JP2009137781A - Method and apparatus for growing crystal - Google Patents

Method and apparatus for growing crystal Download PDF

Info

Publication number
JP2009137781A
JP2009137781A JP2007313606A JP2007313606A JP2009137781A JP 2009137781 A JP2009137781 A JP 2009137781A JP 2007313606 A JP2007313606 A JP 2007313606A JP 2007313606 A JP2007313606 A JP 2007313606A JP 2009137781 A JP2009137781 A JP 2009137781A
Authority
JP
Japan
Prior art keywords
raw material
crystal
growth
material solution
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007313606A
Other languages
Japanese (ja)
Other versions
JP4916425B2 (en
Inventor
Masahiro Sasaura
正弘 笹浦
Tadayuki Imai
欽之 今井
Kazuo Fujiura
和夫 藤浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2007313606A priority Critical patent/JP4916425B2/en
Publication of JP2009137781A publication Critical patent/JP2009137781A/en
Application granted granted Critical
Publication of JP4916425B2 publication Critical patent/JP4916425B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a single crystal having high uniformity, while preventing the change of its composition through the crystal growth process. <P>SOLUTION: In the method for growing a crystal 19 by immersing a seed crystal 17 in a raw material solution 18 in a crucible 11 located in a furnace 15, a raw material stick 21 having the same composition as that of the grown crystal 19 is made in contact with the raw material solution 18 simultaneously while the seed crystal 17 is made in contact with the raw material solution 18, where the thermal contact condition between the raw material stick 21 and the raw material solution 18 is kept and the raw material dissolved from the raw material stick 21 is supplied into the raw material solution 18 in a supply amount per unit of time corresponding to the weight of the grown crystal 19 per unit of time. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、結晶成長方法およびその装置に関し、より詳細には、TSSG法またはカイロポーラス法、ブリッジマン法、温度勾配凝固法による結晶成長において、成長結晶の成長方向に対する組成変化を抑制し、均一な品質の単結晶を製造するための結晶成長方法およびその装置に関する。   The present invention relates to a crystal growth method and an apparatus therefor, and more specifically, in a crystal growth by a TSSG method, a cairoporous method, a Bridgman method, or a temperature gradient solidification method, the composition change with respect to the growth direction of the grown crystal is suppressed, and uniform The present invention relates to a crystal growth method and apparatus for manufacturing a single crystal of a high quality.

従来、酸化物バルク単結晶の結晶成長方法として、溶融した融液に種子結晶を浸して引き上げながら結晶を育成するチョクラルスキー法(CZ法)が知られている。また、原料中に溶媒を使用する溶液成長法の1種である溶液引き上げ(TSSG:Top-Seeded Solution-Growth)法、結晶の引き上げを行わずに成長させるカイロポーラス法が知られている。TSSG法は、Si、GaAs、LiNbO3単結晶の結晶成長法として知られているCZ法と同様に、結晶の形状制御が可能であり、大型ウェハを作製するための結晶母材を得ることができる。その他に、固形原料を光学的に溶融し、溶融部分を移動させながら試料の精製、結晶の成長を行う浮遊帯域溶融(FZ:Floating Zone)法や、溶融した原料の融液または溶液をるつぼの中で固化させる、ブリッジマン法、温度勾配凝固法などが知られている(例えば、特許文献1参照)。 Conventionally, a Czochralski method (CZ method) is known as a method for growing an oxide bulk single crystal, in which a seed crystal is dipped in a molten melt and pulled up while being pulled. In addition, a solution pulling method (TSSG: Top-Seeded Solution-Growth) method, which is one type of solution growth method using a solvent in the raw material, and a chiroporus method for growing without pulling up crystals are known. The TSSG method can control the shape of the crystal as well as the CZ method known as the crystal growth method of Si, GaAs, and LiNbO 3 single crystals, and can obtain a crystal base material for manufacturing a large wafer. it can. In addition, the FZ (Floating Zone) method in which a solid raw material is optically melted, the sample is purified while the molten portion is moved, and crystals are grown, or a melt or solution of the molten raw material is added to the crucible. The Bridgman method, the temperature gradient solidification method, and the like that are solidified therein are known (for example, see Patent Document 1).

図1に、従来のTSSG法による結晶成長装置を示す。結晶製造装置は、ヒータ4によって温度制御可能な縦型管状炉5を有し、縦型管状炉5内のるつぼ台2に原料溶液8を入れたるつぼ1を設置している。縦型管状炉5は、炉体ふた10により密閉され、内面に設置された均熱管3により、炉内の温度が一定に保たれるようになっている。このような構成において、引き上げ軸6の先端に取り付けられた種子結晶7を、溶融した原料溶液8に浸して、成長結晶9を育成する。   FIG. 1 shows a conventional crystal growth apparatus using the TSSG method. The crystal manufacturing apparatus has a vertical tubular furnace 5 whose temperature can be controlled by a heater 4, and a crucible 1 in which a raw material solution 8 is placed in a crucible base 2 in the vertical tubular furnace 5. The vertical tubular furnace 5 is hermetically sealed by a furnace body lid 10, and the temperature inside the furnace is kept constant by the soaking tube 3 installed on the inner surface. In such a configuration, the seed crystal 7 attached to the tip of the pulling shaft 6 is immersed in the molten raw material solution 8 to grow the growth crystal 9.

成長温度の均一性を重視して、高品質単結晶を成長させるには、縦型管状炉5内、すなわち、るつぼ1と原料溶液8と成長結晶9とが位置する付近において、均一な温度分布が必要である。そこで上述したように、温度の均一性の高い抵抗加熱式の縦型管状炉5を構成している。また、引き上げ軸6には、酸化物や貴金属で形成された引き上げ軸を用いるのが、一般的である。   In order to grow a high quality single crystal with an emphasis on the uniformity of the growth temperature, a uniform temperature distribution in the vertical tubular furnace 5, that is, in the vicinity where the crucible 1, the raw material solution 8 and the growth crystal 9 are located. is required. Therefore, as described above, the resistance heating type vertical tubular furnace 5 having high temperature uniformity is configured. The pulling shaft 6 is generally a pulling shaft formed of an oxide or a noble metal.

原料は、素原料である酸化物や炭化物を所望の組成比となるよう秤量し、るつぼ1に充填する。溶媒として、結晶の構成成分である酸化物や炭化物を過剰に追加したり、結晶の構成成分と異なる酸化物や炭化物を追加して充填することもある。原料が投入されたるつぼ1を、縦型管状炉5内に設置されたるつぼ台2上に設置する。ヒータ4を加熱することで、原料を昇温溶解し、原料溶液8を準備する。種子結晶7が先端に取り付けられた引き上げ軸6を縦型管状炉5に導入し、原料溶液8に接触させ、結晶育成を開始する。   As raw materials, oxides and carbides, which are raw materials, are weighed so as to have a desired composition ratio and filled in the crucible 1. As the solvent, an oxide or carbide that is a constituent component of the crystal may be excessively added, or an oxide or carbide that is different from the constituent component of the crystal may be additionally added. The crucible 1 charged with the raw material is installed on the crucible base 2 installed in the vertical tubular furnace 5. By heating the heater 4, the raw material is heated and dissolved to prepare a raw material solution 8. The pulling shaft 6 with the seed crystal 7 attached to the tip is introduced into the vertical tubular furnace 5 and brought into contact with the raw material solution 8 to start crystal growth.

種子結晶7を原料溶液8に接触させる際、すなわち種子付け過程では、原料溶液8の温度を調整し、種子結晶7が溶解せずかつ結晶成長も生じない状態を実現する。その後、引き上げ軸6を回転しながら引き上げると同時に、原料溶液8を、加熱量の調整により冷却して行く。この冷却により、原料溶液8は、過飽和状態となる。結晶成長に十分な過飽和状態が原料溶液8に実現すると、種子結晶7の先端に結晶が析出し始め、結晶成長が始まる。そして、種子付け、肩拡げ、定径部と順に成長過程が進行する。育成中は、その状態を形状センサもしくは重量センサを用いて検出し、成長が早い場合には昇温、成長が遅い場合には冷却を加えて、成長結晶9の直径制御を行う。また、引き上げ軸6を引き上げずに、成長結晶9を原料溶液8の中で成長させてもよい。   When the seed crystal 7 is brought into contact with the raw material solution 8, that is, in the seeding process, the temperature of the raw material solution 8 is adjusted to realize a state in which the seed crystal 7 does not dissolve and crystal growth does not occur. Thereafter, the raw material solution 8 is cooled by adjusting the heating amount at the same time as the pulling shaft 6 is pulled up while rotating. By this cooling, the raw material solution 8 becomes supersaturated. When a supersaturated state sufficient for crystal growth is realized in the raw material solution 8, crystals begin to precipitate at the tip of the seed crystal 7 and crystal growth starts. Then, the growth process proceeds in the order of seeding, shoulder expansion, and constant diameter portion. During the growth, the state is detected by using a shape sensor or a weight sensor, and the temperature of the grown crystal 9 is controlled by increasing the temperature when the growth is fast and cooling when the growth is slow. Further, the growth crystal 9 may be grown in the raw material solution 8 without raising the pulling shaft 6.

特開昭59-107996号公報JP 59-107996 特開2000-344595号公報JP 2000-344595 A

溶液原料を用いた結晶成長過程においては、溶液原料内の溶質組成と成長結晶の組成が異なる固溶体性や、溶解した原料の組成と成長結晶の組成が異なる不一致溶融性により、成長につれて結晶組成が変化していくことが知られている。そこで、結晶組成の変化を抑制する従来技術として、結晶成長中に粉末もしくは液滴状態で追加原料を補充する原料チャージ法が知られている(例えば、特許文献2参照)。   In the crystal growth process using a solution raw material, the crystal composition changes as the crystal grows due to the solid solution property in which the solute composition in the solution raw material and the composition of the grown crystal are different, and the inconsistent melting property in which the composition of the dissolved raw material and the composition of the grown crystal are different. It is known to change. Therefore, as a conventional technique for suppressing a change in crystal composition, a raw material charging method in which an additional raw material is replenished in a powder or droplet state during crystal growth is known (for example, see Patent Document 2).

しかしながら、粉末原料を補充する場合、その粉末原料は、投入時には室温であるからるつぼ中の溶解した原料溶液の温度より低く、粉末の供給および粉末原料の溶解によって、原料溶液の温度を下げてしまう。一方、液滴状態で補充する場合でも、その液滴を原料溶液の温度と一致させることは困難であり、液滴原料の温度と原料溶液の温度の差によって、原料溶液の温度を変化させてしまう。従って、従来の原料チャージ法では、結晶成長中の原料溶液の温度を変化させ、成長結晶の成長速度に影響を及ぼすという問題があった。成長結晶の組成は、成長速度と相関しているので、成長速度の変化は成長結晶の組成の変動を誘起してしまう。   However, when the powder raw material is replenished, the powder raw material is at room temperature at the time of charging, and thus is lower than the temperature of the dissolved raw material solution in the crucible, and the temperature of the raw material solution is lowered by supplying the powder and dissolving the powder raw material. . On the other hand, even when replenishing in a droplet state, it is difficult to make the droplet coincide with the temperature of the raw material solution, and the temperature of the raw material solution is changed by the difference between the temperature of the liquid droplet raw material and the temperature of the raw material solution. End up. Therefore, the conventional raw material charging method has a problem that the temperature of the raw material solution during crystal growth is changed to affect the growth rate of the grown crystal. Since the composition of the growth crystal correlates with the growth rate, a change in the growth rate induces a variation in the composition of the growth crystal.

本発明は、このような問題に鑑みてなされたもので、その目的とするところは、結晶成長過程における組成変化を防止し、均一性の高い単結晶を製造することができる結晶成長方法およびその装置を提供することにある。   The present invention has been made in view of such problems, and an object of the present invention is to provide a crystal growth method capable of preventing a composition change in the crystal growth process and manufacturing a highly uniform single crystal, and the method thereof. To provide an apparatus.

本発明は、このような目的を達成するために、請求項1に記載の発明は、炉内に設置されたるつぼ内の原料溶液に、種子結晶を浸して結晶を育成する結晶成長方法において、前記種子結晶を前記原料溶液に接触させると同時に、成長した結晶の組成と同一組成の原料棒を前記原料溶液に接触させ、前記原料棒と前記原料溶液との熱接触状態を維持し、単位時間あたりの成長結晶の成長量に一致する単位時間あたりの供給量で、前記原料棒から溶解した原料を前記原料溶液に供給することを特徴とする。   In order to achieve the above object, the present invention provides a crystal growth method for growing a crystal by immersing a seed crystal in a raw material solution in a crucible installed in a furnace. At the same time that the seed crystal is brought into contact with the raw material solution, a raw material rod having the same composition as that of the grown crystal is brought into contact with the raw material solution, and the thermal contact state between the raw material rod and the raw material solution is maintained, and unit time The raw material melted from the raw material rod is supplied to the raw material solution at a supply amount per unit time corresponding to the growth amount of the per grown crystal.

前記原料棒が前記原料溶液と接触している部分の温度は、前記種子結晶または前記成長結晶が前記原料溶液と接触している部分の温度より高く保持されていることが望ましく、より好適には、温度差が5〜100℃以内となるようにする。   The temperature of the portion where the raw material rod is in contact with the raw material solution is preferably maintained higher than the temperature of the portion where the seed crystal or the growth crystal is in contact with the raw material solution, and more preferably The temperature difference is within 5 to 100 ° C.

前記原料棒は、成長した結晶の組成と同一組成となるように素原料を秤量して混合し、加圧圧縮して作製することができる。   The raw material rod can be produced by weighing and mixing raw materials so as to have the same composition as that of the grown crystal, followed by pressure compression.

請求項7に記載の発明は、炉内に設置されたるつぼ内の原料溶液に、種子結晶を浸して結晶を育成する結晶成長装置において、成長結晶の成長量を算出するためのパラメータを検出するための検出手段と、成長した結晶の組成と同一組成の原料棒を前記原料溶液に挿入する原料棒昇降手段と、前記検出手段で検出されたパラメータから求めた単位時間あたりの成長結晶の成長量に一致する単位時間あたりの供給量で、前記原料棒から溶解した原料が前記原料溶液に供給されるように、前記原料棒昇降手段を制御する原料供給制御手段とを備えたことを特徴とする。   The invention according to claim 7 detects a parameter for calculating a growth amount of a grown crystal in a crystal growing apparatus for growing a crystal by immersing a seed crystal in a raw material solution in a crucible installed in a furnace. Detection means, a raw material rod lifting / lowering means for inserting a raw material rod having the same composition as the grown crystal into the raw material solution, and a growth amount of the grown crystal per unit time determined from the parameters detected by the detection means And a raw material supply control means for controlling the raw material rod raising / lowering means so that the raw material dissolved from the raw material rod is supplied to the raw material solution at a supply amount per unit time that matches .

前記検出手段は、前記パラメータとして、成長結晶の重量を測定したり、原料溶液の液面の高さを測定する。   The detection means measures, as the parameter, the weight of the grown crystal or the height of the liquid surface of the raw material solution.

以上説明したように、本発明によれば、成長結晶の成長量に応じて、原料棒から原料を原料溶液に供給して、原料溶液の組成を一定に保ちながら結晶成長させるので、均一な品質の単結晶を製造することができ、単結晶の利用効率を向上することが可能となる。   As described above, according to the present invention, according to the growth amount of the grown crystal, the raw material is supplied from the raw material rod to the raw material solution, and the crystal is grown while keeping the composition of the raw material solution constant. Single crystal can be manufactured, and the utilization efficiency of the single crystal can be improved.

また、本発明によれば、原料棒と原料溶液とが熱接触状態を保持している為、原料の追加供給によって原料溶液の温度が変化することがなく、成長結晶の成長速度を変動させないので、均一な品質の単結晶を製造することができ、単結晶の利用効率を向上することが可能となる。   In addition, according to the present invention, since the raw material rod and the raw material solution are kept in a thermal contact state, the temperature of the raw material solution is not changed by the additional supply of the raw material, and the growth rate of the grown crystal is not changed. Thus, a single crystal of uniform quality can be produced, and the utilization efficiency of the single crystal can be improved.

以下、図面を参照しながら本発明の実施形態について詳細に説明する。本実施形態では、原料溶液から成長する結晶組成と同一の組成の原料棒を、原料溶液と接触させる。ここで、原料棒は、種子結晶が原料溶液と接触している部分の温度より高い温度に保持されている。結晶の成長に従って原料溶液の組成は変化しようとするが、成長結晶の成長量に応じて、成長により消費された原料が原料棒から供給されるので、原料溶液の組成を一定に保つことができる。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the present embodiment, a raw material rod having the same composition as the crystal composition grown from the raw material solution is brought into contact with the raw material solution. Here, the raw material rod is maintained at a temperature higher than the temperature of the portion where the seed crystal is in contact with the raw material solution. Although the composition of the raw material solution tends to change as the crystal grows, the raw material consumed by the growth is supplied from the raw material rod according to the growth amount of the growing crystal, so that the composition of the raw material solution can be kept constant. .

図2に、本発明の一実施形態にかかる結晶製造装置の構成を示す。結晶製造装置は、ヒータ14によって温度制御可能な縦型管状炉15を有し、縦型管状炉15内のるつぼ台12に原料溶液18を入れたるつぼ11を設置している。縦型管状炉15は、炉体ふた20により密閉され、内面に設置された均熱管13により、炉内の温度が一定に保たれるようになっている。縦型管状炉15内の均一な温度分布を実現するために、ヒータ14として、抵抗加熱式のヒータを用いる。このような構成において、引き上げ軸16の先端に取り付けられた種子結晶17を、溶融した原料溶液18に浸して、成長結晶19を育成する。   FIG. 2 shows a configuration of a crystal manufacturing apparatus according to an embodiment of the present invention. The crystal manufacturing apparatus has a vertical tubular furnace 15 whose temperature can be controlled by a heater 14, and a crucible 11 in which a raw material solution 18 is placed in a crucible base 12 in the vertical tubular furnace 15. The vertical tubular furnace 15 is hermetically sealed with a furnace body lid 20, and the temperature inside the furnace is kept constant by a soaking tube 13 installed on the inner surface. In order to achieve a uniform temperature distribution in the vertical tubular furnace 15, a resistance heating type heater is used as the heater 14. In such a configuration, the seed crystal 17 attached to the tip of the pulling shaft 16 is immersed in the molten raw material solution 18 to grow the growth crystal 19.

上述したように、種子付け過程では、原料溶液18の温度を調整し、種子結晶17が溶解せずかつ結晶成長も生じない状態を実現する。その後、引き上げ軸16を回転しながら、加熱量の調整により原料溶液18を冷却して行く。この冷却により、原料溶液18は過飽和状態となり、脱熱されている引き上げ軸16により冷却され、原料溶液18中で最も温度の低い種子結晶7の先端に結晶が析出し始め、結晶成長が始まる。   As described above, in the seeding process, the temperature of the raw material solution 18 is adjusted to realize a state in which the seed crystal 17 does not dissolve and crystal growth does not occur. Thereafter, the raw material solution 18 is cooled by adjusting the heating amount while rotating the pulling shaft 16. By this cooling, the raw material solution 18 becomes supersaturated and is cooled by the deheated pulling shaft 16, and crystals begin to precipitate at the tip of the seed crystal 7 having the lowest temperature in the raw material solution 18, and crystal growth starts.

結晶製造装置は、原料溶液18から成長した結晶の組成と同一組成の原料棒21を、原料棒昇降軸22を介して昇降させることができる原料棒昇降装置24と、成長結晶19の成長量を算出するためのパラメータとして、成長結晶19の重量を測定する重量検出器23と、入力として重量検出器23および出力として原料棒昇降装置24に接続された原料供給制御装置25とを備えている。   The crystal manufacturing apparatus includes a raw material rod lifting / lowering device 24 that can raise and lower a raw material rod 21 having the same composition as the crystal grown from the raw material solution 18 via a raw material rod lifting / lowering shaft 22, and a growth amount of the grown crystal 19. As parameters for calculation, a weight detector 23 for measuring the weight of the grown crystal 19 and a raw material supply control device 25 connected to the raw material rod lifting / lowering device 24 as an output and a weight detector 23 as an output are provided.

まず、重量検出器23により結晶重量を測定し、成長結晶の成長量を検出する。成長により消費された原料を原料棒から供給するために、原料棒昇降装置24を制御して、原料棒21を原料溶液18に挿入する。具体的には、重量検出器23で検出した成長結晶の重量より、原料供給制御装置25は、単位時間あたりの結晶成長量を求める。この結晶成長量と同量となるように原料棒を溶解させる単位時間あたりの長さを算出する。原料供給制御装置25は、原料棒を溶解させる単位時間あたりの長さを原料棒昇降装置24に送信し、原料棒昇降軸22を降下させる。原料棒昇降軸22の先端に固定された原料棒21は、原料棒昇降軸22の降下によって原料溶液18に溶解する必要長さだけ挿入される。原料棒21を挿入する部分の原料溶液温度は、あらかじめ種子結晶17もしくは成長結晶19の原料溶液温度より高温に設定してある。この温度差により原料棒21が溶解し、成長結晶19は成長を維持することができる。以上の操作を成長中に繰り返し行うことによって、結晶成長量に見合う原料が補充される。このようにして、成長結晶24の成長量に応じて原料溶液の組成を一定に保つことができる。   First, the crystal weight is measured by the weight detector 23 to detect the growth amount of the grown crystal. In order to supply the raw material consumed by the growth from the raw material rod, the raw material rod lifting device 24 is controlled to insert the raw material rod 21 into the raw material solution 18. Specifically, the raw material supply control device 25 obtains the amount of crystal growth per unit time from the weight of the grown crystal detected by the weight detector 23. The length per unit time for melting the raw material rod is calculated so as to be the same amount as the crystal growth amount. The raw material supply control device 25 transmits the length per unit time for melting the raw material rod to the raw material rod lifting device 24 and lowers the raw material rod lifting shaft 22. The raw material rod 21 fixed to the tip of the raw material rod raising / lowering shaft 22 is inserted by a necessary length to be dissolved in the raw material solution 18 by the lowering of the raw material rod raising / lowering shaft 22. The raw material solution temperature of the portion into which the raw material rod 21 is inserted is set to be higher than the raw material solution temperature of the seed crystal 17 or the growth crystal 19 in advance. Due to this temperature difference, the raw material rod 21 is melted, and the growth crystal 19 can maintain its growth. By repeatedly performing the above operation during the growth, the raw material corresponding to the crystal growth amount is replenished. In this way, the composition of the raw material solution can be kept constant according to the growth amount of the growth crystal 24.

溶液成長の場合、結晶成長の進行につれて、溶質成分が消費され、溶媒成分中の溶質量が減少し、結晶化温度は低下する。従来の方法では、結晶成長中は溶質成分の消費量に応じて原料溶液18の温度を冷却し続ける必要があった。しかし、本実施形態では、原料溶液の組成が一定であるため、冷却を継続する必要はない。   In the case of solution growth, as the crystal growth proceeds, the solute component is consumed, the dissolved mass in the solvent component decreases, and the crystallization temperature decreases. In the conventional method, it is necessary to keep cooling the temperature of the raw material solution 18 according to the consumption amount of the solute component during the crystal growth. However, in this embodiment, since the composition of the raw material solution is constant, there is no need to continue cooling.

図3に、るつぼ内の原料溶液の温度分布を示す。るつぼ11の半径rとし、るつぼ11の中心から外周部に向かって測定した原料溶液18の液面の径方向の温度分布を示す。るつぼ11の中心、すなわち種子結晶17または成長結晶19が原料溶液18と接触している部分−r0≦r≦+r0(r0は結晶半径)では、温度aの均一な温度分布を実現する。原料棒21が原料溶液18と接触している部分の温度bは、温度aより高い温度に保持されている。 FIG. 3 shows the temperature distribution of the raw material solution in the crucible. The temperature distribution in the radial direction of the liquid surface of the raw material solution 18 measured from the center of the crucible 11 toward the outer periphery is shown as the radius r of the crucible 11. At the center of the crucible 11, that is, at the portion −r 0 ≦ r ≦ + r 0 (where r 0 is the crystal radius) where the seed crystal 17 or the grown crystal 19 is in contact with the raw material solution 18, a uniform temperature distribution of the temperature a is realized. . The temperature b where the raw material rod 21 is in contact with the raw material solution 18 is maintained at a temperature higher than the temperature a.

この温度bと温度aの温度差により原料棒21が溶解し、種子結晶17または成長結晶19は成長を維持することができる。温度bと温度aとの温度差は、小さすぎると脱熱経路を有する種子結晶17または成長結晶19と、原料棒21との双方で結晶が成長してしまう。種子結晶17または成長結晶19に結晶が成長し、原料棒21に結晶が成長しない状態を実現するには、温度bと温度aとの温度差が5℃以上必要である。また、温度bと温度aとの温度差が大きすぎると、原料溶液18の液面に外周から中心へ向かう熱対流が促進される。原料溶液18の対流が激しいと、その対流が引き起こす温度変動により結晶の成長速度が変動し、結晶組成が変動し、品質劣化が生ずる。上記対流を抑制する観点から、温度bと温度aとの温度差を20℃以内にすることが望ましい。   The raw material rod 21 is dissolved by the temperature difference between the temperature b and the temperature a, and the seed crystal 17 or the growth crystal 19 can maintain the growth. If the temperature difference between the temperature b and the temperature a is too small, crystals grow on both the seed crystal 17 or the growth crystal 19 having a heat removal path and the raw material rod 21. In order to realize a state in which a crystal grows on the seed crystal 17 or the growth crystal 19 and no crystal grows on the raw material rod 21, a temperature difference between the temperature b and the temperature a needs to be 5 ° C. or more. If the temperature difference between the temperature b and the temperature a is too large, thermal convection from the outer periphery toward the center is promoted on the liquid surface of the raw material solution 18. When the convection of the raw material solution 18 is intense, the crystal growth rate fluctuates due to temperature fluctuations caused by the convection, the crystal composition fluctuates, and quality deterioration occurs. From the viewpoint of suppressing the convection, the temperature difference between the temperature b and the temperature a is preferably within 20 ° C.

図2には詳細に記載していないが、原料溶液18の液面の径方向の温度分布は、ヒータ14を複数のゾーンに分割して、各々の分割されたヒータのバイアス条件を調整したり、るつぼ11の外周に保温体を設置したり、内径がるつぼ径より小さいリングをるつぼ直上に装着するなど、るつぼ周りの伝熱状態を調整することによって実現することができる。   Although not described in detail in FIG. 2, the temperature distribution in the radial direction of the liquid surface of the raw material solution 18 is obtained by dividing the heater 14 into a plurality of zones and adjusting the bias condition of each divided heater. It can be realized by adjusting the heat transfer state around the crucible, for example, by installing a heat insulator on the outer periphery of the crucible 11 or mounting a ring having an inner diameter smaller than the crucible diameter.

このようにして、原料棒21は、原料溶液18に挿入された表面からの自発溶解で供給される。原料棒21は、溶解した原料と接触しているから、熱接触が保たれており、原料溶液18の温度を変動させない。従って、育成中の結晶の成長速度に影響を及ぼすことがなく、結晶品質の変動を抑制することができる。また、温度bは、温度aより高い温度に保持されているので、種子結晶17に代えて、原料棒21を核として結晶成長することはない。   In this way, the raw material rod 21 is supplied by spontaneous dissolution from the surface inserted into the raw material solution 18. Since the raw material rod 21 is in contact with the dissolved raw material, the thermal contact is maintained and the temperature of the raw material solution 18 is not changed. Therefore, it is possible to suppress fluctuations in crystal quality without affecting the growth rate of the crystal being grown. Further, since the temperature b is maintained at a temperature higher than the temperature a, the crystal does not grow using the raw material rod 21 as a nucleus in place of the seed crystal 17.

また、粉末や液滴で補充原料を補充する従来の方法では、補充の際に原料溶液表面を揺らがせる。TSSG法、カイロポーラス法では成長結晶の周囲にメニスカスと称する原料溶液の一部分が存在し、その形状を変化させることは成長結晶の品質に影響を及ぼすこととなる。本実施形態によれば、補充原料が原料溶液と接しているので、原料溶液表面揺らぎに影響を及ぼすことなく補充原料を補充でき、成長中の成長結晶品質を損なうこともない。   In the conventional method of replenishing the replenishing raw material with powder or droplets, the surface of the raw material solution is shaken during replenishment. In the TSSG method and the Cairo porous method, a part of the raw material solution called meniscus exists around the growth crystal, and changing its shape affects the quality of the growth crystal. According to this embodiment, since the replenishing material is in contact with the raw material solution, the replenishing material can be replenished without affecting the surface fluctuation of the raw material solution, and the quality of the grown crystal during growth is not impaired.

種子結晶または成長結晶の温度を低くし、原料棒の温度を高く設定することは、図2に示した結晶製造装置を用いて説明したTSSG法、カイロポーラス法による結晶成長のみならず、ブリッジマン法や温度勾配凝固法による結晶成長にも適用が可能である。単位時間あたりの結晶成長量は、結晶重量測定に代えて、温度降下量から相図に基づいて算出することができる。また、るつぼ内の温度分布シミュレーション手法を用いて、成長界面位置を特定し、結晶成長量を求めてもよい。成長結晶の密度と原料溶液の密度は異なるから、成長中の原料溶液表面の高さが結晶成長中に増減する。成長中の原料溶液表面の位置を測定し、結晶成長量を求めることもできる。求めた単位時間あたりの結晶成長量に基づいて、原料棒を溶解する必要長さだけ制御して原料溶液に挿入する。   Setting the temperature of the seed crystal or the growth crystal low and the temperature of the raw material rod high is not only the crystal growth by the TSSG method and the chiroporous method described using the crystal production apparatus shown in FIG. It can also be applied to crystal growth by the method and temperature gradient solidification method. The crystal growth amount per unit time can be calculated based on the phase diagram from the temperature drop amount instead of the crystal weight measurement. Further, the crystal growth amount may be obtained by specifying the growth interface position by using a temperature distribution simulation method in the crucible. Since the density of the grown crystal and the density of the raw material solution are different, the height of the growing raw material solution surface increases or decreases during crystal growth. It is also possible to determine the crystal growth amount by measuring the position of the raw material solution surface during growth. Based on the obtained crystal growth amount per unit time, the raw material rod is inserted into the raw material solution while being controlled by a necessary length for melting.

以上の温度降下と原料棒挿入を繰り返し行うことによって、TSSG法、カイロポーラス法と同様に、成長結晶の成長量に見合う原料が補充され、原料溶液の組成を一定に保つことができる。垂直ブリッジマン法、温度勾配凝固法による結晶成長の場合、炉の下方の温度が低く、炉の上方の温度が高い温度分布が実現されており、原料溶液の対流は生じない。従って、TSSG法、カイロポーラス法による結晶成長で説明した原料棒の温度bと種子結晶または成長結晶の温度aとの温度差を20℃以内に制限する必要はない。ただし、原料溶液の蒸発を抑制するため、種子結晶または成長結晶と原料棒との温度差は、100℃以内にすることが望ましい。   By repeatedly performing the above temperature drop and raw material rod insertion, the raw material corresponding to the growth amount of the grown crystal is replenished, and the composition of the raw material solution can be kept constant, as in the TSSG method and the cairoporous method. In the case of crystal growth by the vertical Bridgman method and the temperature gradient solidification method, a temperature distribution is realized in which the temperature below the furnace is low and the temperature above the furnace is high, and convection of the raw material solution does not occur. Therefore, it is not necessary to limit the temperature difference between the temperature b of the raw material rod and the temperature a of the seed crystal or the grown crystal described in the crystal growth by the TSSG method or the chiroporous method to within 20 ° C. However, in order to suppress evaporation of the raw material solution, it is desirable that the temperature difference between the seed crystal or the grown crystal and the raw material rod is within 100 ° C.

本発明の実施例を、以下に説明する。本実施例は、一例であり、発明の精神を逸脱しない範囲で、種々の改良を行いうることは言うまでもない。   Examples of the present invention will be described below. This embodiment is an example, and it goes without saying that various improvements can be made without departing from the spirit of the invention.

TSSG法によるKTaxNb1-x3単結晶の製造法の実施例を、図2を用いて説明する。KTaxNb1-x3溶質原料は、素原料であるK2CO3とTa25とNb25とを所望の組成比となるように秤量し、るつぼ11に充填する。溶媒としてKを選択し過剰のK2CO3も併せてるつぼ11に充填する。KTaxNb1-x3溶質原料と過剰Kが投入されたるつぼ11を、縦型管状炉15内に設置されたるつぼ台12上に設置する。ヒータ14を加熱することで、原料を昇温溶解し、原料溶液18を準備する。種子結晶17が先端に取り付けられた引き上げ軸16を縦型管状炉15に導入し、原料溶液18に接触させ、結晶育成を開始する。原料の昇温溶解中、不要な炭酸基を脱ガスする為、結晶育成を開始する温度より高い過加熱過程を施す。 Examples of the preparation of KTa x Nb 1-x O 3 single crystal by TSSG method will be described with reference to FIG. The KTa x Nb 1-x O 3 solute raw material is weighed so that the raw materials K 2 CO 3 , Ta 2 O 5, and Nb 2 O 5 have a desired composition ratio, and filled in the crucible 11. A crucible 11 is selected in which K is selected as the solvent and excess K 2 CO 3 is also added. KTa x a Nb 1-x O 3 crucible 11 solute material and excess K is turned on, is placed on a vertical tubular furnace crucible base 12 installed in the 15. By heating the heater 14, the raw material is heated and dissolved to prepare a raw material solution 18. The pulling shaft 16 with the seed crystal 17 attached to the tip is introduced into the vertical tubular furnace 15 and brought into contact with the raw material solution 18 to start crystal growth. In order to degas unnecessary carbonate groups during the temperature melting of the raw material, an overheating process higher than the temperature at which crystal growth is started is performed.

原料棒21の作製は、素原料であるK2CO3とTa25とNb25とを混合し、定径部工程で成長する結晶と同一の組成比となるよう秤量して、直径1cm、長さ50cmの棒状に加圧圧縮する。これを、1000℃で焼結して、原料棒21とする。原料棒21の充填率は100%に近いことが好ましい。1000℃での焼結の後、粉砕、加圧圧縮、再焼結の工程を繰り返すことで充填率を上げることができる。 The raw material rod 21 is prepared by mixing raw materials K 2 CO 3 , Ta 2 O 5 and Nb 2 O 5 and weighing them so as to have the same composition ratio as the crystals grown in the constant diameter part process. Compressed and compressed into a rod shape with a diameter of 1 cm and a length of 50 cm. This is sintered at 1000 ° C. to obtain a raw material rod 21. The filling rate of the raw material rods 21 is preferably close to 100%. After sintering at 1000 ° C., the filling rate can be increased by repeating the steps of pulverization, pressure compression, and re-sintering.

種子結晶17を原料溶液18に接触させる際、すなわち種子付け過程では、原料溶液18の温度を調整し、種子結晶17が溶解せずかつ結晶成長も生じない状態を実現する。その後、引き上げ軸16を回転させながら、加熱量の調整により原料溶液18を冷却して行く。この冷却により、原料溶液18は過飽和状態となり、脱熱されている引き上げ軸16により冷却され原料溶液18中で最も温度の低い種子結晶17の先端に結晶が析出し始め、結晶成長が始まる。その後、引き上げ軸16を上方に0.1mm/hrの速度で上昇させることで、引き上げを開始する。加熱量の調整による原料溶液18の冷却を継続することで、成長結晶19の直径が増加し、成長結晶19の肩拡げ工程を行う。   When the seed crystal 17 is brought into contact with the raw material solution 18, that is, in the seeding process, the temperature of the raw material solution 18 is adjusted to realize a state in which the seed crystal 17 does not dissolve and crystal growth does not occur. Thereafter, the raw material solution 18 is cooled by adjusting the heating amount while rotating the pulling shaft 16. By this cooling, the raw material solution 18 becomes supersaturated, is cooled by the deheated pulling shaft 16, and crystals begin to precipitate at the tip of the seed crystal 17 having the lowest temperature in the raw material solution 18, and crystal growth begins. Then, raising is started by raising the raising shaft 16 at a speed of 0.1 mm / hr. By continuing the cooling of the raw material solution 18 by adjusting the heating amount, the diameter of the growth crystal 19 increases, and the shoulder expansion process of the growth crystal 19 is performed.

成長結晶19の直径が所望の径に達した時点で、加熱量を一定にすると同時に、原料棒21を原料溶液18と接触させる。以後、結晶径が一定な定径部工程を行う。結晶成長に伴って、重量検出器23により結晶重量を測定し、原料供給制御装置25は、単位時間あたりの結晶成長量を求める。原料供給制御装置25は、この結晶成長量と同量となるように原料棒を溶解させる単位時間あたりの長さを算出し、原料棒昇降装置24に送信する。原料棒昇降装置24は、原料棒昇降軸22の先端に固定された原料棒21を、原料棒を溶解させる単位時間あたりの長さだけ降下させる。原料棒21を挿入する部分の原料溶液温度は、あらかじめ種子結晶17もしくは成長結晶19の原料溶液温度より5℃高温に設定する。この温度差により原料棒21が溶解し、成長結晶19は成長を維持する。以上の操作を定径部工程中に繰り返し行うことによって、結晶成長量に見合う原料を補充する。   When the diameter of the growth crystal 19 reaches a desired diameter, the heating amount is made constant and the raw material rod 21 is brought into contact with the raw material solution 18 at the same time. Thereafter, a constant diameter portion process with a constant crystal diameter is performed. As the crystal grows, the weight of the crystal is measured by the weight detector 23, and the raw material supply control device 25 determines the amount of crystal growth per unit time. The raw material supply control device 25 calculates the length per unit time for melting the raw material rod so as to be the same amount as this crystal growth amount, and transmits it to the raw material rod lifting device 24. The raw material rod lifting device 24 lowers the raw material rod 21 fixed to the tip of the raw material rod lifting shaft 22 by a length per unit time for melting the raw material rod. The raw material solution temperature of the portion into which the raw material rod 21 is inserted is set to 5 ° C. higher than the raw material solution temperature of the seed crystal 17 or the growth crystal 19 in advance. Due to this temperature difference, the raw material rod 21 is melted, and the growth crystal 19 maintains its growth. By repeating the above operation during the constant diameter portion process, the raw material corresponding to the crystal growth amount is replenished.

成長結晶19が所望の大きさに成長した時点で、引き上げ軸16を高速で引き上げ、成長結晶19を原料溶液18から切り離し、結晶成長を停止する。結晶成長後、ヒータ14の加熱量を下げ、縦型管状炉15を室温まで冷却する。成長した結晶の定径部には、形状変動がないファセット面が表出した。成長条件の変化による外形変化、欠陥発生も認められない。目視による観察で、色調均一でかつ欠陥の介在も認められないKTaxNb1-x3単結晶が得られる。 When the growth crystal 19 grows to a desired size, the pulling shaft 16 is pulled up at a high speed, the growth crystal 19 is separated from the raw material solution 18, and the crystal growth is stopped. After crystal growth, the heating amount of the heater 14 is lowered, and the vertical tubular furnace 15 is cooled to room temperature. A faceted surface having no shape variation appeared in the constant diameter portion of the grown crystal. There is no change in the outer shape due to changes in growth conditions, and no defects are observed. By visual observation, a KTa x Nb 1-x O 3 single crystal having a uniform color tone and no intervening defects can be obtained.

この結晶を引き上げ方向に沿って切断し、研磨することでウエハを作製する。作製したウエハを化学分析により組成分析したところ、定径部工程で成長した成長結晶19の組成xは、引き上げ方向に対して一定であった。原料棒を挿入せずに定径部を冷却により成長させた場合には、KTaxNb1-x3は固溶体であるから、定径部工程で成長した成長結晶の組成xは、引き上げるにつれて減少する。一方、原料棒の挿入により原料を補充しながら定径部工程を実施することにより、成長結晶の成長量に応じて原料溶液の組成を一定に保つことができる。 The crystal is cut along the pulling direction and polished to produce a wafer. When the composition of the produced wafer was analyzed by chemical analysis, the composition x of the grown crystal 19 grown in the constant diameter portion process was constant with respect to the pulling direction. When the constant diameter portion is grown by cooling without inserting the raw material rod, since KTa x Nb 1-x O 3 is a solid solution, the composition x of the grown crystal grown in the constant diameter portion step increases as it is pulled up. Decrease. On the other hand, the composition of the raw material solution can be kept constant according to the growth amount of the grown crystal by performing the constant diameter portion process while replenishing the raw material by inserting the raw material rod.

TSSG法によるK1-yLiyTaxNb1-x3(0<y<0.4)単結晶の製造法の実施例を、図2を用いて説明する。K1-yLiyTaxNb1-x3溶質原料は、素原料であるK2CO3とLi2CO3とTa25とNb25とを所望の組成比となるように秤量し、るつぼ11に充填する。溶媒としてKとLiの混合物を選択し過剰のK2CO3とLi2CO3も併せてるつぼ11に充填する。K1-yLiyTaxNb1-x3溶質原料と過剰なKとLiが投入されたるつぼ11を、縦型管状炉15内に設置されたるつぼ台12上に設置する。ヒータ14を加熱することで、原料を昇温溶解し、原料溶液18を準備する。種子結晶17が先端に取り付けられた引き上げ軸16を縦型管状炉15に導入し、原料溶液18に接触させ、結晶育成を開始する。原料の昇温溶解中、不要な炭酸基を脱ガスする為、結晶育成を開始する温度より高い過加熱過程を施した。 An example of a method for producing a K 1-y Li y Ta x Nb 1-x O 3 (0 <y <0.4) single crystal by the TSSG method will be described with reference to FIG. The K 1-y Li y Ta x Nb 1-x O 3 solute raw material is formed so that the raw materials K 2 CO 3 , Li 2 CO 3 , Ta 2 O 5 and Nb 2 O 5 have a desired composition ratio. The crucible 11 is filled. A mixture of K and Li is selected as a solvent, and excess K 2 CO 3 and Li 2 CO 3 are also filled in the crucible 11. A crucible 11 charged with K 1 -y Li y Ta x Nb 1 -x O 3 solute raw material and excess K and Li is placed on a crucible base 12 installed in a vertical tubular furnace 15. By heating the heater 14, the raw material is heated and dissolved to prepare a raw material solution 18. The pulling shaft 16 with the seed crystal 17 attached to the tip is introduced into the vertical tubular furnace 15 and brought into contact with the raw material solution 18 to start crystal growth. In order to degas unnecessary carbonate groups during the temperature dissolution of the raw material, an overheating process higher than the temperature at which crystal growth was started was performed.

原料棒21の作製は、素原料であるK2CO3とLi2CO3とTa25とNb25とを混合し、定径部工程で成長する結晶と同一の組成比となるよう秤量して、直径1cm、長さ50cmの棒状に加圧圧縮する。これを、900℃で焼結して、原料棒21とする。原料棒21の充填率は100%に近いことが好ましい。900℃での焼結の後、粉砕、加圧圧縮、再焼結の工程を繰り返すことで充填率を上げることができる。 The raw material rod 21 is produced by mixing the raw materials K 2 CO 3 , Li 2 CO 3 , Ta 2 O 5 and Nb 2 O 5, and having the same composition ratio as the crystal grown in the constant diameter part process. Weigh so that it is compressed into a rod with a diameter of 1 cm and a length of 50 cm. This is sintered at 900 ° C. to obtain the raw material rod 21. The filling rate of the raw material rods 21 is preferably close to 100%. After the sintering at 900 ° C., the filling rate can be increased by repeating the steps of pulverization, pressure compression, and re-sintering.

種子結晶17を原料溶液18に接触させる際、すなわち種子付け過程では、原料溶液18の温度を調整し、種子結晶17が溶解せずかつ結晶成長も生じない状態を実現する。その後、引き上げ軸16を回転させながら、加熱量の調整により原料溶液18を冷却して行く。この冷却により、原料溶液18は過飽和状態となり、脱熱されている引き上げ軸16により冷却され原料溶液18中で最も温度の低い種子結晶17の先端に結晶が析出し始め、結晶成長が始まる。その後、引き上げ軸16を上方に0.2mm/hrの速度で上昇させることで、引き上げを開始する。加熱量の調整による原料溶液18の冷却を継続して行くことで、成長結晶19の直径が増加し、成長結晶19の肩拡げ工程を行う。   When the seed crystal 17 is brought into contact with the raw material solution 18, that is, in the seeding process, the temperature of the raw material solution 18 is adjusted to realize a state in which the seed crystal 17 does not dissolve and crystal growth does not occur. Thereafter, the raw material solution 18 is cooled by adjusting the heating amount while rotating the pulling shaft 16. By this cooling, the raw material solution 18 becomes supersaturated, is cooled by the deheated pulling shaft 16, and crystals begin to precipitate at the tip of the seed crystal 17 having the lowest temperature in the raw material solution 18, and crystal growth begins. Then, raising is started by raising the raising shaft 16 at a speed of 0.2 mm / hr upward. By continuing cooling of the raw material solution 18 by adjusting the heating amount, the diameter of the growth crystal 19 increases, and the shoulder expansion process of the growth crystal 19 is performed.

成長結晶19の直径が所望の径に達した時点で、加熱量を一定にすると同時に、原料棒21を原料溶液18と接触させる。以後、結晶径が一定な定径部工程を行う。結晶成長に伴って、重量検出器23により結晶重量を測定し、原料供給制御装置25は、単位時間あたりの結晶成長量を求める。原料供給制御装置25は、この結晶成長量と同量となるように原料棒を溶解させる単位時間あたりの長さを算出し、原料棒昇降装置24に送信する。原料棒昇降装置24は、原料棒昇降軸22の先端に固定された原料棒21を、原料棒を溶解させる単位時間あたりの長さだけ降下させる。原料棒21を挿入する部分の原料溶液温度は、あらかじめ種子結晶17もしくは成長結晶19の原料溶液温度より10℃高温に設定する。この温度差により原料棒21が溶解し、成長結晶19は成長を維持する。以上の操作を定径部工程中に繰り返し行うことによって、結晶成長量に見合う原料を補充する。   When the diameter of the growth crystal 19 reaches a desired diameter, the heating amount is made constant and the raw material rod 21 is brought into contact with the raw material solution 18 at the same time. Thereafter, a constant diameter portion process with a constant crystal diameter is performed. As the crystal grows, the weight of the crystal is measured by the weight detector 23, and the raw material supply control device 25 determines the amount of crystal growth per unit time. The raw material supply control device 25 calculates the length per unit time for melting the raw material rod so as to be the same amount as this crystal growth amount, and transmits it to the raw material rod lifting device 24. The raw material rod lifting device 24 lowers the raw material rod 21 fixed to the tip of the raw material rod lifting shaft 22 by a length per unit time for melting the raw material rod. The raw material solution temperature of the portion where the raw material rod 21 is inserted is set in advance to 10 ° C. higher than the raw material solution temperature of the seed crystal 17 or the growth crystal 19. Due to this temperature difference, the raw material rod 21 is melted, and the growth crystal 19 maintains its growth. By repeating the above operation during the constant diameter portion process, the raw material corresponding to the crystal growth amount is replenished.

成長結晶19が所望の大きさに成長した時点で、引き上げ軸16を高速で引き上げ、成長結晶19を原料溶液18から切り離し、結晶成長を停止する。結晶成長後、ヒータ14の加熱量を下げ、縦型管状炉15を室温まで冷却する。成長した結晶の定径部には、形状変動がないファセット面が表出した。成長条件の変化による外形変化、欠陥発生も認められない。目視による観察で、色調均一でかつ欠陥の介在も認められないK1-yLiyTaxNb1-x3単結晶が得られる。 When the growth crystal 19 grows to a desired size, the pulling shaft 16 is pulled up at a high speed, the growth crystal 19 is separated from the raw material solution 18, and the crystal growth is stopped. After crystal growth, the heating amount of the heater 14 is lowered, and the vertical tubular furnace 15 is cooled to room temperature. A faceted surface having no shape variation appeared in the constant diameter portion of the grown crystal. There is no change in the outer shape due to changes in growth conditions, and no defects are observed. As a result of visual observation, a K 1-y Li y Ta x Nb 1-x O 3 single crystal having a uniform color tone and no intervening defects can be obtained.

この結晶を引き上げ方向に沿って切断し、研磨することでウエハを作製する。作製したウエハを化学分析により組成分析したところ、定径部工程で成長した成長結晶19の組成xおよびyは、引き上げ方向に対して一定であった。原料棒を挿入せずに定径部を冷却により成長させ場合には、K1-yLiyTaxNb1-x3は固溶体であるから、定径部工程で成長した成長結晶の組成xは、引き上げるにつれて減少する。また、Liは原料として投入したLi/(K+Li)比どおりに結晶に取り込まれないため、yも変化する。一方、原料棒の挿入により原料を補充しながら定径部工程を実施することにより、成長結晶の成長量に応じて原料溶液の組成を一定に保つことができる。 The crystal is cut along the pulling direction and polished to produce a wafer. When the composition of the produced wafer was analyzed by chemical analysis, the compositions x and y of the grown crystal 19 grown in the constant diameter portion process were constant with respect to the pulling direction. When the constant-diameter portion is grown by cooling without inserting the raw material rod, the composition of the grown crystal grown in the constant-diameter portion step is because K 1-y Li y Ta x Nb 1-x O 3 is a solid solution. x decreases as it is raised. Further, since Li is not taken into the crystal in accordance with the Li / (K + Li) ratio charged as a raw material, y also changes. On the other hand, the composition of the raw material solution can be kept constant according to the growth amount of the grown crystal by performing the constant diameter portion process while replenishing the raw material by inserting the raw material rod.

TSSG法によるKTaxNb1-x3単結晶の製造法の実施例を、図2を用いて説明する。KTaxNb1-x3溶質原料は、素原料であるK2CO3とTa25とNb25とを所望の組成比となるように秤量し、るつぼ11に充填する。溶媒としてKを選択し過剰のK2CO3も併せてるつぼ11に充填する。さらに、NaやMg、Ca、Sr、Baなどの周期律表Ia、IIa族の元素を、不純物として添加する。添加量は、溶質と溶媒のK、Ta、Nbの総モル数に対して1%以下である。KTaxNb1-x3溶質原料と過剰Kと不純物が投入されたるつぼ11を、縦型管状炉15内に設置されたるつぼ台12上に設置する。ヒータ14を加熱することで、原料を昇温溶解し、原料溶液18を準備する。種子結晶17が先端に取り付けられた引き上げ軸16を縦型管状炉15に導入し、原料溶液18に接触させ、結晶育成を開始する。原料の昇温溶解中、不要な炭酸基を脱ガスする為、結晶育成を開始する温度より高い過加熱過程を施す。 Examples of the preparation of KTa x Nb 1-x O 3 single crystal by TSSG method will be described with reference to FIG. The KTa x Nb 1-x O 3 solute raw material is weighed so that the raw materials K 2 CO 3 , Ta 2 O 5, and Nb 2 O 5 have a desired composition ratio, and filled in the crucible 11. A crucible 11 is selected in which K is selected as the solvent and excess K 2 CO 3 is also added. Further, elements of the periodic table Ia and IIa such as Na, Mg, Ca, Sr and Ba are added as impurities. The amount added is 1% or less with respect to the total number of moles of solute and solvent K, Ta, and Nb. KTa x a Nb 1-x O 3 crucible 11 solute material and excess K and impurities are introduced, placed on a vertical tubular furnace crucible base 12 installed in the 15. By heating the heater 14, the raw material is heated and dissolved to prepare a raw material solution 18. The pulling shaft 16 with the seed crystal 17 attached to the tip is introduced into the vertical tubular furnace 15 and brought into contact with the raw material solution 18 to start crystal growth. In order to degas unnecessary carbonate groups during the temperature melting of the raw material, an overheating process higher than the temperature at which crystal growth is started is performed.

原料棒21の作製は、素原料であるK2CO3とTa25とNb25と不純物とを混合し、定径部工程で成長する結晶と同一の組成比となるよう秤量して、直径1cm、長さ50cmの棒状に加圧圧縮する。これを、1000℃で焼結して、原料棒21とする。原料棒21の充填率は100%に近いことが好ましい。前記1000℃での焼結の後、粉砕、加圧圧縮、再焼結の工程を繰り返すことで充填率を上げることができる。 The raw material rod 21 is prepared by mixing raw materials K 2 CO 3 , Ta 2 O 5 , Nb 2 O 5 and impurities, and weighing them so as to have the same composition ratio as the crystal grown in the constant diameter part process. Then, press and compress into a rod shape having a diameter of 1 cm and a length of 50 cm. This is sintered at 1000 ° C. to obtain a raw material rod 21. The filling rate of the raw material rods 21 is preferably close to 100%. After the sintering at 1000 ° C., the filling rate can be increased by repeating the steps of pulverization, pressure compression, and re-sintering.

種子結晶17を原料溶液18に接触させる際、すなわち種子付け過程では、原料溶液18の温度を調整し、種子結晶17が溶解せずかつ結晶成長も生じない状態を実現する。その後、引き上げ軸16を回転しながら、加熱量の調整により原料溶液18を冷却して行く。この冷却により、原料溶液18は過飽和状態となり、脱熱されている引き上げ軸16により冷却され原料溶液18中で最も温度の低い種子結晶17の先端に結晶が析出し始め、結晶成長が始まる。その後、引き上げ軸16を上方に0.1mm/hrの速度で上昇させることで、引き上げを開始する。加熱量の調整による原料溶液18の冷却を継続して行くことで、成長結晶19の直径が増加し、成長結晶19の肩拡げ工程を行う。   When the seed crystal 17 is brought into contact with the raw material solution 18, that is, in the seeding process, the temperature of the raw material solution 18 is adjusted to realize a state in which the seed crystal 17 does not dissolve and crystal growth does not occur. Thereafter, the raw material solution 18 is cooled by adjusting the heating amount while rotating the pulling shaft 16. By this cooling, the raw material solution 18 becomes supersaturated, is cooled by the deheated pulling shaft 16, and crystals begin to precipitate at the tip of the seed crystal 17 having the lowest temperature in the raw material solution 18, and crystal growth begins. Then, raising is started by raising the raising shaft 16 at a speed of 0.1 mm / hr upward. By continuing cooling of the raw material solution 18 by adjusting the heating amount, the diameter of the growth crystal 19 increases, and the shoulder expansion process of the growth crystal 19 is performed.

成長結晶19の直径が所望の径に達した時点で、加熱量を一定にすると同時に、原料棒21を原料溶液18と接触させる。以後、結晶径が一定な定径部工程を行う。結晶成長に伴って、重量検出器23により結晶重量を測定し、原料供給制御装置25は、単位時間あたりの結晶成長量を求める。原料供給制御装置25は、この結晶成長量と同量となるように原料棒を溶解させる単位時間あたりの長さを算出し、原料棒昇降装置24に送信する。原料棒昇降装置24は、原料棒昇降軸22の先端に固定された原料棒21を、原料棒を溶解させる単位時間あたりの長さだけ降下させる。原料棒21を挿入する部分の原料溶液温度は、あらかじめ種子結晶17もしくは成長結晶19の原料溶液温度より10℃高温に設定する。この温度差により原料棒21が溶解し、成長結晶19は成長を維持する。以上の操作を定径部工程中に繰り返し行うことによって、結晶成長量に見合う原料を補充する。   When the diameter of the growth crystal 19 reaches a desired diameter, the heating amount is made constant and the raw material rod 21 is brought into contact with the raw material solution 18 at the same time. Thereafter, a constant diameter portion process with a constant crystal diameter is performed. As the crystal grows, the weight of the crystal is measured by the weight detector 23, and the raw material supply control device 25 determines the amount of crystal growth per unit time. The raw material supply control device 25 calculates the length per unit time for melting the raw material rod so as to be the same amount as this crystal growth amount, and transmits it to the raw material rod lifting device 24. The raw material rod lifting device 24 lowers the raw material rod 21 fixed to the tip of the raw material rod lifting shaft 22 by a length per unit time for melting the raw material rod. The raw material solution temperature of the portion where the raw material rod 21 is inserted is set in advance to 10 ° C. higher than the raw material solution temperature of the seed crystal 17 or the growth crystal 19. Due to this temperature difference, the raw material rod 21 is melted, and the growth crystal 19 maintains its growth. By repeating the above operation during the constant diameter portion process, the raw material corresponding to the crystal growth amount is replenished.

成長結晶19が所望の大きさに成長した時点で、引き上げ軸16を高速で引き上げ、成長結晶19を原料溶液18から切り離し、結晶成長を停止する。結晶成長後、ヒータ14の加熱量を下げ、縦型管状炉15を室温まで冷却する。成長した結晶の定径部には、形状変動がないファセット面が表出した。成長条件の変化による外形変化、欠陥発生も認められない。目視による観察で、色調均一でかつ欠陥の介在も認められないKTaxNb1-x3単結晶が得られた。 When the growth crystal 19 grows to a desired size, the pulling shaft 16 is pulled up at a high speed, the growth crystal 19 is separated from the raw material solution 18, and the crystal growth is stopped. After crystal growth, the heating amount of the heater 14 is lowered, and the vertical tubular furnace 15 is cooled to room temperature. A faceted surface having no shape variation appeared in the constant diameter portion of the grown crystal. There is no change in the outer shape due to changes in growth conditions, and no defects are observed. In visual observation, the color tone intervening uniform and defect nor observed KTa x Nb 1-x O 3 single crystal was obtained.

この結晶を引き上げ方向に沿って切断し、研磨することでウエハを作製した。作製したウエハを化学分析により組成分析したところ、定径部工程で成長した成長結晶19の組成xは、引き上げ方向に対して一定であった。原料棒を挿入せずに定径部を冷却により成長させた場合には、KTaxNb1-x3は固溶体であるから、定径部工程で成長した成長結晶の組成xは、引き上げるにつれて減少する。加えて、添加した不純物は固液偏析係数が1でなく、従来作製法の場合、KTaxNb1-x3単結晶に均一に添加できなかった。一方、実施例3で成長したKTaxNb1-x3単結晶には、添加した不純物が均一に添加されている。従って、原料棒の挿入により原料を補充しながら定径部工程を実施することにより、成長結晶の成長量に応じて原料溶液の組成を一定に保つことができる。 The crystal was cut along the pulling direction and polished to prepare a wafer. When the composition of the produced wafer was analyzed by chemical analysis, the composition x of the grown crystal 19 grown in the constant diameter portion process was constant with respect to the pulling direction. When the constant diameter portion is grown by cooling without inserting the raw material rod, since KTa x Nb 1-x O 3 is a solid solution, the composition x of the grown crystal grown in the constant diameter portion step increases as it is pulled up. Decrease. In addition, the added impurities do not have a solid-liquid segregation coefficient of 1, and in the case of the conventional production method, they could not be uniformly added to the KTa x Nb 1-x O 3 single crystal. On the other hand, the KTa x Nb 1-x O 3 single crystal grown in Example 3, the added impurity is evenly added. Therefore, the composition of the raw material solution can be kept constant according to the growth amount of the grown crystal by performing the constant diameter portion process while replenishing the raw material by inserting the raw material rod.

TSSG法によるLiNbO3単結晶の製造法の実施例を、図2を用いて説明する。LiNbO3原料は、素原料であるLi2CO3とNb25とを1対1の組成比となるように秤量し、るつぼ11に充填する。LiNbO3原料が投入されたるつぼ11を、縦型管状炉15内に設置されたるつぼ台12上に設置する。ヒータ14を加熱することで、原料を昇温溶解し、原料溶液18を準備する。種子結晶17が先端に取り付けられた引き上げ軸16を縦型管状炉15に導入し、原料溶液18に接触させ、結晶育成を開始する。原料の昇温溶解中、不要な炭酸基を脱ガスする為、結晶育成を開始する温度より高い過加熱過程を施す。 An embodiment of a method for producing a LiNbO 3 single crystal by the TSSG method will be described with reference to FIG. As the LiNbO 3 raw material, the raw materials Li 2 CO 3 and Nb 2 O 5 are weighed so as to have a composition ratio of 1: 1 and filled in the crucible 11. The crucible 11 charged with the LiNbO 3 raw material is placed on the crucible base 12 installed in the vertical tubular furnace 15. By heating the heater 14, the raw material is heated and dissolved to prepare a raw material solution 18. The pulling shaft 16 with the seed crystal 17 attached to the tip is introduced into the vertical tubular furnace 15 and brought into contact with the raw material solution 18 to start crystal growth. In order to degas unnecessary carbonate groups during the temperature melting of the raw material, an overheating process higher than the temperature at which crystal growth is started is performed.

原料棒21の作製は、素原料であるLi2CO3とNb25とを1対1の組成比に混合し、直径2cm、長さ50cmの棒状に加圧圧縮する。これを、1200℃で焼結して、原料棒21とする。原料棒21の充填率は100%に近いことが好ましい。1200℃での焼結の後、粉砕、加圧圧縮、再焼結の工程を繰り返すことで充填率を上げることができる。 The raw material rod 21 is prepared by mixing Li 2 CO 3 and Nb 2 O 5 as raw materials in a composition ratio of 1: 1, and compressing and compressing them into a rod shape having a diameter of 2 cm and a length of 50 cm. This is sintered at 1200 ° C. to obtain a raw material rod 21. The filling rate of the raw material rods 21 is preferably close to 100%. After sintering at 1200 ° C., the filling rate can be increased by repeating the steps of pulverization, pressure compression, and re-sintering.

種子結晶17を原料溶液18に接触させる際、すなわち種子付け過程では、原料溶液18の温度を調整し、種子結晶17が溶解せずかつ結晶成長も生じない状態を実現する。その後、引き上げ軸16を回転させながら、加熱量の調整により原料溶液18を冷却して行く。この冷却により、原料溶液18は過飽和状態となり、脱熱されている引き上げ軸16により冷却され原料溶液18中で最も温度の低い種子結晶17の先端に結晶が析出し始め、結晶成長が始まる。その後、引き上げ軸16を上方に0.5mm/hrの速度で上昇させることで、引き上げを開始する。加熱量の調整による原料溶液18の冷却を継続することで、成長結晶19の直径が増加し、成長結晶の肩拡げ工程を行う。   When the seed crystal 17 is brought into contact with the raw material solution 18, that is, in the seeding process, the temperature of the raw material solution 18 is adjusted to realize a state in which the seed crystal 17 does not dissolve and crystal growth does not occur. Thereafter, the raw material solution 18 is cooled by adjusting the heating amount while rotating the pulling shaft 16. By this cooling, the raw material solution 18 becomes supersaturated, is cooled by the deheated pulling shaft 16, and crystals begin to precipitate at the tip of the seed crystal 17 having the lowest temperature in the raw material solution 18, and crystal growth begins. Then, raising is started by raising the raising shaft 16 at a speed of 0.5 mm / hr. By continuing the cooling of the raw material solution 18 by adjusting the heating amount, the diameter of the growth crystal 19 is increased, and a shoulder expansion process for the growth crystal is performed.

成長結晶19の直径が所望の径に達した時点で、加熱量を一定にすると同時に、原料棒21を原料溶液18と接触させる。以後、結晶径が一定な定径部工程を行う。結晶成長に伴って、重量検出器23により結晶重量を測定し、原料供給制御装置25は、単位時間あたりの結晶成長量を求める。原料供給制御装置25は、この結晶成長量と同量となるように原料棒を溶解させる単位時間あたりの長さを算出し、原料棒昇降装置24に送信する。原料棒昇降装置24は、原料棒昇降軸22の先端に固定された原料棒21を、原料棒を溶解させる単位時間あたりの長さだけ降下させる。原料棒21を挿入する部分の原料溶液温度は、あらかじめ種子結晶17もしくは成長結晶19の原料溶液温度より20℃高温に設定する。この温度差により原料棒21が溶解し、成長結晶19は成長を維持する。以上の操作を定径部工程中に繰り返し行うことによって、結晶成長量に見合う原料を補充する。   When the diameter of the growth crystal 19 reaches a desired diameter, the heating amount is made constant and the raw material rod 21 is brought into contact with the raw material solution 18 at the same time. Thereafter, a constant diameter portion process with a constant crystal diameter is performed. As the crystal grows, the weight of the crystal is measured by the weight detector 23, and the raw material supply control device 25 determines the amount of crystal growth per unit time. The raw material supply control device 25 calculates the length per unit time for melting the raw material rod so as to be the same amount as this crystal growth amount, and transmits it to the raw material rod lifting device 24. The raw material rod lifting device 24 lowers the raw material rod 21 fixed to the tip of the raw material rod lifting shaft 22 by a length per unit time for melting the raw material rod. The raw material solution temperature of the portion into which the raw material rod 21 is inserted is set to 20 ° C. higher than the raw material solution temperature of the seed crystal 17 or the growth crystal 19 in advance. Due to this temperature difference, the raw material rod 21 is melted, and the growth crystal 19 maintains its growth. By repeating the above operation during the constant diameter portion process, the raw material corresponding to the crystal growth amount is replenished.

成長結晶19が所望の大きさに成長した時点で、引き上げ軸16を高速で引き上げ、成長結晶19を原料溶液18から切り離し、結晶成長を停止する。結晶成長後、ヒータ14の加熱量を下げ、縦型管状炉15を室温まで冷却する。成長条件の変化による外形変化、欠陥発生も認められない。目視による観察で、色調均一でかつ欠陥の介在も認められないLiNbO3単結晶が得られた。 When the growth crystal 19 grows to a desired size, the pulling shaft 16 is pulled up at a high speed, the growth crystal 19 is separated from the raw material solution 18, and the crystal growth is stopped. After crystal growth, the heating amount of the heater 14 is lowered, and the vertical tubular furnace 15 is cooled to room temperature. There is no change in the outer shape due to changes in growth conditions, and no defects are observed. As a result of visual observation, a LiNbO 3 single crystal having a uniform color tone and no intervening defects was obtained.

この結晶を引き上げ方向に沿って切断し、研磨することでウエハを作製する。作製したウエハを化学分析により組成分析したところ、定径部工程で成長した成長結晶19のLi/(Li+Nb)比は、引き上げ方向に対して1であり、一定であった。原料棒を挿入せずに定径部を冷却により成長させた場合には、LiNbO3は不一致溶融性であるから、定径部工程で成長した成長結晶のLi/(Li+Nb)比は、引き上げるにつれて1より増大する。従って、原料棒の挿入により原料を補充しながら定径部工程を実施することにより、成長結晶の成長量に応じて原料溶液の組成を一定に保つことができる。 The crystal is cut along the pulling direction and polished to produce a wafer. When the composition of the produced wafer was analyzed by chemical analysis, the Li / (Li + Nb) ratio of the grown crystal 19 grown in the constant diameter portion step was 1 in the pulling direction and was constant. When the constant diameter part is grown by cooling without inserting the raw material rod, LiNbO 3 is inconsistent melting, so the Li / (Li + Nb) ratio of the grown crystal grown in the constant diameter part process is increased. Increase from 1. Therefore, the composition of the raw material solution can be kept constant according to the growth amount of the grown crystal by performing the constant diameter portion process while replenishing the raw material by inserting the raw material rod.

TSSG法によるLiTaO3単結晶の製造法の実施例を、図2を用いて説明する。LiTaO3原料は、素原料であるLi2CO3とTa25とを1対1の組成比となるように秤量し、るつぼ11に充填する。LiTaO3原料が投入されたるつぼ11を、縦型管状炉15内に設置されたるつぼ台12上に設置する。ヒータ14を加熱することで、原料を昇温溶解し、原料溶液18を準備する。種子結晶17が先端に取り付けられた引き上げ軸16を縦型管状炉15に導入し、原料溶液18に接触させ、結晶育成を開始する。原料の昇温溶解中、不要な炭酸基を脱ガスする為、結晶育成を開始する温度より高い過加熱過程を施す。 An embodiment of a method for producing a LiTaO 3 single crystal by the TSSG method will be described with reference to FIG. As the LiTaO 3 raw material, Li 2 CO 3 and Ta 2 O 5 as raw materials are weighed so as to have a composition ratio of 1: 1, and filled in the crucible 11. The crucible 11 charged with the LiTaO 3 raw material is placed on the crucible base 12 installed in the vertical tubular furnace 15. By heating the heater 14, the raw material is heated and dissolved to prepare a raw material solution 18. The pulling shaft 16 with the seed crystal 17 attached to the tip is introduced into the vertical tubular furnace 15 and brought into contact with the raw material solution 18 to start crystal growth. In order to degas unnecessary carbonate groups during the temperature melting of the raw material, an overheating process higher than the temperature at which crystal growth is started is performed.

原料棒21の作製は、素原料であるLi2CO3とTa25とを1対1の組成比に混合し、直径2cm、長さ50cmの棒状に加圧圧縮する。これを、1500℃で焼結して、原料棒21とする。原料棒21の充填率は100%に近いことが好ましい。1500℃での焼結の後、粉砕、加圧圧縮、再焼結の工程を繰り返すことで充填率を上げることができる。 The raw material rod 21 is prepared by mixing Li 2 CO 3 and Ta 2 O 5 which are raw materials at a composition ratio of 1: 1, and pressurizing and compressing into a rod shape having a diameter of 2 cm and a length of 50 cm. This is sintered at 1500 ° C. to obtain a raw material rod 21. The filling rate of the raw material rods 21 is preferably close to 100%. After sintering at 1500 ° C., the filling rate can be increased by repeating the steps of pulverization, pressure compression, and re-sintering.

種子結晶17を原料溶液18に接触させる際、すなわち種子付け過程では、原料溶液18の温度を調整し、種子結晶17が溶解せずかつ結晶成長も生じない状態を実現する。その後、引き上げ軸16を回転させながら、加熱量の調整により原料溶液18を冷却して行く。この冷却により、原料溶液18は過飽和状態となり、脱熱されている引き上げ軸16により冷却され原料溶液18中で最も温度の低い種子結晶17の先端に結晶が析出し始め、結晶成長が始まる。その後、引き上げ軸16を上方に1.0mm/hrの速度で上昇させることで、引き上げを開始する。加熱量の調整による原料溶液18の冷却を継続することで、成長結晶19の直径が増加し、成長結晶19の肩拡げ工程を行う。   When the seed crystal 17 is brought into contact with the raw material solution 18, that is, in the seeding process, the temperature of the raw material solution 18 is adjusted to realize a state in which the seed crystal 17 does not dissolve and crystal growth does not occur. Thereafter, the raw material solution 18 is cooled by adjusting the heating amount while rotating the pulling shaft 16. By this cooling, the raw material solution 18 becomes supersaturated, is cooled by the deheated pulling shaft 16, and crystals begin to precipitate at the tip of the seed crystal 17 having the lowest temperature in the raw material solution 18, and crystal growth begins. Then, raising is started by raising the raising shaft 16 at a speed of 1.0 mm / hr upward. By continuing the cooling of the raw material solution 18 by adjusting the heating amount, the diameter of the growth crystal 19 increases, and the shoulder expansion process of the growth crystal 19 is performed.

成長結晶19の直径が所望の径に達した時点で、加熱量を一定にすると同時に、原料棒21を原料溶液18と接触させる。以後、結晶径が一定な定径部工程を行う。結晶成長に伴って、重量検出器23により結晶重量を測定し、原料供給制御装置25は、単位時間あたりの結晶成長量を求める。原料供給制御装置25は、この結晶成長量と同量となるように原料棒を溶解させる単位時間あたりの長さを算出し、原料棒昇降装置24に送信する。原料棒昇降装置24は、原料棒昇降軸22の先端に固定された原料棒21を、原料棒を溶解させる単位時間あたりの長さだけ降下させる。原料棒21を挿入する部分の原料溶液温度は、あらかじめ種子結晶17もしくは成長結晶19の原料溶液温度より20℃高温に設定する。この温度差により原料棒21が溶解し、成長結晶19は成長を維持する。以上の操作を定径部工程中に繰り返し行うことによって、結晶成長量に見合う原料を補充する。   When the diameter of the growth crystal 19 reaches a desired diameter, the heating amount is made constant and the raw material rod 21 is brought into contact with the raw material solution 18 at the same time. Thereafter, a constant diameter portion process with a constant crystal diameter is performed. As the crystal grows, the weight of the crystal is measured by the weight detector 23, and the raw material supply control device 25 determines the amount of crystal growth per unit time. The raw material supply control device 25 calculates the length per unit time for melting the raw material rod so as to be the same amount as this crystal growth amount, and transmits it to the raw material rod lifting device 24. The raw material rod lifting device 24 lowers the raw material rod 21 fixed to the tip of the raw material rod lifting shaft 22 by a length per unit time for melting the raw material rod. The raw material solution temperature of the portion into which the raw material rod 21 is inserted is set to 20 ° C. higher than the raw material solution temperature of the seed crystal 17 or the growth crystal 19 in advance. Due to this temperature difference, the raw material rod 21 is melted, and the growth crystal 19 maintains its growth. By repeating the above operation during the constant diameter portion process, the raw material corresponding to the crystal growth amount is replenished.

成長結晶19が所望の大きさに成長した時点で、引き上げ軸16を高速で引き上げ、成長結晶19を原料溶液18から切り離し、結晶成長を停止する。結晶成長後、ヒータ14の加熱量を下げ、縦型管状炉15を室温まで冷却する。成長条件の変化による外形変化、欠陥発生も認められない。目視による観察で、色調均一でかつ欠陥の介在も認められないLiNbO3単結晶が得られた。 When the growth crystal 19 grows to a desired size, the pulling shaft 16 is pulled up at a high speed, the growth crystal 19 is separated from the raw material solution 18, and the crystal growth is stopped. After crystal growth, the heating amount of the heater 14 is lowered, and the vertical tubular furnace 15 is cooled to room temperature. There is no change in the outer shape due to changes in growth conditions, and no defects are observed. As a result of visual observation, a LiNbO 3 single crystal having a uniform color tone and no intervening defects was obtained.

この結晶を引き上げ方向に沿って切断し、研磨することでウエハを作製する。作製したウエハを化学分析により組成分析したところ、定径部工程で成長した成長結晶19のLi/(Li+Ta)比は、引き上げ方向に対して1であり、一定であった。原料棒を挿入せずに定径部を冷却により成長させた場合には、LiTaO3は不一致溶融性であるから、定径部工程で成長した成長結晶のLi/(Li+Ta)比は、引き上げるにつれて1より増大する。従って、原料棒の挿入により原料を補充しながら定径部工程を実施することにより、成長結晶の成長量に応じて原料溶液18の組成を一定に保つことができる。 The crystal is cut along the pulling direction and polished to produce a wafer. When the composition of the produced wafer was analyzed by chemical analysis, the Li / (Li + Ta) ratio of the grown crystal 19 grown in the constant diameter portion step was 1 in the pulling direction and was constant. When the constant diameter part is grown by cooling without inserting the raw material rod, LiTaO 3 is inconsistent melting, so the Li / (Li + Ta) ratio of the grown crystal grown in the constant diameter part process is increased as it is increased. Increase from 1. Therefore, the composition of the raw material solution 18 can be kept constant according to the growth amount of the grown crystal by performing the constant diameter portion process while replenishing the raw material by inserting the raw material rod.

温度勾配凝固法によるKTaxNb1-x3単結晶の製造方法を説明する。図4に、実施例6にかかる結晶製造装置の構成を示す。結晶製造装置は、ヒータ34によって温度制御可能な縦型管状炉35を有し、縦型管状炉35内のるつぼ台32にるつぼ31を設置している。るつぼ31の底部に種子結晶37を配置し、投入された原料を加熱溶解させて原料溶液38とする。縦型管状炉35は、炉体ふた40により密閉され、内面に設置された均熱管33とヒータ34とにより、鉛直方向に沿って予め決められた温度勾配曲線に従って保持されている。ヒータ34の設定により、原料溶液38を冷却すると、結晶の成長温度に達した結晶は、種子結晶37と同じ結晶方位を有する結晶に成長し、増径部成長過程と定径部成長過程とを経て成長結晶39となる。 The manufacturing method will be described of KTa x Nb 1-x O 3 single crystal by the temperature gradient solidification method. FIG. 4 shows the configuration of the crystal manufacturing apparatus according to Example 6. The crystal manufacturing apparatus has a vertical tubular furnace 35 whose temperature can be controlled by a heater 34, and a crucible 31 is installed on a crucible base 32 in the vertical tubular furnace 35. A seed crystal 37 is placed at the bottom of the crucible 31 and the charged raw material is heated and dissolved to obtain a raw material solution 38. The vertical tubular furnace 35 is sealed by a furnace body lid 40 and is held by a heat equalizing tube 33 and a heater 34 installed on the inner surface according to a temperature gradient curve determined in advance along the vertical direction. When the raw material solution 38 is cooled by the setting of the heater 34, the crystal that has reached the crystal growth temperature grows into a crystal having the same crystal orientation as the seed crystal 37, and the increased diameter portion growth process and the constant diameter portion growth process are performed. After that, it becomes a grown crystal 39.

結晶製造装置は、原料溶液38から成長した結晶の組成と同一組成の原料棒41を、原料棒昇降軸42を介して昇降させることができる原料棒昇降装置44と、成長結晶19の成長量を算出するためのパラメータとして、原料溶液38の液面の高さを測定する溶液表面位置検出器43と、入力として溶液表面位置検出器43および出力として原料棒昇降装置44に接続された原料供給制御装置45とを備えている。   The crystal manufacturing apparatus includes a raw material bar elevating device 44 that can raise and lower a raw material bar 41 having the same composition as the crystal grown from the raw material solution 38 via a raw material bar elevating shaft 42, and the growth amount of the grown crystal 19. As parameters for calculation, a solution surface position detector 43 that measures the height of the liquid surface of the raw material solution 38, and a raw material supply control connected to the solution surface position detector 43 as an input and the raw material rod lifting device 44 as an output. Device 45.

KTaxNb1-x3溶質原料は、素原料であるK2CO3とTa25とNb25とを所望の組成比となるように秤量し、るつぼ31に充填する。溶媒としてKを選択し過剰のK2CO3も併せてるつぼ31に充填する。また、るつぼ31の底には種子結晶37が設置してある。KTaxNb1-x3溶質原料と過剰Kが投入されたるつぼ31を、縦型管状炉35内に設置されたるつぼ台32上に設置する。ヒータ34を加熱することで、原料を昇温溶解し、原料溶液38を準備する。ヒータ34を徐々に冷却することで、結晶育成を開始する。 The KTa x Nb 1-x O 3 solute raw material is weighed so that the raw materials K 2 CO 3 , Ta 2 O 5 and Nb 2 O 5 have a desired composition ratio, and filled in the crucible 31. A crucible 31 is selected in which K is selected as the solvent and excess K 2 CO 3 is also added. A seed crystal 37 is installed on the bottom of the crucible 31. KTa x a Nb 1-x O 3 crucible 31 solute material and excess K is turned on, is placed on the crucible base 32 installed on a vertical tube furnace 35. By heating the heater 34, the raw material is heated and dissolved to prepare a raw material solution 38. Crystal growth is started by gradually cooling the heater 34.

原料棒41の作製は、素原料であるK2CO3とTa25とNb25とを混合し、定径部工程で成長する結晶と同一の組成比となるよう秤量して、直径2cm、長さ50cmの棒状に加圧圧縮する。これを、1000℃で焼結して、原料棒41とする。原料棒41の充填率は100%に近いことが好ましい。1000℃での焼結の後、粉砕、加圧圧縮、再焼結の工程を繰り返すことで充填率を上げることができる。 The raw material rod 41 is prepared by mixing raw materials K 2 CO 3 , Ta 2 O 5 and Nb 2 O 5 and weighing them so as to have the same composition ratio as the crystals grown in the constant diameter part process. Compressed and compressed into a rod shape with a diameter of 2 cm and a length of 50 cm. This is sintered at 1000 ° C. to obtain a raw material rod 41. The filling rate of the raw material rod 41 is preferably close to 100%. After sintering at 1000 ° C., the filling rate can be increased by repeating the steps of pulverization, pressure compression, and re-sintering.

ヒータ34の設定によりるつぼ31内の原料溶液38は、鉛直方向に上部の温度が高く、下部の温度が低い温度分布が実現されている。種子付け過程では、原料溶液38の温度を調整し、種子結晶37が溶解せずかつ結晶成長も生じない温度を実現する。その後、加熱量の調整により原料溶液38を冷却して行く。この冷却により、原料溶液38は過飽和状態となり、原料溶液38中で最も温度の低い種子結晶37の先端に結晶が析出し始め、結晶成長が始まる。その後、加熱量の調整による原料溶液38の冷却を継続して行くことで、成長結晶39の直径が増加し、成長結晶39の肩拡げ工程をるつぼ31内で行う。   With the setting of the heater 34, the raw material solution 38 in the crucible 31 has a temperature distribution in which the upper temperature is high and the lower temperature is low in the vertical direction. In the seeding process, the temperature of the raw material solution 38 is adjusted to realize a temperature at which the seed crystal 37 does not dissolve and crystal growth does not occur. Thereafter, the raw material solution 38 is cooled by adjusting the heating amount. By this cooling, the raw material solution 38 becomes supersaturated, crystals begin to precipitate at the tip of the seed crystal 37 having the lowest temperature in the raw material solution 38, and crystal growth starts. Thereafter, by continuing cooling of the raw material solution 38 by adjusting the heating amount, the diameter of the growth crystal 39 increases, and a shoulder expanding step of the growth crystal 39 is performed in the crucible 31.

成長結晶39の直径が所望の径に達した時点で、加熱量を一定にすると同時に、原料棒41を原料溶液38と接触させる。以後、結晶径が一定な定径部工程をるつぼ31内で行う。結晶成長に伴って、溶液表面位置検出器43により原料溶液38の液面の高さを測定し、原料供給制御装置45は、単位時間あたりの結晶成長量を求める。これは、成長結晶39の密度が溶液原料38の密度より大きいため、成長結晶39の成長に応じて、原料溶液38の液面の高さが低くなるからである。原料供給制御装置45は、この結晶成長量と同量となるように原料棒を溶解させる単位時間あたりの長さを算出し、原料棒昇降装置44に送信する。原料棒昇降装置44は、原料棒昇降軸42の先端に固定された原料棒41を、原料棒を溶解させる単位時間あたりの長さだけ降下させる。原料棒41を挿入する部分の原料溶液温度は、上述した鉛直方向の温度分布により、種子結晶37もしくは原料溶液温度より100℃高温に設定する。この温度差により原料棒41が溶解し、成長結晶39は成長を維持する。以上の操作を定径部工程中に繰り返し行うことによって、結晶成長量に見合う原料を補充する。   When the diameter of the grown crystal 39 reaches a desired diameter, the heating amount is made constant and the raw material rod 41 is brought into contact with the raw material solution 38 at the same time. Thereafter, a constant diameter portion process with a constant crystal diameter is performed in the crucible 31. As the crystal grows, the height of the liquid surface of the raw material solution 38 is measured by the solution surface position detector 43, and the raw material supply controller 45 obtains the amount of crystal growth per unit time. This is because the density of the growth crystal 39 is higher than the density of the solution raw material 38, so that the height of the liquid surface of the raw material solution 38 becomes lower as the growth crystal 39 grows. The raw material supply control device 45 calculates the length per unit time for melting the raw material rod so as to be the same amount as this crystal growth amount, and transmits it to the raw material rod lifting device 44. The raw material rod lifting device 44 lowers the raw material rod 41 fixed to the tip of the raw material rod lifting shaft 42 by a length per unit time for melting the raw material rod. The temperature of the raw material solution at the portion where the raw material rod 41 is inserted is set to 100 ° C. higher than the seed crystal 37 or the temperature of the raw material solution by the above-described vertical temperature distribution. Due to this temperature difference, the raw material rod 41 is melted, and the growth crystal 39 maintains its growth. By repeating the above operation during the constant diameter portion process, the raw material corresponding to the crystal growth amount is replenished.

成長結晶39が所望の大きさに成長した時点で、結晶成長を停止する。結晶成長後、ヒータ34の加熱量を下げ、縦型管状炉35を室温まで冷却する。成長結晶39には、成長条件の変化による欠陥発生も認められない。目視による観察で、色調均一でかつ欠陥の介在も認められないKTaxNb1-x3単結晶が得られた。 When the growth crystal 39 has grown to a desired size, the crystal growth is stopped. After crystal growth, the heating amount of the heater 34 is lowered, and the vertical tubular furnace 35 is cooled to room temperature. In the grown crystal 39, no defects are observed due to changes in the growth conditions. In visual observation, the color tone intervening uniform and defect nor observed KTa x Nb 1-x O 3 single crystal was obtained.

この結晶を引き上げ方向に沿って切断し、研磨することでウエハを作製した。作製したウエハを化学分析により組成分析したところ、定径部工程で成長した成長結晶39の組成xは、成長方向に対して一定であった。原料棒を挿入せずに定径部を冷却により成長させた場合には、KTaxNb1-x3は固溶体であるから、定径部工程で成長した成長結晶の組成xは、成長するにつれて減少する。一方、原料棒の挿入により原料を補充しながら定径部工程を実施することにより、成長結晶の成長量に応じて原料溶液の組成を一定に保つことができる。 The crystal was cut along the pulling direction and polished to prepare a wafer. When the composition of the produced wafer was analyzed by chemical analysis, the composition x of the grown crystal 39 grown in the constant diameter portion process was constant with respect to the growth direction. When the constant diameter portion is grown by cooling without inserting the raw material rod, the composition x of the grown crystal grown in the constant diameter portion process grows because KTa x Nb 1-x O 3 is a solid solution. Decreases as On the other hand, the composition of the raw material solution can be kept constant according to the growth amount of the grown crystal by performing the constant diameter portion process while replenishing the raw material by inserting the raw material rod.

従来のTSSG法による結晶製造装置の構成を示す図である。It is a figure which shows the structure of the crystal manufacturing apparatus by the conventional TSSG method. 本発明の一実施形態にかかる結晶製造装置の構成を示す図である。It is a figure which shows the structure of the crystal manufacturing apparatus concerning one Embodiment of this invention. るつぼ内の原料溶液の温度分布を示す図である。It is a figure which shows the temperature distribution of the raw material solution in a crucible. 実施例6にかかる結晶製造装置の構成を示す図である。It is a figure which shows the structure of the crystal manufacturing apparatus concerning Example 6. FIG.

符号の説明Explanation of symbols

1,11,31 るつぼ
2,12,32 るつぼ台
3,13,33 均熱管
4,14,34 ヒータ
5,15,35 縦型管状炉
6,16 引き上げ軸
7,17,37 種子結晶
8,18,38 原料溶液
9,19,39 成長結晶
10,20,40 炉体ふた
21,41 原料棒
22,42 原料棒昇降軸
23 重量検出器
24,44 原料棒昇降装置
25,45 原料供給制御装置
43 溶液表面位置検出器
1,11,31 crucible 2,12,32 crucible stand 3,13,33 soaking tube 4,14,34 heater 5,15,35 vertical tubular furnace 6,16 pulling shaft 7,17,37 seed crystal 8,18 , 38 Raw material solution 9, 19, 39 Grown crystal 10, 20, 40 Furnace lid 21, 41 Raw material rod 22, 42 Raw material rod lifting shaft 23 Weight detector 24, 44 Raw material rod lifting device 25, 45 Raw material supply control device 43 Solution surface position detector

Claims (7)

炉内に設置されたるつぼ内の原料溶液に、種子結晶を浸して結晶を育成する結晶成長方法において、
前記種子結晶を前記原料溶液に接触させると同時に、
成長した結晶の組成と同一組成の原料棒を前記原料溶液に接触させ、前記原料棒と前記原料溶液との熱接触状態を維持し、単位時間あたりの成長結晶の成長量に一致する単位時間あたりの供給量で、前記原料棒から溶解した原料を前記原料溶液に供給することを特徴とする結晶成長方法。
In a crystal growth method in which seed crystals are immersed in a raw material solution in a crucible installed in a furnace to grow crystals,
Simultaneously contacting the seed crystal with the raw material solution,
A raw material rod having the same composition as that of the grown crystal is brought into contact with the raw material solution, and the thermal contact state between the raw material rod and the raw material solution is maintained, and per unit time corresponding to the growth amount of the grown crystal per unit time. A crystal growth method characterized by supplying a raw material dissolved from the raw material rod to the raw material solution at a supply amount of
前記原料棒が前記原料溶液と接触している部分の温度は、前記種子結晶または前記成長結晶が前記原料溶液と接触している部分の温度より高く保持されていることを特徴とする請求項1に記載の結晶成長方法。   The temperature of the portion where the raw material rod is in contact with the raw material solution is maintained higher than the temperature of the portion where the seed crystal or the growth crystal is in contact with the raw material solution. The crystal growth method described in 1. 前記原料棒が前記原料溶液と接触している部分の温度と、前記種子結晶または前記成長結晶が前記原料溶液と接触している部分の温度との温度差が5〜100℃以内となるように、前記原料溶液の液面の温度分布が保持されていることを特徴とする請求項2に記載の結晶成長方法。   The temperature difference between the temperature of the portion where the raw material rod is in contact with the raw material solution and the temperature of the portion where the seed crystal or the growth crystal is in contact with the raw material solution is within 5 to 100 ° C. The crystal growth method according to claim 2, wherein the temperature distribution of the liquid surface of the raw material solution is maintained. 前記原料棒は、成長した結晶の組成と同一組成となるように素原料を秤量して混合し、加圧圧縮されていることを特徴とする請求項1、2または3に記載の結晶成長方法。   4. The crystal growth method according to claim 1, wherein the raw material bar is prepared by weighing and mixing raw materials so as to have the same composition as that of the grown crystal and pressurizing and compressing the raw materials. . 前記結晶の成分は、周期率表Ia族とVa族から構成されており、Ia族はカリウム、リチウムの少なくとも1つを含み、Va族はニオブ、タンタルの少なくとも1つを含むことを特徴とする請求項1ないし4のいずれかに記載の結晶成長方法。   The component of the crystal is composed of a group Ia and a Va group in the periodic table, wherein the group Ia includes at least one of potassium and lithium, and the group Va includes at least one of niobium and tantalum. The crystal growth method according to claim 1. 前記結晶の成分は、周期率表Ia族とVa族から構成されており、Ia族はカリウムであり、Va族はニオブ、タンタルの少なくとも1つを含み、添加不純物として周期率表Ia、IIa族の1または複数種を含むことを特徴とする請求項1ないし4のいずれかに記載の結晶成長方法。   The component of the crystal is composed of a periodic table Ia group and a Va group, the group Ia is potassium, the Va group includes at least one of niobium and tantalum, and the periodic table Ia, IIa group as an additive impurity. The crystal growth method according to claim 1, comprising one or more of the following. 炉内に設置されたるつぼ内の原料溶液に、種子結晶を浸して結晶を育成する結晶成長装置において、
成長結晶の成長量を算出するためのパラメータを検出するための検出手段と、
成長した結晶の組成と同一組成の原料棒を前記原料溶液に挿入する原料棒昇降手段と、
前記検出手段で検出されたパラメータから求めた単位時間あたりの成長結晶の成長量に一致する単位時間あたりの供給量で、前記原料棒から溶解した原料が前記原料溶液に供給されるように、前記原料棒昇降手段を制御する原料供給制御手段と
を備えたことを特徴とする結晶成長装置。
In a crystal growth apparatus for growing a crystal by immersing a seed crystal in a raw material solution in a crucible installed in a furnace,
Detection means for detecting a parameter for calculating the growth amount of the grown crystal;
Raw material rod lifting means for inserting a raw material rod having the same composition as the grown crystal into the raw material solution;
The raw material dissolved from the raw material rod is supplied to the raw material solution at a supply amount per unit time corresponding to the growth amount of the grown crystal per unit time obtained from the parameter detected by the detection means. A crystal growth apparatus comprising: a raw material supply control means for controlling the raw material bar elevating means.
JP2007313606A 2007-12-04 2007-12-04 Crystal growth method and apparatus Active JP4916425B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007313606A JP4916425B2 (en) 2007-12-04 2007-12-04 Crystal growth method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007313606A JP4916425B2 (en) 2007-12-04 2007-12-04 Crystal growth method and apparatus

Publications (2)

Publication Number Publication Date
JP2009137781A true JP2009137781A (en) 2009-06-25
JP4916425B2 JP4916425B2 (en) 2012-04-11

Family

ID=40868811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007313606A Active JP4916425B2 (en) 2007-12-04 2007-12-04 Crystal growth method and apparatus

Country Status (1)

Country Link
JP (1) JP4916425B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012041200A (en) * 2010-08-12 2012-03-01 Nippon Telegr & Teleph Corp <Ntt> Crystal growth method
KR101338366B1 (en) * 2011-11-22 2013-12-06 주식회사 사파이어테크놀로지 Apparatus and method for growing sapphier single crystal

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5165084A (en) * 1974-12-03 1976-06-05 Nippon Electric Co TANKETSUSHOIKUSEISOCHI
JPS63176397A (en) * 1987-01-13 1988-07-20 Toshiba Corp Production of iii-v compound semiconductor single crystal
JPH06128084A (en) * 1992-10-23 1994-05-10 Japan Energy Corp Production of single crystal
JPH06239691A (en) * 1993-02-12 1994-08-30 Japan Energy Corp Method for growing single crystal
JPH11278978A (en) * 1998-03-26 1999-10-12 Toshiba Corp Production of single crystal and production unit therefor
WO2005121416A1 (en) * 2004-06-11 2005-12-22 Nippon Telegraph And Telephone Corporation Method and apparatus for preparing crystal
JP2006213554A (en) * 2005-02-02 2006-08-17 Nippon Telegr & Teleph Corp <Ntt> Crystal growth method and its apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5165084A (en) * 1974-12-03 1976-06-05 Nippon Electric Co TANKETSUSHOIKUSEISOCHI
JPS63176397A (en) * 1987-01-13 1988-07-20 Toshiba Corp Production of iii-v compound semiconductor single crystal
JPH06128084A (en) * 1992-10-23 1994-05-10 Japan Energy Corp Production of single crystal
JPH06239691A (en) * 1993-02-12 1994-08-30 Japan Energy Corp Method for growing single crystal
JPH11278978A (en) * 1998-03-26 1999-10-12 Toshiba Corp Production of single crystal and production unit therefor
WO2005121416A1 (en) * 2004-06-11 2005-12-22 Nippon Telegraph And Telephone Corporation Method and apparatus for preparing crystal
JP2006213554A (en) * 2005-02-02 2006-08-17 Nippon Telegr & Teleph Corp <Ntt> Crystal growth method and its apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012041200A (en) * 2010-08-12 2012-03-01 Nippon Telegr & Teleph Corp <Ntt> Crystal growth method
KR101338366B1 (en) * 2011-11-22 2013-12-06 주식회사 사파이어테크놀로지 Apparatus and method for growing sapphier single crystal

Also Published As

Publication number Publication date
JP4916425B2 (en) 2012-04-11

Similar Documents

Publication Publication Date Title
JP5059596B2 (en) A system for continuous growth in single crystal silicon.
JP5909276B2 (en) Growth of uniformly doped silicon ingot by doping only the first charge
JP6606638B2 (en) Method and apparatus for growing Fe-Ga based alloy single crystal
JP4810346B2 (en) Method for producing sapphire single crystal
KR101385997B1 (en) Apparatus for producing single crystal and method for producing single crystal
JP5731349B2 (en) A system for continuous growth in single crystal silicon.
CN108138353B (en) Method for producing single crystal
JP6053018B2 (en) Crystal growth method
CN102400210A (en) Method for adjusting defects in Czochralski silicon single crystal
EP1757716B1 (en) Method and apparatus for preparing crystal
CN112359412A (en) Seeding method for crystal growth
JP2012041200A (en) Crystal growth method
JP4916425B2 (en) Crystal growth method and apparatus
JP6039513B2 (en) Crystal growth apparatus and crystal growth method
KR101292703B1 (en) Apparatus for single crystal growth
JP5167942B2 (en) Method for producing silicon single crystal
JP7238709B2 (en) Manufacturing method of silicon single crystal
JP2006213554A (en) Crystal growth method and its apparatus
CN221254774U (en) Crucible for Czochralski silicon single crystal furnace
JP4146835B2 (en) Crystal growth method
JP7349100B2 (en) Seed crystal for FeGa single crystal growth and method for producing FeGa single crystal
JP2009023867A (en) Manufacturing method of semiconductor crystal and its manufacturing apparatus
WO2020220766A1 (en) Semiconductor crystal growth method and apparatus
JP5053426B2 (en) Silicon single crystal manufacturing method
JP2006248808A (en) Crystal growth apparatus

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100520

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100520

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4916425

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350