JPS59179578A - Production of fluorescent substance - Google Patents

Production of fluorescent substance

Info

Publication number
JPS59179578A
JPS59179578A JP5239783A JP5239783A JPS59179578A JP S59179578 A JPS59179578 A JP S59179578A JP 5239783 A JP5239783 A JP 5239783A JP 5239783 A JP5239783 A JP 5239783A JP S59179578 A JPS59179578 A JP S59179578A
Authority
JP
Japan
Prior art keywords
oxalate
fluorescent substance
raw material
firing
phosphor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5239783A
Other languages
Japanese (ja)
Inventor
Masaki Nakano
正喜 中野
Maki Hagiwara
萩原 真樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5239783A priority Critical patent/JPS59179578A/en
Publication of JPS59179578A publication Critical patent/JPS59179578A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a fluorescent substance, expressed by a specific formula, capable of emitting green light of high brightness, and having improved temperature quenching characteristics, by incorporating a specific amount of a raw material capable of forming PO4 by a calcination with an La, Ce and Tb oxalate, mixing the resultant mixture with a rare earth oxalate, and calcining the mixture. CONSTITUTION:A raw material, e.g. ammonium phosphate, capable of forming phosphate radicals by calcination in an amount of 1.04-1.45 times of that of the stoichiometric composition is incorporated with an La (or Y or Gd) Ce and Tb oxalate, mixed by the direct dry method, and then calcined preferably at 1,100-1,200 deg.C in air to give the aimed fluorescent substance expressed by the formula (M is La, Y or Gd; x and y are as follows; 0.15<=x<=0.5; 0.1<=y<=0.35). USE:Suitable for single base low-pressure vapor electric discharge lamps raising the tube wall temperature.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は水銀蒸気放電灯に用いられて有用であり、特に
管壁温度の上昇する例えば片口金低圧蒸気放電灯に好適
な緑色に発光する蛍光体の製造方法に関する。
Detailed Description of the Invention [Field of Application of the Invention] The present invention is useful for use in mercury vapor discharge lamps, and is particularly suitable for use in single-cap low-pressure vapor discharge lamps where the temperature of the tube wall increases, e.g. Concerning a method of manufacturing a body.

〔背景技術〕[Background technology]

Tb、Ce付活正リン酸ランタン蛍光体は従来から知ら
れており特に目新しいものではない。近年、特開昭57
−23674に見られるように水銀蒸気放電灯のなかで
、高い光束と共に高演色性を要求される三波長方式の蛍
光ランプの緑色成分としての報告がなされている。
Tb, Ce-activated lanthanum orthophosphate phosphors have been known for a long time and are not particularly new. In recent years, JP-A-57
-23674, among mercury vapor discharge lamps, it has been reported to be used as a green component in three-wavelength fluorescent lamps that require high luminous flux and high color rendering properties.

とのTb、  Ce付活正リン酸ランタン(又はイツト
リウム、又はガドリニウム)蛍光体は合成法。
The Tb, Ce-activated lanthanum orthophosphate (or yttrium, or gadolinium) phosphor is a synthetic method.

焼成条件等は特に難しい方法を用いるものではないが、
蛍光体中にTb、Ceを含むため、弱還元雰囲気焼成が
必要であった。
Although the firing conditions are not particularly difficult,
Since the phosphor contains Tb and Ce, firing in a weakly reducing atmosphere was necessary.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、簡単な方法で前記蛍光体を製造する方
法を提供することにある。
An object of the present invention is to provide a method for producing the phosphor in a simple manner.

〔発明の概要〕[Summary of the invention]

本発明は、La(又はY又はQd ) 、 Ce 、T
bリ、容易に高輝度の緑色蛍光体La(又はY又はQd
)、Ce、Tb正ザリン酸塩得ることができ、さらに上
記希土類の組成及びリン酸根の組成を選ぶことにより、
100〜200tl?の温度においても温度消光のない
蛍光体を得ることができる。
The present invention provides La (or Y or Qd), Ce, T
b) It is easy to use the high brightness green phosphor La (or Y or Qd).
), Ce, Tb orthozaphosphate can be obtained, and further by selecting the composition of the rare earth and the composition of the phosphate group,
100~200tl? It is possible to obtain a phosphor without temperature quenching even at a temperature of .

従来希土類圧リン酸塩の合成法としては(1)湿式にて
リン酸塩を共沈させるか、(2)希土類酸化物とリン酸
アンモニウムを乾式にて混合し弱還元雰囲気で焼成する
方法等が知られている。前者の湿式リン酸塩共沈法は沈
殿が微粒のため水洗、ろ過に時間がかかりさらに乾固後
固化し粉砕が困難で作業性に問題があった。また後者は
焼成時気泡が発生し軽石状となる。しかも通常希土類酸
化物は主成分(La、Y又はGd)と活剤(Ce、Tb
)の均一化のため希土類シュー酸塩として共沈させ水洗
、乾燥後これを加熱分解して用いる。本発明は希土類シ
ュー酸塩を直接リン酸アンモニウム等と混合し空気中に
て焼成することにより高輝度の緑色蛍光体を得ることが
できる。
Conventional methods for synthesizing rare earth pressure phosphates include (1) co-precipitation of phosphate in a wet process, or (2) mixing rare earth oxides and ammonium phosphate in a dry process and firing in a weakly reducing atmosphere. It has been known. The former wet phosphate coprecipitation method had problems with workability, as the precipitate was fine particles, which took time to wash and filter, and solidified after drying, making grinding difficult. In addition, the latter generates air bubbles during firing and becomes pumice-like. Moreover, rare earth oxides usually contain a main component (La, Y or Gd) and an activator (Ce, Tb).
) is co-precipitated as a rare earth oxuate, washed with water, dried, and then thermally decomposed and used. In the present invention, a high-luminance green phosphor can be obtained by directly mixing rare earth oxalate with ammonium phosphate or the like and firing the mixture in air.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明のCe、Tb付活リン酸ランタン(又はイ
ンドリウム又はガドリニウム)蛍光体の合成法を実施例
で示す。
Hereinafter, the method for synthesizing the Ce, Tb activated lanthanum phosphate (or indium or gadolinium) phosphor of the present invention will be shown in Examples.

実施例1 (La0−7−FCeO,3Tby)2(C204)s
 ・2H20()’=’0.05〜0.40)に対しリ
ン酸ニアンモニウム(NHa )2HP 04を化学量
論組成配合の1,1倍量加えよく混合する。これを1.
150tl?空気中にて2時間焼成する。焼成物は焼き
しまりがなく焼成容器から取りだし容易である。これを
粉砕し、篩を行ない十分に水洗し乾燥する。できた蛍光
体は水銀蒸気共鳴線励起により緑色発光である。マンガ
ン付活ケイ酸亜鉛(Z”2 S五04  :Mn。
Example 1 (La0-7-FCeO, 3Tby)2(C204)s
・Add 1.1 times the stoichiometric amount of ammonium phosphate (NHa) 2HP 04 to 2H20()'='0.05-0.40) and mix well. This is 1.
150tl? Bake in air for 2 hours. The baked product has no lumps and can be easily taken out from the baking container. This is crushed, sieved, thoroughly washed with water, and dried. The resulting phosphor emits green light when excited by the mercury vapor resonance line. Manganese-activated zinc silicate (Z”2 S504: Mn.

NB51021. 米国ナショナル、ビュウロウ、スタ
ンターード社製)を基準とした輝度を第1図1に示した
。同様に(La0.7−F Ce0−3 Tb、)2 
(CP、04)3 ・2H20(y=0.05〜0.4
0)に対しく NH4) 2 HP 04を化学量論組
成配合の1.3倍加え焼成、後処理した輝度の結果を第
1図2に示した。どちらもTb濃度0.2モル付近で最
高の輝度を得た。
NB51021. Figure 1 shows the brightness based on the standard (manufactured by National, Bureau, and Stantard). Similarly (La0.7-F Ce0-3 Tb,)2
(CP, 04)3 ・2H20(y=0.05~0.4
The brightness results obtained by adding 1.3 times the stoichiometric composition of NH4) 2 HP 04 to 0), firing, and post-treatment are shown in FIG. 1 and 2. In both cases, the highest brightness was obtained at a Tb concentration of around 0.2 mol.

実施例2 (Lao、6Ceo、s Tbo、l)2 (C204
)3 ・2H20に対しく NH4’l 2 HP 0
4 を化学量論組成配合の0.9から1.5倍加えて実
施例1のように焼成、後処理し蛍光体を得た。(NH4
) 2 HP O4配合量と輝度の関係を第2図に示し
た。1.0以下では輝度は急激に低下する。また第3図
に(NH4) 2 HPO4を化学量論組成の1.01
,1.1及び1.18倍配合し、焼成した蛍光体の紫外
線励起による温度消光特性を30C基準でそれぞれ第3
図3.4.5に示した。1.01では加熱温度の上昇と
共に輝度は低下する。しかしくNH4)zHPo4配合
量の増加により最高輝度は高温度側に移項する。
Example 2 (Lao, 6Ceo, s Tbo, l) 2 (C204
)3 NH4'l 2 HP 0 for 2H20
4 was added from 0.9 to 1.5 times the stoichiometric composition, and the mixture was fired and post-treated as in Example 1 to obtain a phosphor. (NH4
) 2 HP The relationship between O4 content and brightness is shown in Figure 2. Below 1.0, the brightness decreases rapidly. Figure 3 also shows (NH4) 2 HPO4 with a stoichiometric composition of 1.01.
, 1.1 and 1.18 times, and the temperature quenching characteristics due to ultraviolet excitation of the fired phosphors were measured at 30C, respectively.
It is shown in Figure 3.4.5. At 1.01, the brightness decreases as the heating temperature increases. However, as the amount of NH4)zHPo4 added increases, the maximum brightness shifts to the higher temperature side.

実施例3 (La0.86−、 Ce 、 Tbols )2 (
C204)3 ・2H20(X−〇1〜O,SO)に対
し、(NH4) 2 HP 04を化学量論組成配合の
1.1倍加え混合り、1150U、2時間、空気中で焼
成する。実施例1と同様に後処理して輝度測定し、結果
を第4図に示した。最適Ce濃度は0.3モル付近であ
った。
Example 3 (La0.86-, Ce, Tbols)2 (
1.1 times the stoichiometric composition of (NH4) 2 HP 04 was added to C204)3 2H20 (X-〇1~O, SO) and mixed, followed by firing in air at 1150 U for 2 hours. It was post-treated and measured for brightness in the same manner as in Example 1, and the results are shown in FIG. The optimum Ce concentration was around 0.3 mol.

実施例4 (Lao、s Ceo−3Tbo−s )2 (C20
4)3 ・2H20に対しくNH4)tHPOtを化学
量論組成配合の1.1倍加えて混合し1.150tr空
気中で1〜6時間焼成し実施例1と同様に後処理して輝
度測定し、結果を第5図に示した。焼成時間により輝度
は大きな影響をうけない。また温度消光特性を第6図に
示した。図中の6.7.8はそれぞれ1.2.4時間焼
成である。焼成時間が長くなると温度消光特性は良好と
なる。
Example 4 (Lao,sCeo-3Tbo-s)2 (C20
4) Add 1.1 times the stoichiometric composition of NH4)tHPOt to 3.2H20, mix, bake in 1.150 tr air for 1 to 6 hours, post-process in the same manner as Example 1, and measure brightness. The results are shown in Figure 5. Brightness is not significantly affected by firing time. Further, the temperature quenching characteristics are shown in FIG. Items 6, 7, and 8 in the figure are fired for 1, 2, and 4 hours, respectively. The longer the firing time, the better the temperature quenching properties.

実施例5 (Gdo−s Ce0−3 Tb0.2 )2 (C2
04)s ・2H20に対して(N H4) 2 HP
 O<  を化学量論組成配合の1.1倍加えてよく混
合し、実施例1と同様に焼成及び後処理を行なった。水
銀蒸気共鳴線励起による輝度は対NB5−1021’ 
125チを得た。
Example 5 (Gdo-s Ce0-3 Tb0.2 )2 (C2
04)s ・2H20 (NH4) 2 HP
O< was added in an amount 1.1 times the stoichiometric composition, mixed well, and fired and post-treated in the same manner as in Example 1. The brightness due to mercury vapor resonance line excitation is vs. NB5-1021'
I got 125 chi.

実施例6 L ao−ss Ceo、3T bO,!5及びL a
o、os Yo−os Ceo−s T bO−2なる
組成のシュー酸塩に(NH4)、2 HP O,4を化
学量論組成の1.1倍加えて1150C12時間、空気
中焼成及び1050 t:’、2時間空気中焼成後よく
粉砕しさらに1150r、4時間弱還元雰囲気で焼成し
た場合の粉末輝度の比較を表1に示した。空気中焼成で
13〜20チ明るかった。
Example 6 L ao-ss CEO, 3T bO,! 5 and La
o, os Yo-os Ceo-s T bO-2 (NH4), 2HP O,4 was added in an amount 1.1 times the stoichiometric composition, and the mixture was calcined in air at 1150C for 12 hours and heated at 1050 t. Table 1 shows a comparison of powder brightness when the powder was fired in the air for 2 hours, thoroughly crushed, and then fired at 1150 r for 4 hours in a slightly reducing atmosphere. It was 13 to 20 inches brighter when fired in the air.

表1 〔発明の効果〕 本発明によれば実施例に示したように、従来加熱分解し
て希土類酸化物として用いていた希土類シュー酸塩を直
接用いることにより焼成工程が簡略化できること、また
水素還元雰囲気を用いず、空気中焼成のみであるから安
全性も向上する。さらに輝度も還元性雰囲気焼成と同等
以上が得られる。
Table 1 [Effects of the Invention] According to the present invention, as shown in the examples, the calcination process can be simplified by directly using rare earth oxalates, which were conventionally used as rare earth oxides by thermal decomposition, and Safety is also improved because only air firing is performed without using a reducing atmosphere. Furthermore, the brightness is equal to or higher than that obtained by firing in a reducing atmosphere.

【図面の簡単な説明】[Brief explanation of the drawing]

Claims (1)

【特許請求の範囲】 1、一般式M+−−−y Ce−TbFPO4(ただし
MはLa、Y、Gdからなる群から選ばれた少なくとも
一種の元羨及びyは0.15≦・≦0.5.0、1≦y
≦0.35の@囲の値である)で表わされる蛍光体の製
造方法において、一般式におけるPO4を焼成により生
ずる原料を、化学量論組成量の1.04から1.45倍
配合して原料を焼成することを特徴とする蛍光体の製造
方法。 2、上記蛍光体の原料が、M、Ce及びTbのシュー酸
塩と、焼成によりリン酸根を生ずる原料とよりなること
を特徴とする特許請求の範囲第1項記載の蛍光体の製造
方法。
[Claims] 1. General formula M+---y Ce-TbFPO4 (where M is at least one type of base selected from the group consisting of La, Y, and Gd, and y is 0.15≦・≦0. 5.0, 1≦y
In the manufacturing method of a phosphor expressed by ≦0.35, a raw material that generates PO4 in the general formula by firing is blended at 1.04 to 1.45 times the stoichiometric composition. A method for producing a phosphor, characterized by firing raw materials. 2. The method for producing a phosphor according to claim 1, wherein the raw material for the phosphor is composed of oxalates of M, Ce, and Tb, and a raw material that produces phosphate groups upon firing.
JP5239783A 1983-03-30 1983-03-30 Production of fluorescent substance Pending JPS59179578A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5239783A JPS59179578A (en) 1983-03-30 1983-03-30 Production of fluorescent substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5239783A JPS59179578A (en) 1983-03-30 1983-03-30 Production of fluorescent substance

Publications (1)

Publication Number Publication Date
JPS59179578A true JPS59179578A (en) 1984-10-12

Family

ID=12913667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5239783A Pending JPS59179578A (en) 1983-03-30 1983-03-30 Production of fluorescent substance

Country Status (1)

Country Link
JP (1) JPS59179578A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5091110A (en) * 1990-05-14 1992-02-25 Gte Products Corporation Method of making lanthanum cerium terbium phosphate phosphor
US5106532A (en) * 1990-05-14 1992-04-21 Gte Products Corporation Method of making lanthanum cerium terbium phosphate phosphor
US5116532A (en) * 1990-05-14 1992-05-26 Gte Products Corporation Method of making lanthanum cerium terbium phosphate phosphor
US5132042A (en) * 1990-05-14 1992-07-21 Gte Products Corporation Method of making lanthanum cerium terbium phosphate phosphor with improved brightness
FR2679242A1 (en) * 1991-07-19 1993-01-22 Rhone Poulenc Chimie MIXED PHOSPHATE OF LANTHANE, TERBIUM AND CERIUM, PROCESS FOR THE PRODUCTION THEREOF FROM INSOLUBLE SALTS FROM RARE EARTHS
US5562889A (en) * 1991-02-04 1996-10-08 Rhone-Poulenc Chimie Cerium/lanthanum/terbium mixed phosphates
US5725800A (en) * 1995-06-28 1998-03-10 Rhone-Poulenc Chimie Use of a compound based on a rare-earth phosphate as a luminophor in plasma systems
US5989454A (en) * 1998-07-06 1999-11-23 Matsushita Electric Industrial Co., Ltd. Method for making small particle blue emitting lanthanum phosphate based phosphors
JP2008184486A (en) * 2007-01-26 2008-08-14 Nemoto & Co Ltd Vacuum ultraviolet-excitable phosphor
JP2012521342A (en) * 2009-03-24 2012-09-13 ロデイア・オペラシヨン Core / shell lanthanum cerium terbium phosphate, phosphor containing said phosphate and preparation method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5091110A (en) * 1990-05-14 1992-02-25 Gte Products Corporation Method of making lanthanum cerium terbium phosphate phosphor
US5106532A (en) * 1990-05-14 1992-04-21 Gte Products Corporation Method of making lanthanum cerium terbium phosphate phosphor
US5116532A (en) * 1990-05-14 1992-05-26 Gte Products Corporation Method of making lanthanum cerium terbium phosphate phosphor
US5132042A (en) * 1990-05-14 1992-07-21 Gte Products Corporation Method of making lanthanum cerium terbium phosphate phosphor with improved brightness
US5562889A (en) * 1991-02-04 1996-10-08 Rhone-Poulenc Chimie Cerium/lanthanum/terbium mixed phosphates
FR2679242A1 (en) * 1991-07-19 1993-01-22 Rhone Poulenc Chimie MIXED PHOSPHATE OF LANTHANE, TERBIUM AND CERIUM, PROCESS FOR THE PRODUCTION THEREOF FROM INSOLUBLE SALTS FROM RARE EARTHS
US5314641A (en) * 1991-07-19 1994-05-24 Rhone-Poulenc Chimie Production of crystallites of cerium/lanthanum/terbium phosphates from insoluble rare earth salts
US5580490A (en) * 1991-07-19 1996-12-03 Rhone-Poulenc Chimie Crystallites of cerium/lanthanum/terbium phosphates from insoluble rare earth salts
US5725800A (en) * 1995-06-28 1998-03-10 Rhone-Poulenc Chimie Use of a compound based on a rare-earth phosphate as a luminophor in plasma systems
US5989454A (en) * 1998-07-06 1999-11-23 Matsushita Electric Industrial Co., Ltd. Method for making small particle blue emitting lanthanum phosphate based phosphors
JP2008184486A (en) * 2007-01-26 2008-08-14 Nemoto & Co Ltd Vacuum ultraviolet-excitable phosphor
JP2012521342A (en) * 2009-03-24 2012-09-13 ロデイア・オペラシヨン Core / shell lanthanum cerium terbium phosphate, phosphor containing said phosphate and preparation method

Similar Documents

Publication Publication Date Title
JPS59179578A (en) Production of fluorescent substance
CN107629794A (en) A kind of europium ion Eu3+The bismuthino luminescent material of activation, preparation method and application
JP3163284B2 (en) Luminescent substance with metaborate structure
JP2002212553A (en) Lanthanum phosphate fluorophor for vacuum ultraviolet and rare gas discharge lamp
Zhou et al. Synthesis and luminescence properties of Mn4+-dopant Ca14Zn6Ga10− xAlxO35 solid solution
JPH0141673B2 (en)
CN108893108A (en) A kind of double-perovskite type silicate blue fluorescent powder and preparation method thereof
JPH03177491A (en) Fluorescent substance and fluorescent lamp
JPH10102055A (en) Small lanthanum-cerium-terbium phosphate fluorescent substance and its production
JP2536752B2 (en) Fluorescent body
JP2995976B2 (en) Method for producing green light emitting phosphor for lamp
JP3575821B2 (en) Phosphor and fluorescent lamp using the same
JPH02276884A (en) Fluorescent compound
JP2004263088A (en) Process for producing fluorescent substance
KR950011234B1 (en) Green emitting luminescent material
JP3360901B2 (en) Phosphors and fluorescent lamps
RU2236432C2 (en) Red-emitting photoluminophor for gas panel screens and a method for preparation thereof
JPH02170888A (en) Production of blue light-generating fluorescent material
JP2726521B2 (en) Phosphor and fluorescent lamp
KR950000042B1 (en) Process for producing fluorescent body
CN1104235A (en) Green-fluorescent powder for lamp
KR910005818B1 (en) Manufacturing method of a fluorescent screen
JPS585220B2 (en) Keikoutai no Seizouhouhou
JPH04270782A (en) Stimulable phosphor and fluorescent lamp using the same
JPH1046139A (en) Production of phosphor