JPH06128084A - Production of single crystal - Google Patents

Production of single crystal

Info

Publication number
JPH06128084A
JPH06128084A JP30789292A JP30789292A JPH06128084A JP H06128084 A JPH06128084 A JP H06128084A JP 30789292 A JP30789292 A JP 30789292A JP 30789292 A JP30789292 A JP 30789292A JP H06128084 A JPH06128084 A JP H06128084A
Authority
JP
Japan
Prior art keywords
crystal
composition
mixed crystal
raw material
material melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30789292A
Other languages
Japanese (ja)
Inventor
Masayuki Uchida
正之 内田
Takashi Kaisou
敬司 甲斐荘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP30789292A priority Critical patent/JPH06128084A/en
Publication of JPH06128084A publication Critical patent/JPH06128084A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To enable the production of a bulk mixed crystal, capable of suppressing and preventing the raw material melt composition and temperature from changing and having a large crystal length in a straight body part in a liquid-encapsulated Czochralski process to which a salute feeding method is applied. CONSTITUTION:This single crystal of a ternary compound semiconductor mixed crystal is grown according to a liquid-encapsulated Czochralski process to which a solute feeding method is applied. In the process, a ternary melt equilibrated with a mixed crystal at the target mixed crystal ratio in a pseudobinary phase diagram is used as a raw material melt and the temperature of the growth interface during the growth is regulated to an equilibrium temperature. A polycrystalline mixed crystal having a composition equal to the target mixed crystal ratio (X) is used as a solute. The resultant solute in an amount equal to the weight increase of the single crystal during the growth is dissolved in the raw material melt.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、三元系化合物半導体混
晶の単結晶の製造方法に関する。特に、混晶の組成が示
性式(AB)1-X(CB)Xで示される擬二元系組成を有
し、内一方の成分が他の成分に較べ偏析傾向が強い(I
nGa)Sb、(InGa)P、(InGa)As、あ
るいはIn(AsP)等の三元系化合物半導体混晶の均
一な組成の単結晶の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a single crystal of a ternary compound semiconductor mixed crystal. In particular, the composition of the mixed crystal has a pseudo-binary composition represented by the rational formula (AB) 1-X (CB) X , and one of the components has a higher segregation tendency than the other components (I
The present invention relates to a method for producing a single crystal having a uniform composition of a ternary compound semiconductor mixed crystal such as nGa) Sb, (InGa) P, (InGa) As, or In (AsP).

【0002】[0002]

【従来の技術】三元系化合物半導体混晶は、二元系化合
物半導体と異なり、混晶組成を選択することにより、禁
制帯幅に代表される電子状態で決まる物質の特性値(物
性値)や格子定数等の結晶学的構造パラメ−タに自由度
があり、その有用性が注目されている。工業的に利用す
るためには、再現性が高く、量産性に富む単結晶の製造
方法が要望される。既に、液体封止チョクラルスキ−
(LEC)法を応用して、擬二元系組成(AB)
1-Y(CB)Yで代表される原料融液を用いることで、混
晶の組成が示性式(AB)1-X(CB)Xで代表される擬
二元系組成を有する三元系化合物半導体混晶バルク単結
晶の育成の可能性が提案されている。
2. Description of the Related Art Unlike ternary compound semiconductors, ternary compound semiconductor mixed crystals have characteristic values (physical property values) of substances determined by the electronic state represented by a forbidden band width by selecting a mixed crystal composition. There is a degree of freedom in crystallographic structure parameters such as lattice constants and lattice constants, and their usefulness is drawing attention. For industrial use, a method for producing a single crystal with high reproducibility and high mass productivity is required. Already, liquid sealed Czochralski
Applying (LEC) method, quasi-binary composition (AB)
By using the raw material melt represented by 1-Y (CB) Y , the composition of the mixed crystal is a ternary compound having a pseudo binary system represented by the rational formula (AB) 1-X (CB) X. The possibility of growing a bulk single crystal of a mixed compound semiconductor mixed crystal has been proposed.

【0003】例えば、米国ベルコア社のBonnerら
は、(InGa)As混晶のバルク結晶をGaAsある
いは格子定数の概ね等しい(InGa)As混晶の種結
晶を用いLEC法により引上げ育成した結果をProc
eedings of the 6th Confer
ence on Semi−insulatingIII
−V Materials, Toronto 199
0 p.199−204 に公表している。しかし、公
表された結果では、結晶の育成が進むにつれ、原料融液
中の偏析係数の大きい成分Gaが優先的に結晶に取り込
まれ、原料融液中のGaの濃度の急激な減少が起こって
いる。原料融液中の成分のうち偏析係数の大きいGaの
濃度の減少に伴い、対応して育成される(InGa)A
s混晶の混晶組成が徐々に変化し、得られたバルク結晶
の組成は均一ではない。
For example, Bonner et al. Of Bellcore, Inc. of the United States Proc the result of pulling and growing a bulk crystal of an (InGa) As mixed crystal by a LEC method using a seed crystal of GaAs or an (InGa) As mixed crystal having approximately the same lattice constant.
edings of the 6th Conf
ence on Semi-insulating III
-V Materials, Toronto 199
0 p. Published in 199-204. However, according to the published results, as the growth of the crystal proceeds, the component Ga having a large segregation coefficient in the raw material melt is preferentially taken into the crystal, and the concentration of Ga in the raw material melt sharply decreases. There is. Among the components in the raw material melt, as the concentration of Ga having a large segregation coefficient decreases, it is correspondingly grown (InGa) A.
The mixed crystal composition of the s mixed crystal gradually changed, and the composition of the obtained bulk crystal was not uniform.

【0004】更に、LEC法を応用して組成の均一な三
元系化合物半導体混晶のバルク単結晶を育成するため、
偏析係数の大きい成分を補充し原料融液中の成分の変化
を抑制する方法の発明が、例えば特開昭60−6579
9号あるいは特開昭62−3097号に提供されてい
る。前記の二つの発明で代表される従来法では、偏析係
数の大きい成分を補充する手法に、化合物半導体を原料
融液に溶解させる溶質制御供給法を応用している。同様
の溶質制御供給法を用い、III-V族三元系化合物半導体
混晶のバルク単結晶をLEC法にて育成した報告例とし
て、偏析係数の大きい成分元素Gaの補給源としてGa
Sbを溶質として供給し(InGa)Sb混晶を育成し
た例が、静岡大学電子工学研究所研究報告 vol.2
0 p.193−197(1985)に、また、偏析係
数の大きい成分元素Gaの補給源としてGaAsを溶質
として供給し(InGa)As混晶を育成した例が、J
ournal of Crystal Growth
vol.113 p.485−490(1991)にそ
れぞれ見られる。また、前記発明(特開昭60−657
99号)においては、偏析係数の大きい成分を供給する
溶質として偏析係数の大きい成分を含む多元系化合物半
導体混晶を用いる手段も提案されているが、溶質として
用いる混晶の組成範囲の特定はされておらず、実施例と
しては、化合物半導体GaAsを溶質として用いた例を
揚げている。
Further, in order to grow a bulk single crystal of a ternary compound semiconductor mixed crystal having a uniform composition by applying the LEC method,
The invention of a method of replenishing a component having a large segregation coefficient to suppress the change of the component in the raw material melt is disclosed in, for example, JP-A-60-6579.
No. 9 or JP-A No. 62-3097. In the conventional method represented by the above two inventions, a solute control supply method of dissolving a compound semiconductor in a raw material melt is applied to a method of supplementing a component having a large segregation coefficient. As a report example in which a bulk single crystal of a III-V group ternary compound semiconductor mixed crystal was grown by the LEC method using the same solute controlled supply method, Ga was used as a supplementary source of the component element Ga having a large segregation coefficient.
An example of growing an (InGa) Sb mixed crystal by supplying Sb as a solute is shown in Research Report of Institute of Electronics Engineering, Shizuoka University, vol. Two
0 p. 193-197 (1985), and an example of growing (InGa) As mixed crystal by supplying GaAs as a solute as a replenishment source of a component element Ga having a large segregation coefficient, J.
individual of Crystal Growth
vol. 113 p. 485-490 (1991), respectively. In addition, the invention described above (JP-A-60-657)
No. 99), a means of using a multi-component compound semiconductor mixed crystal containing a component having a large segregation coefficient as a solute for supplying a component having a large segregation coefficient is proposed, but the composition range of the mixed crystal used as a solute is specified. However, as an example, a compound semiconductor GaAs is used as a solute.

【0005】上述のように、従来の溶質制御供給法の例
では、原料融液中へ供給する溶質として擬二元系組成の
うち偏析係数の大きい成分を主として二元系化合物によ
り補充している。主として二元系化合物を溶質に用いた
溶質制御供給法の例でも、原料融液中の偏析係数の大き
い成分が結晶に取り込まれることに起因する原料融液中
の濃度の急激な減少を防止する効果はある程度認められ
ている。
As described above, in the conventional solute control supply method, as the solute to be fed into the raw material melt, the component having a large segregation coefficient in the pseudo binary system composition is mainly replenished by the binary compound. . Even in the case of the solute controlled supply method mainly using a binary compound as a solute, it is possible to prevent a sharp decrease in the concentration in the raw material melt due to the incorporation of a component having a large segregation coefficient in the raw material melt into the crystal. The effect is recognized to some extent.

【0006】[0006]

【発明が解決しようとする課題】しかし、従来の溶質制
御供給法では、原料融液中へ供給する溶質として擬二元
系組成のうち偏析係数の大きい成分を主として二元系化
合物により補充しているため、結晶の育成により融液残
量が次第に減少している。融液残量が減少した場合に
は、原料融液中へ供給される溶質の量の制御のバラツキ
のため、原料融液の組成を一定に保持することはできて
いなかった。そのため、育成結晶の混晶組成は育成方向
に変化し、得られた単結晶は均一組成の結晶とはなって
いない。したがって、得られた単結晶から、エピタキシ
ャル成長用等の工業的に利用できる基板を多数製造する
ことはできないという課題があった。
However, in the conventional solute control feeding method, as a solute to be fed into the raw material melt, a component having a large segregation coefficient in the pseudo binary system composition is mainly supplemented by the binary compound. Therefore, the remaining amount of melt gradually decreases due to the growth of crystals. When the melt remaining amount decreased, the composition of the raw material melt could not be kept constant because of variation in the control of the amount of solute supplied into the raw material melt. Therefore, the mixed crystal composition of the grown crystal changes in the growing direction, and the obtained single crystal does not have a uniform composition. Therefore, there is a problem that a large number of industrially usable substrates for epitaxial growth cannot be manufactured from the obtained single crystal.

【0007】本発明は上記の課題を鑑みてなされたもの
で、本発明の目的は、混晶組成が極めて均一な三元系化
合物半導体混晶の単結晶の製造方法を提供することにあ
る。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a method for producing a single crystal of a ternary compound semiconductor mixed crystal having an extremely uniform mixed crystal composition.

【0008】[0008]

【課題を解決するための手段】本発明は、液体封止チョ
クラルスキ−法により三元系化合物半導体混晶の所定の
目標混晶比Xの単結晶を育成するに際し、前記の三元系
化合物半導体混晶の固相−液相間の平衡を記述する擬二
元系状態図において、擬二元系組成が前記の目標混晶比
Xとなる固相線上での温度を温度Tとし、前記の温度T
における液相線上での擬二元系組成をYとし、組成Yの
三元系融液を原料融液とし、育成中の原料融液と液体封
止剤との界面における温度を上記の温度Tとし、前記の
目標混晶比Xと等しい三元系化合物半導体混晶の多結晶
を溶質とし、該育成中の単結晶の重量増加量と等しい重
量の前記の多結晶溶質を原料融液に溶解することを特徴
とする単結晶の製造方法である。
According to the present invention, in growing a single crystal of a ternary compound semiconductor mixed crystal having a predetermined target mixed crystal ratio X by a liquid-encapsulated Czochralski method, the ternary compound semiconductor is used. In the pseudo-binary phase diagram that describes the solid-liquid phase equilibrium of a mixed crystal, the temperature on the solid line where the pseudo-binary composition is the target mixed crystal ratio X is the temperature T, and Temperature T
And a ternary melt of composition Y is used as a raw material melt, and the temperature at the interface between the raw material melt and the liquid sealant during growth is the temperature T And a polycrystal of a ternary compound semiconductor mixed crystal equal to the target mixed crystal ratio X is used as a solute, and the polycrystal solute having a weight equal to the weight increase amount of the growing single crystal is dissolved in the raw material melt. Is a method for producing a single crystal.

【0009】[0009]

【作用】三元系融液からの結晶育成をおこなう場合、図
2に模式的に示す擬二元系状態図は三元系化合物半導体
混晶の固相−液相間の平衡を記述しており、ある温度T
における液相線上での擬二元系組成をYと表す時、原料
融液として前記の組成Yの三元系融液を用い、結晶育成
の温度を前記の温度Tとする時のみ、析出する結晶の組
成が、温度Tにおいて平衡する固相線を表す擬二元系組
成のXとなることが判る。故に、析出する結晶の組成を
一定にするには、原料融液の組成及び結晶育成の温度を
一定にすることが必要である。
When a crystal is grown from a ternary melt, the pseudo-binary phase diagram schematically shown in FIG. 2 describes the solid-liquid phase equilibrium of the ternary compound semiconductor mixed crystal. A certain temperature T
When the quasi-binary composition on the liquidus line in is represented as Y, a ternary melt having the above composition Y is used as a raw material melt, and precipitation occurs only when the temperature for crystal growth is the temperature T It can be seen that the crystal composition is X, which is a pseudo-binary composition that represents a solidus line that equilibrates at the temperature T. Therefore, in order to make the composition of the precipitated crystal constant, it is necessary to make the composition of the raw material melt and the crystal growth temperature constant.

【0010】本発明では、育成中の単結晶の重量増加量
と等しい重量の多結晶溶質を溶解供給しているので、原
料融液の量は育成中変化しない。また、育成中の単結晶
の目標混晶比Xと等しい混晶比Xの多結晶溶質を供給し
ているので、原理的には、図2に模式的に示す擬二元系
状態図において液相線上の擬二元系組成Yで表わされる
当初の組成から融液組成は育成中変化しない。また同時
に、供給する溶質として育成中の三元系化合物半導体混
晶と同じ組成の多結晶を用いて、原料融液中の偏析係数
の大きい成分の結晶育成に伴う減少を補償しているた
め、よしんば偶発的に起こる僅かな育成中の単結晶の組
成の変化に際しても、原料融液の組成の変化は殆ど無
い。
In the present invention, since the polycrystal solute having a weight equal to the weight increase amount of the single crystal during the growth is dissolved and supplied, the amount of the raw material melt does not change during the growth. Further, since the polycrystal solute having the mixed crystal ratio X equal to the target mixed crystal ratio X of the single crystal being grown is supplied, in principle, in the pseudo binary system phase diagram schematically shown in FIG. During the growth, the melt composition does not change from the initial composition represented by the pseudo-binary composition Y on the phase line. At the same time, by using a polycrystal having the same composition as the ternary compound semiconductor mixed crystal being grown as the solute to be supplied, to compensate for the decrease accompanying the crystal growth of the component having a large segregation coefficient in the raw material melt, Even if the composition of the single crystal is slightly changed by accident during the growth, the composition of the raw material melt hardly changes.

【0011】本発明では原料融液の組成及び量を育成中
一定にできるため、育成開始時に、原料融液と育成結晶
との界面における温度を単結晶の育成に最適の温度(図
2における三元系化合物半導体混晶の融点T)に調製す
ると、その後育成中も、容易に原料融液の表面温度を当
初の温度に維持できる。また、育成中も、原料融液を育
成開始時と同じ量に保っているため、外部要因(例え
ば、育成炉内の高圧ガスの熱対流の揺らぎ)による突発
的な熱的外乱が生じた場合にも、熱的外乱を原料融液全
体の大きな熱容量で吸収できる。よって、育成結晶と融
液の固液界面では問題となる程の温度の変化を防止でき
る。
In the present invention, since the composition and amount of the raw material melt can be kept constant during the growth, the temperature at the interface between the raw material melt and the grown crystal is the optimum temperature for growing the single crystal (3 in FIG. 2) at the start of the growth. When the melting point T) of the original compound semiconductor mixed crystal is adjusted, the surface temperature of the raw material melt can be easily maintained at the initial temperature during the subsequent growth. Also, during the growth, since the raw material melt is kept at the same amount as at the start of the growth, a sudden thermal disturbance due to an external factor (eg, fluctuation of thermal convection of high-pressure gas in the growth furnace) occurs. Moreover, thermal disturbance can be absorbed by the large heat capacity of the entire raw material melt. Therefore, it is possible to prevent a problematic temperature change at the solid-liquid interface between the grown crystal and the melt.

【0012】上記の作用により、原料融液の組成及び温
度を育成中一定に保持できるので、原料融液の組成と温
度で決まる育成単結晶の組成は目標組成に制御でき、従
来の製造方法での課題であった育成単結晶の育成方向の
組成変化を防止できる。更に、熱的外乱あるいは偶発的
に起こる僅かな育成中の単結晶の組成の変化に際して
も、原料融液の組成及び温度の変化は極僅かとすること
ができ、固液界面付近に局所的な組成過冷却も防ぐこと
ができ、組成過冷却に起因する多結晶の発生も防止でき
る。結果として、混晶組成が極めて均一な三元系化合物
半導体混晶の単結晶を作製することができる。
With the above operation, the composition and temperature of the raw material melt can be kept constant during the growth, so that the composition of the grown single crystal determined by the composition and temperature of the raw material melt can be controlled to the target composition, and the conventional manufacturing method can be used. It is possible to prevent the change in composition in the growing direction of the grown single crystal, which was the problem of (1). Furthermore, even when the composition of the single crystal is slightly changed during the growth due to thermal disturbance or accidental change in the composition and temperature of the raw material melt can be made extremely small, and local changes near the solid-liquid interface can be achieved. Composition supercooling can also be prevented, and generation of polycrystals due to composition supercooling can also be prevented. As a result, a single crystal of a ternary compound semiconductor mixed crystal having an extremely uniform mixed crystal composition can be produced.

【0013】[0013]

【実施例】以下に、本発明の実施例を図を参照しつつ説
明する。図1は、本発明による三元系化合物半導体混晶
の単結晶の製造方法を示す概念図である。実施例に用い
た製造装置の概略は、従来二元系化合物半導体の単結晶
の製造に用いられる液体封止チョクラルスキ−装置と同
様の構成となっている。原料融液を保持するルツボ2
は、ルツボ2の回転ならびに昇降を行なうためのロット
軸機構上に支持されており、前記のロット軸機構には、
ルツボ重量を測定し原料融液7の重量をモニタ−するた
めの重量センサ−が付属されている。単結晶5を回転引
上げるための種結晶4を固定保持する回転引上げ軸に
は、育成した単結晶5の重量をモニタ−するための重量
センサ−が付属されている。この単結晶の重量センサ−
は、主として育成する結晶直径の自動制御に用いる。原
料融液7の温度は、ルツボ2の底部に設置した温度セン
サ−によりモニタ−し、所定の温度に自動制御すること
ができる。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a conceptual diagram showing a method for producing a single crystal of a ternary compound semiconductor mixed crystal according to the present invention. The outline of the manufacturing apparatus used in the examples is similar to that of the liquid-sealed Czochralski apparatus conventionally used for manufacturing a single crystal of a binary compound semiconductor. Crucible 2 for holding raw material melt
Is supported on a lot shaft mechanism for rotating and moving the crucible 2 up and down.
A weight sensor for measuring the weight of the crucible and monitoring the weight of the raw material melt 7 is attached. A weight sensor for monitoring the weight of the grown single crystal 5 is attached to the rotary pulling shaft for fixing and holding the seed crystal 4 for pulling the single crystal 5 by rotation. This single crystal weight sensor
Is mainly used for automatic control of the diameter of the grown crystal. The temperature of the raw material melt 7 can be monitored by a temperature sensor installed at the bottom of the crucible 2 and automatically controlled to a predetermined temperature.

【0014】多結晶溶質6は、ルツボ2の上部より回転
引上げ軸と同様の機構を用い保持固定されている。前記
の多結晶溶質6の保持機構には、前記の単結晶の重量セ
ンサ−と類似した重量センサ−が付属されており、溶解
した多結晶溶質6の重量をモニタ−することができる。
なお、多結晶溶質6と保持固定軸の先端部は周囲の雰囲
気ガスにより冷却されるのを防ぐため、シ−ルド8に収
納し、その上端は保温用の補助コイルヒ−タ−を設けて
いる。この保温法により、多結晶溶質6は原料融液7と
ほぼ同じ温度に保たれるので、容易に溶解することがで
き、原料融液7の組成の結晶育成中の変化を防止するこ
とができる。
The polycrystalline solute 6 is held and fixed from above the crucible 2 using a mechanism similar to a rotary pulling shaft. A weight sensor similar to the single crystal weight sensor described above is attached to the holding mechanism for the polycrystalline solute 6, and the weight of the melted polycrystalline solute 6 can be monitored.
The polycrystalline solute 6 and the tip of the holding and fixing shaft are housed in a shield 8 in order to prevent them from being cooled by the ambient atmosphere gas, and an upper end of which is provided with an auxiliary coil heater for heat retention. . By this heat retention method, the polycrystalline solute 6 is kept at substantially the same temperature as the raw material melt 7, so that it can be easily dissolved and the composition of the raw material melt 7 can be prevented from changing during crystal growth. .

【0015】上記の単結晶の製造装置を用い、(InG
a)As混晶結晶を育成する手法を以下に説明する。一
例とし(In0.1Ga0.9)Asの混晶組成の三元系化合
物半導体混晶の実施例を述べる。図3に概念図として示
す、上記の混晶の固相−液相間の平衡を記述する擬二元
系状態図において、固相線11上において(In0.1
0.9)Asの組成Xに平衡する液相線12上において
擬二元系液相組成Yで示される(In0.45Ga0.55)A
sの組成となるように二元系化合物InAsとGaAs
を秤量する。ルツボ2に秤量したInAsとGaAs及
び液体封止剤3(B23)を入れ出発原料とする。出発
原料は、(In0.45Ga0.55)Asの組成の三元系融液
となる図3に示す擬二元系状態図において温度Tより高
い温度、本実施例では1130℃以上の温度に一旦加熱
し均一な原料融液7とする。
Using the above single crystal manufacturing apparatus, (InG
a) A method of growing an As mixed crystal is described below. As an example, an example of a ternary compound semiconductor mixed crystal having a mixed crystal composition of (In 0.1 Ga 0.9 ) As will be described. Shown as a concept diagram in FIG. 3, the solid phase of the mixed crystal - the pseudo-binary system phase diagram describing the equilibrium between the liquid phase, in the solidus on 11 (In 0.1 G
(In 0.45 Ga 0.55 ) A represented by the pseudo binary liquid phase composition Y on the liquidus line 12 equilibrating with the composition X of a 0.9 ) As.
Binary compounds InAs and GaAs so as to have a composition of s
Is weighed. The weighed InAs and GaAs and the liquid sealant 3 (B 2 O 3 ) are put into the crucible 2 and used as a starting material. The starting material is a ternary melt having a composition of (In 0.45 Ga 0.55 ) As, which is once heated to a temperature higher than the temperature T in this pseudo binary system phase diagram shown in FIG. To obtain a uniform raw material melt 7.

【0016】多結晶溶質6は、目標の混晶組成(In
0.1Ga0.9)Asと等しい組成の三元系融液を急速に冷
却固化し、円形棒状に成形したものを用いる。原料融液
7を溶解する工程中には、多結晶溶質6は、種結晶4と
同様にルツボ2の上方、加熱ヒ−タ−1により加熱を受
けない位置に退避してある。原料融液7の温度を徐々に
降下し成長開始温度Tに原料融液7と液体封止剤3の界
面温度(原料融液の表面温度)を調整する。本実施例で
は、成長開始温度Tは1130℃である。成長開始の直
前に多結晶6を原料融液7と接触させる。この際、上述
の界面温度の調整により原料融液7は既に飽和している
ため、多結晶6と原料融液7を接触させても、多結晶溶
質6の重量は増減はしない。種結晶4として、育成方位
〈100〉のGaAs種結晶(4mm角)を用い種付け
育成を開始する。
The polycrystalline solute 6 has a target mixed crystal composition (In
A ternary melt having the same composition as 0.1 Ga 0.9 ) As is rapidly cooled and solidified and formed into a circular rod shape. During the step of melting the raw material melt 7, the polycrystalline solute 6 is evacuated above the crucible 2 to a position where it is not heated by the heating heater-1 like the seed crystal 4. The temperature of the raw material melt 7 is gradually lowered to adjust the interface temperature between the raw material melt 7 and the liquid sealant 3 (the surface temperature of the raw material melt) to the growth start temperature T. In this embodiment, the growth start temperature T is 1130 ° C. Immediately before the start of growth, the polycrystal 6 is brought into contact with the raw material melt 7. At this time, since the raw material melt 7 is already saturated due to the adjustment of the interface temperature described above, the weight of the polycrystalline solute 6 does not increase or decrease even if the polycrystalline 6 and the raw material melt 7 are brought into contact with each other. As a seed crystal 4, a GaAs seed crystal (4 mm square) having a growth orientation <100> is used to start seeding and growth.

【0017】単結晶の育成条件は、ルツボ2の回転数2
5rpm(時計回り)、種結晶4(回転引上げ軸)の回
転数10rpm(反時計回り)、引上げ速度1.2mm
/hである。育成中、単結晶5及び原料融液7の重量を
モニタ−し、育成した結晶重量と同じ重量の多結晶溶質
6を溶解させ、原料融液7の結晶成長界面の高さ(位
置)を一定に保ち、また界面温度も一定に温度制御して
いる。ルツボ並びに育成結晶の回転により原料融液7は
強制対流しており、ルツボの外周近くで溶解する多結晶
溶質6の成分は迅速に結晶成長界面付近に供給されてい
る。本実施例では、単結晶5の直胴部においては、通常
の結晶重量法を用い、引上げ速度を上記の1.2mm/
hの値を中心に僅かに変化させることにより、結晶直径
の自動制御を行なう。
The condition for growing the single crystal is that the number of rotations of the crucible 2 is 2
5 rpm (clockwise), rotation speed of seed crystal 4 (rotary pulling shaft) 10 rpm (counterclockwise), pulling speed 1.2 mm
/ H. During the growth, the weights of the single crystal 5 and the raw material melt 7 are monitored, the polycrystalline solute 6 having the same weight as the grown crystal weight is dissolved, and the height (position) of the crystal growth interface of the raw material melt 7 is kept constant. And the interface temperature is controlled to be constant. The raw material melt 7 is forcibly convected by the rotation of the crucible and the grown crystal, and the component of the polycrystalline solute 6 which is dissolved near the outer periphery of the crucible is rapidly supplied near the crystal growth interface. In this embodiment, in the straight body part of the single crystal 5, a normal crystal weight method is used, and the pulling rate is 1.2 mm /
The crystal diameter is automatically controlled by slightly changing the value of h.

【0018】上記の手法にて、直径25mm、直胴部の
結晶長20.5mmの三元系化合物半導体混晶(目標の
混晶組成(In0.1Ga0.9)As)の単結晶を育成し、
混晶組成の成長方向ならびに径方向のバラツキをEPM
A(Electron Probe Micro−An
alysis)法にて評価した。結晶の成長方向の混晶
組成は、種付け直後の種結晶4(GaAs)に接する極
く一部を除き、混晶のGa組成は0.9±0.03の範
囲に入っている。直胴部における径方向のGa組成のバ
ラツキも、EPMA法の測定精度以内である。また、数
度同程度の大きさの単結晶を育成し、混晶組成の再現性
を確認した結果、目標の混晶組成0.9に対して、上述
の結晶成長方向のGa組成のバラツキ±0.03と同じ
程度の再現性が得られた。
By the above method, a single crystal of a ternary compound semiconductor mixed crystal (target mixed crystal composition (In 0.1 Ga 0.9 ) As) having a diameter of 25 mm and a crystal length of the straight body portion of 20.5 mm was grown,
EPM variation in mixed crystal composition in the growth and radial directions
A (Electron Probe Micro-An
It was evaluated by the alysis method. The mixed crystal composition in the crystal growth direction is within a range of 0.9 ± 0.03, except for a very small part which is in contact with the seed crystal 4 (GaAs) immediately after seeding. The variation in Ga composition in the radial direction in the straight body portion is also within the measurement accuracy of the EPMA method. Further, as a result of confirming reproducibility of the mixed crystal composition by growing a single crystal having a size of several degrees, a variation of the Ga composition in the above crystal growth direction with respect to the target mixed crystal composition of 0.9 A reproducibility as high as 0.03 was obtained.

【0019】比較例として、多結晶溶質の組成を除き、
上記の実施例と同じ組成(In0.45Ga0.55)Asの三
元系出発原料、成長装置および育成条件を用いて、目標
の混晶組成(In0.1Ga0.9)Asの混晶単結晶を育成
した。この比較例においては、目標の混晶組成(In
0.1Ga0.9)Asと異なる組成の多結晶、一例として混
晶組成(In0.05Ga0.95)Asの三元系混晶、あるい
はGaAsを多結晶溶質として用いる。従来の方法に従
い、育成した結晶重量から原料融液7のGa組成を推定
し、原料融液7のGa組成の減少を補償する様に多結晶
溶質の溶解量の制御に努めた。しかし、目標の混晶組成
(In0.1Ga0.9)Asと異なる組成の多結晶あるいは
GaAsを多結晶溶質として用いた例ではいずれも、多
結晶溶質の溶解量の制御のバラツキのため、育成した結
晶の成長方向での組成変化が大きく、Ga組成としての
バラツキは±0.07程度に達していた。また、結晶の
育成が進むと、育成した結晶の組成の変化による転位の
発生、あるいは転位密度が高くなった場合には多結晶の
発生が引き起こされていた。更に、多結晶溶質の溶解量
が不足し、原料融液7の組成が育成温度で飽和していな
い状態となり、結晶と融液の分離(メルト切れ)が起こ
ることもしばしばみられた。前記の多結晶が発生した場
合、育成した結晶の成長方向の組成変化が多結晶の発生
の直前で特に著しく、育成した結晶の組成の変化に伴う
格子不整合による結晶欠陥の異常発生の要因は原料融液
の組成が大きく変化したことによるとみられる。
As a comparative example, except for the composition of polycrystalline solute,
A mixed crystal single crystal having a target mixed crystal composition (In 0.1 Ga 0.9 ) As was grown using the ternary starting material having the same composition (In 0.45 Ga 0.55 ) As, the growth apparatus and the growth conditions as in the above-mentioned examples. . In this comparative example, the target mixed crystal composition (In
A polycrystal having a composition different from 0.1 Ga 0.9 ) As, a ternary mixed crystal having a mixed crystal composition (In 0.05 Ga 0.95 ) As, or GaAs is used as a polycrystal solute. According to the conventional method, the Ga composition of the raw material melt 7 was estimated from the weight of the grown crystal, and an attempt was made to control the dissolved amount of the polycrystalline solute so as to compensate for the decrease in the Ga composition of the raw material melt 7. However, in any of the examples in which polycrystalline or GaAs having a composition different from the target mixed crystal composition (In 0.1 Ga 0.9 ) As is used as the polycrystalline solute, the grown crystal grows due to the variation in the control of the amount of dissolution of the polycrystalline solute. The compositional change in the growth direction was large, and the variation as the Ga composition reached about ± 0.07. Further, as the crystal growth progresses, dislocations are generated due to a change in the composition of the grown crystal, or polycrystals are generated when the dislocation density is high. Further, the amount of polycrystalline solute dissolved was insufficient, the composition of the raw material melt 7 was not saturated at the growth temperature, and separation of the crystal and the melt (melt breakage) often occurred. When the above polycrystal is generated, the composition change in the growth direction of the grown crystal is particularly remarkable immediately before the occurrence of the polycrystal, and the cause of the abnormal occurrence of crystal defects due to the lattice mismatch accompanying the change in the composition of the grown crystal is This is probably because the composition of the raw material melt changed significantly.

【0020】以上、(InGa)As混晶を結晶育成す
る手法について、説明をしたが、(InGa)Sb、
(InGa)P、あるいはIn(AsP)等の擬二元系
組成を有し、うち一方の成分が他の成分に較べ偏析傾向
が強い三元系化合物半導体混晶の単結晶の製造において
も、前記の三元系化合物半導体混晶の固相−液相間の平
衡を記述する擬二元系状態図を基にし、適当な成長温度
と原料融液の組成を選択することにより、均一組成のバ
ルク混晶の単結晶の育成に上述の手法を応用することが
可能である。
The method for growing the crystal of the (InGa) As mixed crystal has been described above, but (InGa) Sb,
In the production of a single crystal of a ternary compound semiconductor mixed crystal having a pseudo binary system composition such as (InGa) P or In (AsP), one of which has a stronger segregation tendency than the other, Based on the pseudo-binary phase diagram that describes the solid-liquid phase equilibrium of the above ternary compound semiconductor mixed crystal, by selecting an appropriate growth temperature and composition of the raw material melt, It is possible to apply the above method to the growth of a single crystal of a bulk mixed crystal.

【0021】[0021]

【発明の効果】以上説明したように、本発明により三元
系化合物半導体混晶の単結晶の育成が進むにつれ生じ易
い原料融液中の偏析係数の大きい成分の組成変動及び原
料融液の温度変動を容易に防止することができるので、
育成される結晶の混晶組成を一定に保つことができる。
また、育成される結晶の混晶組成の変動がないため、育
成途中での多結晶発生あるいはメルト切れがなく、育成
方向の組成が均一で長尺のバルク混晶を製造することが
可能となる。得られる育成方向の組成が均一なバルク混
晶単結晶から作製される基板の面内の混晶組成分布及び
対応する格子定数分布は極めて小さい。本発明により得
られる格子定数分布の均一な基板を用いることで、エピ
タキシャル成長した膜と基板の格子整合を基板全面でと
ることが可能となるので、従来の二元系化合物半導体基
板では作製できなかった、従来にない特性の半導体素子
の作製が可能となる。
As described above, according to the present invention, as the single crystal of the ternary compound semiconductor mixed crystal grows, the composition variation of the component having a large segregation coefficient in the raw material melt and the temperature of the raw material melt tend to occur. Since fluctuation can be easily prevented,
The mixed crystal composition of the grown crystal can be kept constant.
Further, since there is no change in the mixed crystal composition of the grown crystal, it is possible to produce a long bulk mixed crystal having a uniform composition in the growing direction without causing polycrystal formation or melt breakage during the growth. . The in-plane mixed crystal composition distribution and the corresponding lattice constant distribution of the substrate prepared from the bulk mixed crystal single crystal having a uniform composition in the growing direction are extremely small. By using the substrate having a uniform lattice constant distribution obtained by the present invention, it is possible to obtain the lattice matching between the epitaxially grown film and the substrate over the entire surface of the substrate, and thus it was not possible to fabricate with a conventional binary compound semiconductor substrate. Therefore, it becomes possible to fabricate a semiconductor device having characteristics that are not available in the past.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明による単結晶の製造方法の原理及びそ
れに用いる製造装置の概念図
FIG. 1 is a conceptual diagram of a principle of a method for producing a single crystal according to the present invention and a production apparatus used therefor.

【図2】 三元系化合物半導体混晶の固相−液相間の平
衡を記述する擬二元系状態図の概念図
FIG. 2 is a conceptual diagram of a pseudo-binary phase diagram that describes the solid-liquid equilibrium of a ternary compound semiconductor mixed crystal.

【図3】 (InGa)As混晶の固相−液相間の平衡
を記述する擬二元系状態図の概略図
FIG. 3 is a schematic diagram of a pseudo-binary phase diagram that describes the solid-liquid equilibrium of (InGa) As mixed crystals.

【符号の説明】[Explanation of symbols]

図中において、各符号はそれぞれ、 1…加熱ヒ−タ
−、 2…ルツボ、 3…液体封止剤(B23)、 4
…種結晶、 5…育成単結晶(混晶比X)、 6…多結
晶溶質(混晶比Xと等しい三元系化合物半導体混晶)、
7…原料融液(擬二元系組成Yの三元系融液)、 8
…多結晶溶質の保温シ−ルド、 9…保温用補助コイル
ヒ−タ− を表す。
In the figure, each reference numeral is 1 ... Heating heater, 2 ... Crucible, 3 ... Liquid sealant (B 2 O 3 ), 4
... seed crystal, 5 ... grown single crystal (mixed crystal ratio X), 6 ... polycrystalline solute (ternary compound semiconductor mixed crystal equal to mixed crystal ratio X),
7 ... Raw material melt (ternary melt of pseudo-binary composition Y), 8
... Polycrystalline solute heat insulation shield, 9 ... Heat insulation auxiliary coil heater.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年12月28日[Submission date] December 28, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0011[Correction target item name] 0011

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0011】本発明では原料融液の組成及び量を育成中
一定にできるため、育成開始時に、原料融液と育成結晶
との界面における温度を単結晶の育成に最適の温度(図
2における三元系化合物半導体混晶の融点T)に調整す
ると、その後育成中も、容易に原料融液の表面温度を当
初の温度に維持できる。また、育成中も、原料融液を育
成開始時と同じ量に保っているため、外部要因(例え
ば、育成炉内の高圧ガスの熱対流の揺らぎ)による突発
的な熱的外乱が生じた場合にも、熱的外乱を原料融液全
体の大きな熱容量で吸収できる。よって、育成結晶と融
液の固液界面では問題となる程の温度の変化を防止でき
る。
In the present invention, since the composition and amount of the raw material melt can be kept constant during the growth, the temperature at the interface between the raw material melt and the grown crystal is the optimum temperature for growing the single crystal (3 in FIG. 2) at the start of the growth. By adjusting to the melting point T) of the original compound semiconductor mixed crystal, the surface temperature of the raw material melt can be easily maintained at the initial temperature during the subsequent growth. Also, during the growth, since the raw material melt is kept at the same amount as at the start of the growth, a sudden thermal disturbance due to an external factor (eg, fluctuation of thermal convection of high-pressure gas in the growth furnace) occurs. Moreover, thermal disturbance can be absorbed by the large heat capacity of the entire raw material melt. Therefore, it is possible to prevent a problematic temperature change at the solid-liquid interface between the grown crystal and the melt.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0015[Name of item to be corrected] 0015

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0015】上記の単結晶の製造装置を用い、(InG
a)As混晶結晶を育成する手法を以下に説明する。一
例とし(In0.1Ga0.9)Asの混晶組成の三元
系化合物半導体混晶の実施例を述べる。図3に概念図と
して示す、上記の混晶の固相−液相間の平衡を記述する
擬二元系状態図において、固相線11上において(In
0.1Ga0.9)Asの組成Xに平衡する液相線12
上において擬二元系液相組成Yで示される(In
0.58Ga0.42)Asの組成となるように二元系
化合物InAsとGaAsを秤量する。ルツボ2に秤量
したInAsとGaAs及び液体封止剤3(B
を入れ出発原料とする。出発原料は、(In0.58
0.42)Asの組成の三元系融液となる図3に示す
擬二元系状態図において温度Tより高い温度、本実施例
では1130℃以上の温度に一旦加熱し均一な原料融液
7とする。
Using the above single crystal manufacturing apparatus, (InG
a) A method of growing an As mixed crystal is described below. As an example, an example of a ternary compound semiconductor mixed crystal having a mixed crystal composition of (In 0.1 Ga 0.9 ) As will be described. In the pseudo-binary phase diagram for describing the equilibrium between the solid phase and the liquid phase of the mixed crystal shown in the conceptual diagram of FIG.
Liquidus line 12 equilibrating to composition X of 0.1 Ga 0.9 ) As
The above is represented by the pseudo binary liquid phase composition Y (In
The binary compounds InAs and GaAs are weighed so that the composition becomes 0.58 Ga 0.42 ) As. InAs and GaAs weighed in crucible 2 and liquid sealant 3 (B 2 O 3 )
As the starting material. The starting material is (In 0.58 G
In the quasi-binary phase diagram shown in FIG. 3, which is a ternary melt having a composition of a 0.42 ) As, the material is once heated to a temperature higher than the temperature T, which is 1130 ° C. or higher in this embodiment, to uniformly melt Use liquid 7.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0019[Correction target item name] 0019

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0019】比較例として、多結晶溶質の組成を除き、
上記の実施例と同じ組成(In0.58Ga0.42
Asの三元系出発原料、成長装置および育成条件を用い
て、目標の混晶組成(In0.1Ga0.9)Asの混
晶単結晶を育成した。この比較例においては、目標の混
晶組成(In0.1Ga0.9)Asと異なる組成の多
結晶、一例として混晶組成(In0.05
0.95)Asの三元系混晶、あるいはGaAsを多
結晶溶質として用いる。従来の方法に従い、育成した結
晶重量から原料融液7のGa組成を推定し、原料融液7
のGa組成の減少を補償する様に多結晶溶質の溶解量の
制御に努めた。しかし、目標の混晶組成(In0.1
0.9)Asと異なる組成の多結晶あるいはGaAs
を多結晶溶質として用いた例ではいずれも、多結晶溶質
の溶解量の制御のバラツキのため、育成した結晶の成長
方向での組成変化が大きく、Ga組成としてのバラツキ
は±0.07程度に達していた。また、結晶の育成が進
むと、育成した結晶の組成の変化による転位の発生、あ
るいは転位密度が高くなった場合には多結晶の発生が引
き起こされていた。更に、多結晶溶質の溶解量が不足
し、原料融液7の組成が育成温度で飽和していない状態
となり、結晶と融液の分離(メルト切れ)が起こること
もしばしばみられた。前記の多結晶が発生した場合、育
成した結晶の成長方向の組成変化が多結晶の発生の直前
で特に著しく、育成した結晶の組成の変化に伴う格子不
整合による結晶欠陥の異常発生の要因は原料融液の組成
が大きく変化したことによるとみられる。
As a comparative example, except for the composition of polycrystalline solute,
Same composition as the above example (In 0.58 Ga 0.42 )
A mixed crystal single crystal having a target mixed crystal composition (In 0.1 Ga 0.9 ) As was grown using an As ternary starting material, a growth apparatus, and growth conditions. In this comparative example, a polycrystal having a composition different from the target mixed crystal composition (In 0.1 Ga 0.9 ) As, for example, a mixed crystal composition (In 0.05 G
a 0.95 ) As ternary mixed crystal or GaAs is used as a polycrystalline solute. According to the conventional method, the Ga composition of the raw material melt 7 is estimated from the weight of the grown crystal to obtain the raw material melt 7
Attempts were made to control the amount of dissolution of the polycrystalline solute so as to compensate for the decrease in Ga composition. However, the target mixed crystal composition (In 0.1 G
a 0.9 ) As and polycrystal or GaAs
In any of the examples using as a polycrystal solute, the composition change in the growth direction of the grown crystal is large due to the dispersion of the control of the dissolution amount of the polycrystal solute, and the dispersion as the Ga composition is about ± 0.07. Had reached. Further, as the crystal growth progresses, dislocations are generated due to a change in the composition of the grown crystal, or polycrystals are generated when the dislocation density is high. Further, the amount of polycrystalline solute dissolved was insufficient, the composition of the raw material melt 7 was not saturated at the growth temperature, and separation of the crystal and the melt (melt breakage) often occurred. When the above polycrystal is generated, the composition change in the growth direction of the grown crystal is particularly remarkable immediately before the occurrence of the polycrystal, and the cause of the abnormal occurrence of crystal defects due to the lattice mismatch accompanying the change in the composition of the grown crystal is This is probably because the composition of the raw material melt changed significantly.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 液体封止チョクラルスキ−法により三元
系化合物半導体混晶の所定の目標混晶比Xの単結晶を育
成するに際し、前記の三元系化合物半導体混晶の固相−
液相間の平衡を記述する擬二元系状態図において、擬二
元系組成が前記の目標混晶比Xとなる固相線上での温度
を温度Tとし、前記の温度Tにおける液相線上での擬二
元系組成をYとし、組成Yの三元系融液を原料融液と
し、育成中の原料融液と液体封止剤との界面における温
度を上記の温度Tとし、前記の目標混晶比Xと等しい三
元系化合物半導体混晶の多結晶を溶質とし、該育成中の
単結晶の重量増加量と等しい重量の前記の多結晶溶質を
原料融液に溶解することを特徴とする単結晶の製造方
法。
1. When growing a single crystal having a predetermined target mixed crystal ratio X of a ternary compound semiconductor mixed crystal by a liquid-encapsulated Czochralski method, a solid phase of the ternary compound semiconductor mixed crystal is used.
In a quasi-binary phase diagram that describes the equilibrium between liquid phases, the temperature on the solidus line where the quasi-binary composition is the target mixed crystal ratio X is defined as temperature T, and on the liquidus line at the temperature T And the ternary melt of composition Y is the raw material melt, and the temperature at the interface between the raw material melt and the liquid sealant during growth is the above temperature T. A polycrystal of a ternary compound semiconductor mixed crystal equal to the target mixed crystal ratio X is used as a solute, and the polycrystal solute having a weight equal to the weight increase amount of the growing single crystal is dissolved in the raw material melt. And a method for producing a single crystal.
JP30789292A 1992-10-23 1992-10-23 Production of single crystal Pending JPH06128084A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30789292A JPH06128084A (en) 1992-10-23 1992-10-23 Production of single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30789292A JPH06128084A (en) 1992-10-23 1992-10-23 Production of single crystal

Publications (1)

Publication Number Publication Date
JPH06128084A true JPH06128084A (en) 1994-05-10

Family

ID=17974426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30789292A Pending JPH06128084A (en) 1992-10-23 1992-10-23 Production of single crystal

Country Status (1)

Country Link
JP (1) JPH06128084A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009137781A (en) * 2007-12-04 2009-06-25 Nippon Telegr & Teleph Corp <Ntt> Method and apparatus for growing crystal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009137781A (en) * 2007-12-04 2009-06-25 Nippon Telegr & Teleph Corp <Ntt> Method and apparatus for growing crystal

Similar Documents

Publication Publication Date Title
US5454346A (en) Process for growing multielement compound single crystal
EP0732427A2 (en) A method and apparatus for the growth of a single crystal
US4196171A (en) Apparatus for making a single crystal of III-V compound semiconductive material
US5612014A (en) Compound semiconductor crystal
JP4120016B2 (en) Method for producing semi-insulating GaAs single crystal
US4637854A (en) Method for producing GaAs single crystal
US5667585A (en) Method for the preparation of wire-formed silicon crystal
JPH06128084A (en) Production of single crystal
JP2529934B2 (en) Single crystal manufacturing method
EP0355833A2 (en) Method of producing compound semiconductor single crystal
JP2734820B2 (en) Method for manufacturing compound semiconductor single crystal
JP2922039B2 (en) Single crystal growth method
JP3806793B2 (en) Method for producing compound semiconductor single crystal
JP2010030868A (en) Production method of semiconductor single crystal
JPH05319973A (en) Single crystal production unit
JP2573655B2 (en) Method for producing non-doped compound semiconductor single crystal
RU1431391C (en) Process of growing monocrystals of cadmium telluride
JPH07110797B2 (en) Method for producing compound semiconductor single crystal containing high vapor pressure component
JPH03237088A (en) Method for growing single crystal
JP3557690B2 (en) Crystal growth method
JPS61158896A (en) Method for producing compound semiconductor single crystal and apparatus therefor
JPS5964592A (en) Method for growing crystal
JPH10212200A (en) Production of semi-insulating gallium arsenide single crystal
JP2000327496A (en) Production of inp single crystal
JPS63176397A (en) Production of iii-v compound semiconductor single crystal