1種の状態にて行うことを特徴とする希土類
リン酸塩蛍光体の製造方法。1. A general formula: (M 1-xy Ce x Tb y) PO 4 ( wherein, M is at least one selected from La, Y and Gd
Represents the element of the species, where x and y are x> 0, y> 0, 0.1 ≦
x + y ≦ 0.7) represents a rare earth phosphate phosphor substantially represented by the following: when a compound containing a rare earth element and a phosphoric acid compound are reacted in a solution, A method for producing a rare earth phosphate phosphor, characterized in that the subsequent drying is performed in one of a sprayed state, a fluidized state and a frozen state.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27592792A JPH06128565A (en) | 1992-10-14 | 1992-10-14 | Production of rare earth phosphate phosphor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27592792A JPH06128565A (en) | 1992-10-14 | 1992-10-14 | Production of rare earth phosphate phosphor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06128565A true JPH06128565A (en) | 1994-05-10 |
Family
ID=17562370
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27592792A Withdrawn JPH06128565A (en) | 1992-10-14 | 1992-10-14 | Production of rare earth phosphate phosphor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06128565A (en) |
-
1992
- 1992-10-14 JP JP27592792A patent/JPH06128565A/en not_active Withdrawn
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2784255B2 (en) | Phosphor and discharge lamp using the same | |
JPS5937037B2 (en) | Method for manufacturing phosphor | |
JP3875027B2 (en) | Method for producing spherical zinc orthosilicate-based green light-emitting phosphor | |
US5422040A (en) | High performance phosphate green fluorescent powder and its method of preparation | |
JP2001172627A (en) | Rare earth phosphate, method for producing the same and rare earth phosphate fluorescent substance | |
US5132042A (en) | Method of making lanthanum cerium terbium phosphate phosphor with improved brightness | |
KR100486464B1 (en) | Small Lanthanum Cerium Terbium Phosphate Phosphor and Its Manufacturing Method | |
JPS59179578A (en) | Production of fluorescent substance | |
KR100280369B1 (en) | Manufacturing method of green light emitting phosphor | |
KR100351635B1 (en) | Process for preparing spherical blue phosphor based on aluminates | |
KR100376274B1 (en) | Process for preparing borate-based phosphors | |
KR100450792B1 (en) | Phosphors based on yttrium silicate for driving at a low voltage | |
JP2757889B2 (en) | Method for producing luminescent composition | |
JPH06128565A (en) | Production of rare earth phosphate phosphor | |
JP2001311076A (en) | Yttrium silicate-based phosphor by using surface coating, and method for producing the same | |
JP2004263088A (en) | Process for producing fluorescent substance | |
KR100447936B1 (en) | Green emitting phosphor by VUV excitiation and its preparation method | |
KR950011234B1 (en) | Green emitting luminescent material | |
JPH07133485A (en) | Production of rare earth phosphate fluorescent substance | |
KR100419862B1 (en) | The composition of the green phosphor in a GdPO4 system and its preparing method | |
JPH02170888A (en) | Production of blue light-generating fluorescent material | |
KR950011230B1 (en) | Preparatio method of green emitting luminescent | |
JPS62579A (en) | Production of rare earth green phosphor | |
JPS585220B2 (en) | Keikoutai no Seizouhouhou | |
KR920007052B1 (en) | Process for the preparation of fluorescent substance for pigment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20000104 |