JPH06126789A - Injection compression molding machine - Google Patents

Injection compression molding machine

Info

Publication number
JPH06126789A
JPH06126789A JP28312392A JP28312392A JPH06126789A JP H06126789 A JPH06126789 A JP H06126789A JP 28312392 A JP28312392 A JP 28312392A JP 28312392 A JP28312392 A JP 28312392A JP H06126789 A JPH06126789 A JP H06126789A
Authority
JP
Japan
Prior art keywords
rotation
conversion mechanism
compression
linear conversion
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28312392A
Other languages
Japanese (ja)
Inventor
Yoshiya Taniguchi
吉哉 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Machinery and Metal Co Ltd
Original Assignee
Toyo Machinery and Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Machinery and Metal Co Ltd filed Critical Toyo Machinery and Metal Co Ltd
Priority to JP28312392A priority Critical patent/JPH06126789A/en
Publication of JPH06126789A publication Critical patent/JPH06126789A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/40Removing or ejecting moulded articles
    • B29C45/4005Ejector constructions; Ejector operating mechanisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/46Means for plasticising or homogenising the moulding material or forcing it into the mould
    • B29C45/57Exerting after-pressure on the moulding material
    • B29C45/572Exerting after-pressure on the moulding material using movable mould wall or runner parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/40Removing or ejecting moulded articles
    • B29C45/4005Ejector constructions; Ejector operating mechanisms
    • B29C2045/4036Ejector constructions; Ejector operating mechanisms driven by a screw and nut mechanism

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To provide an injection compression molding machine which is capable of decreasing the number of a driving source and of reducing the weight of a mechanism placed on a movable die plate and cost by sharing the driving source with a compression mechanism and an ejection mechanism. CONSTITUTION:A pin 17 for compression is advanced through a first rotation- rectilinear conversion mechanisms 9, 14 and also an ejection pin 19 is retreated through a second rotation-rectilinear conversion mechanisms 7, 15 by reverse rotation of a servomotor 3. Further the pin 17 for compression is retreated through the first rotation-rectilinear conversion mechanisms 9, 14 and also the ejection pin 19 is advanced through the second rotation-rectilinear conversion mechanisms 7, 15 by normal rotation of the servomotor 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は射出圧縮成形機に係り、
特に圧縮メカニズムとエジェクトメカニズムの駆動源を
共用化した射出圧縮成形機に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an injection compression molding machine,
In particular, it relates to an injection compression molding machine in which the drive source of the compression mechanism and the drive source of the eject mechanism are shared.

【0002】[0002]

【従来の技術】インラインスクリュータイプの射出成形
機においては、一般に、金型内への溶融樹脂の射出・充
填後(1次射出後)、樹脂の温度変化による収縮を補う
ためにスクリューに前進圧力を付与し、ノズル先端から
溶融樹脂を金型内に引き続き送り込むようにしている
(所謂保圧を行うようになっている)。この保圧によっ
て、金型内のゲート部分からキャビティ内の溶融してい
る樹脂部分に局部的に圧縮応力が加わることになるが、
保圧による圧縮応力は主にゲート部分に局部的に集中
し、かつ、キャビティの内壁(金型面)に接した部分で
先に固化し始めた樹脂部分には圧縮応力は及ばず、製品
によっては求められる成形品品質を達成できない場合が
ある。
2. Description of the Related Art In an in-line screw type injection molding machine, generally, after a molten resin is injected and filled into a mold (after primary injection), a forward pressure is applied to the screw in order to compensate for shrinkage of the resin due to temperature change. The molten resin is continuously fed into the mold from the tip of the nozzle (so-called pressure holding is performed). By this holding pressure, a compressive stress is locally applied from the gate portion in the mold to the molten resin portion in the cavity,
The compressive stress due to the holding pressure mainly concentrates locally on the gate part, and the compressive stress does not reach the resin part that started to solidify first at the part in contact with the inner wall (mold surface) of the cavity. May not achieve the required molded product quality.

【0003】そこで、射出・充填後(1次射出後)の型
開き前に、ノズル注入部と反対側から金型内の樹脂に圧
縮用押圧部材によって圧縮応力を加え、すなわち、例え
ば圧縮ピンによって前後動可能な中子金型を介して金型
内の樹脂に圧縮応力を加え、これによってキャビティの
内壁に接した固化し始めた樹脂部分の各所に圧縮応力を
印加して、「ひけ」等のない外観精度の良い製品を成形
するようにした射出圧縮成形機が各種提案されて、実用
化されている。
Therefore, before the mold is opened after injection / filling (after the primary injection), compressive stress is applied to the resin in the mold from the side opposite to the nozzle injection part by the compression pressing member, that is, by the compression pin, for example. Compressive stress is applied to the resin inside the mold through the core mold that can move back and forth, and by doing so, compressive stress is applied to each part of the resin part that has started to solidify and is in contact with the inner wall of the cavity. Various types of injection compression molding machines have been proposed and put into practical use, which are designed to mold products with good appearance accuracy.

【0004】そして、このような従来の射出圧縮成形機
においては、可動側金型を取り付けた可動ダイプレート
に、圧縮用シリンダ(油圧シリンダ)等の圧縮用駆動源
と圧縮用押圧部材を搭載すると共に、製品突き出し用シ
リンダ(油圧シリンダ)等のエジェクト用駆動源とエジ
ェクト部材を搭載し、圧縮用駆動源によって圧縮用ピン
等の圧縮用押圧部材を駆動して樹脂への圧縮応力の付加
を行い、エジェクト用駆動源によってエジェクトピン等
のエジェクト部材を駆動して製品の金型からの突き出し
を行うようにした構成をとるのが一般的であった。
In such a conventional injection compression molding machine, a compression driving source such as a compression cylinder (hydraulic cylinder) and a compression pressing member are mounted on a movable die plate to which a movable mold is attached. At the same time, an ejecting drive source such as a cylinder for ejecting a product (hydraulic cylinder) and an ejecting member are mounted, and a compressing driving source drives a compressing pressing member such as a compressing pin to add compressive stress to the resin. In general, the ejecting drive source drives an eject member such as an eject pin to eject a product from a mold.

【0005】[0005]

【発明が解決しようとする課題】ところが上記したよう
に、可動ダイプレートに圧縮用駆動源とエジェクト用駆
動源とを搭載すると、2つの駆動源を例えば同軸配置し
た2重油圧シリンダ構造にする必要が生じる等、駆動源
の構成が複雑化する上、2つの駆動源があるので構造が
大型化し且つコストアップにもつながるという問題があ
った。
However, as described above, when the compression drive source and the eject drive source are mounted on the movable die plate, it is necessary to form a double hydraulic cylinder structure in which the two drive sources are coaxially arranged, for example. However, there is a problem that the structure of the driving source becomes complicated, and since there are two driving sources, the structure becomes large and the cost increases.

【0006】なお、エジェクトピン(エジェクト部材)
によって樹脂に圧縮応力を加えるようにした構成も知ら
れているが、エジェクトピンは一般に細い形状であるこ
とが多く、斯様な場合は樹脂に対して比較的広域で圧縮
応力を加えることができないので、別設の圧縮用押圧部
材を設けることを余儀なくされていた。
The eject pin (eject member)
There is also known a configuration in which a compressive stress is applied to the resin by using the eject pin, but in general, the eject pin is generally thin, and in such a case, the compressive stress cannot be applied to the resin in a relatively wide range. Therefore, it is unavoidable to provide a separate compression pressing member.

【0007】本発明は上記の点に鑑みなされたもので、
その目的とするところは、圧縮メカニズムとエジェクト
メカニズムの駆動源を共用化して駆動源の数を削減し、
可動ダイプレートに搭載するメカ重量の低減及びコスト
ダウンを可能とする射出圧縮成形機を提供することにあ
る。
The present invention has been made in view of the above points,
The purpose is to reduce the number of drive sources by sharing the drive source of the compression mechanism and the eject mechanism.
An object of the present invention is to provide an injection compression molding machine capable of reducing the mechanical weight mounted on the movable die plate and reducing the cost.

【0008】[0008]

【課題を解決するための手段】本発明による射出圧縮成
形機は、上記した目的を達成するために、第1の方向と
第2の方向とに正逆回転可能な回転駆動源たるモータ
と、上記モータの回転力を直線運動に変換する第1の回
転−直線変換機構と、上記モータの回転力を直線運動に
変換する第2の回転−直線変換機構と、上記第1の回転
−直線変換機構と連結されて前後動する圧縮用の押圧部
材と、上記第2の回転−直線変換機構と連結されて前後
動する製品突出し用のエジェクト部材とを具備し、上記
モータの上記第1の方向への回転によって、上記第1の
回転−直線変換機構により上記押圧部材を前進させると
共に上記第2の回転−直線変換機構により上記エジェク
ト部材を後退させ、また、上記モータの上記第2の方向
への回転によって、上記第1の回転−直線変換機構によ
り上記押圧部材を後退させると共に上記第2の回転−直
線変換機構により上記エジェクト部材を前進させるよう
に、構成される。
In order to achieve the above-mentioned object, an injection compression molding machine according to the present invention includes a motor which is a rotary drive source capable of rotating in the forward and reverse directions of a first direction and a second direction. A first rotation-linear conversion mechanism that converts the rotational force of the motor into a linear motion, a second rotation-linear conversion mechanism that converts the rotational force of the motor into a linear motion, and the first rotation-linear conversion A pressing member for compression that is connected to the mechanism to move back and forth, and an eject member for ejecting a product that is connected to the second rotation-linear conversion mechanism and that moves back and forth, the first direction of the motor. Rotation to move the pressing member forward by the first rotation-linear conversion mechanism and retract the eject member by the second rotation-linear conversion mechanism, and in the second direction of the motor. By the rotation of Serial first rotation - linearity conversion mechanism by the second rotating together with the retracting the pressing member - a linear converting mechanism to advance the ejection member configured.

【0009】[0009]

【作用】可動ダイプレートに搭載されたサーボモータ
(回転駆動源)の出力軸と連結されて一体回転する回転
部材には、第1の回転−直線変換機構のナット体(第1
のナット体)と第2の回転−直線変換機構のナット体
(第2のナット体)とがそれぞれ固着され、第1のナッ
ト体には第1のネジ部材が螺合され、第2のナット体に
は第2のネジ部材が螺合されている。そして、サーボモ
ータの例えば逆転に対して、第1の回転−直線変換機構
の第1のネジ部材は前進し、第2の回転−直線変換機構
の第2のネジ部材は後退し、他方、サーボモータの正転
に対して、第1のネジ部材は後退し、第2のネジ部材は
前進するように構成される。従って、1次射出後にサー
ボモータを比較的少量逆転させることにより、第1のネ
ジ部材と共に圧縮用の押圧部材が前進して金型内の樹脂
に対し圧縮圧力が加えられ、また、サーボモータを比較
的少量正転させることにより、第2のネジ部材と共にエ
ジェクト部材が前進して金型内の樹脂に対し圧縮圧力が
加えられる。一方また、型開き開始後の適宜タイミング
でサーボモータを比較的大きく正転させることにより、
第2のネジ部材と共にエジェクト部材が大きく前進して
金型(可動側金型)から製品(成形品)を突き出す。よ
って、単一のサーボモータによって、圧縮用の押圧部材
の前後進とエジェクト部材の前後進を制御するので、駆
動源の数が削減できて、可動ダイプレートに搭載するメ
カ重量の低減及びコストダウンを図ることができる。
The nut member of the first rotation-linear conversion mechanism (the first rotation-linear conversion mechanism) is connected to the rotating member that is integrally rotated with the output shaft of the servomotor (rotational drive source) mounted on the movable die plate.
Nut body) and the nut body (second nut body) of the second rotation-linear conversion mechanism are fixed to each other, and the first screw member is screwed into the first nut body to form the second nut. A second screw member is screwed onto the body. Then, for example, with respect to the reverse rotation of the servo motor, the first screw member of the first rotation-linear conversion mechanism moves forward, the second screw member of the second rotation-linear conversion mechanism moves backward, and the servo With respect to the normal rotation of the motor, the first screw member retracts and the second screw member advances. Therefore, by reversing the servo motor by a relatively small amount after the primary injection, the compression pressing member moves forward together with the first screw member, and the compression pressure is applied to the resin in the mold. By causing a relatively small amount of forward rotation, the eject member advances together with the second screw member, and compressive pressure is applied to the resin in the mold. On the other hand, by rotating the servomotor in a relatively large forward direction at an appropriate timing after starting the mold opening,
The eject member moves largely forward together with the second screw member to eject the product (molded product) from the mold (movable side mold). Therefore, the forward / backward movement of the pressing member for compression and the forward / backward movement of the eject member are controlled by a single servo motor, so that the number of drive sources can be reduced, the mechanical weight to be mounted on the movable die plate can be reduced, and the cost can be reduced. Can be achieved.

【0010】[0010]

【実施例】以下、本発明の1実施例を図1〜図5によっ
て説明する。図1〜図3は本実施例に係る射出圧縮成形
機における可動ダイプレートに搭載された圧縮メカニズ
ム及びエジェクトメカニズムの概要を示す説明図で、図
1は圧縮用ピン並びにエジェクトピンがそれぞれ原点位
置にある状態を、図2はエジェクトピンによる突き出し
動作時の状態を、図3は樹脂へ圧縮応力を付加している
状態をそれぞれ表わしている。また、図4は本実施例に
よる樹脂への交番的な圧縮応力のかけ方を表わす説明
図、図5はモータの回転状態とこれによる交番的な付加
圧縮応力との関係を示す説明図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. 1 to 3 are explanatory views showing the outline of the compression mechanism and the eject mechanism mounted on the movable die plate in the injection compression molding machine according to the present embodiment, and FIG. 1 shows the compression pin and the eject pin at the origin position. FIG. 2 shows a certain state, FIG. 2 shows a state at the time of ejecting operation by the eject pin, and FIG. 3 shows a state in which a compressive stress is applied to the resin. FIG. 4 is an explanatory diagram showing how to apply alternating compressive stress to the resin according to the present embodiment, and FIG. 5 is an explanatory diagram showing the relationship between the rotational state of the motor and the alternating additional compressive stress caused thereby. .

【0011】図1〜図3において、符号1で総括的に示
すのは可動ダイプレートで、図示せぬ型締めシリンダ
(油圧シリンダ)の駆動力を公知のトグルリンク機構を
介して伝達され、図示左右方向に前後動される。すなわ
ち、可動ダイプレート1の図面上の左側面には可動側金
型2が取り付けられていて、型閉じ動作時には可動ダイ
プレート1は図示左側へ前進駆動されて、可動側金型2
を図示せぬ固定ダイプレートに取り付けられた固定側金
型へ密着させ、また、型開き動作時には可動ダイプレー
ト1は図示右側へ後退駆動されて、可動側金型2を固定
側金型から離間させるようになっている。
1 to 3, a movable die plate is generally denoted by reference numeral 1, and the driving force of a mold clamping cylinder (hydraulic cylinder) (not shown) is transmitted through a known toggle link mechanism. It is moved back and forth in the left-right direction. That is, the movable die 2 is attached to the left side surface of the movable die plate 1 in the drawing, and the movable die plate 1 is driven forward to the left in the drawing during the die closing operation to move the movable die 2
To the fixed die attached to a fixed die plate (not shown), and during the mold opening operation, the movable die plate 1 is driven backward to the right in the figure to separate the movable die 2 from the fixed die. It is designed to let you.

【0012】3は上記可動ダイプレート1に搭載された
サーボモータで、その出力軸3aには歯付き出力プーリ
4が固着されている。5はサーボモータ3の回転が伝達
される複合回転部材で、歯付き被動プーリ6、第2のナ
ット体7、連結回転体8、第1のナット体9を具備し、
各部材6〜9が一体回転するように一体化されたものか
らなっている。10は可動ダイプレート1に取り付けら
れた支持部材で、ラジアルベアリング11及びスラスト
ベアリング12を介して上記複合回転部材5を回転自在
に保持している。13は、上記歯付き出力プーリ4と歯
付き被動プーリ6との間に張架された歯付きベルト(タ
イミングベルト)で、該歯付きベルト13を介してサー
ボモータ3の正逆回転が複合回転部材5に伝達されるよ
うになっている。
Reference numeral 3 is a servo motor mounted on the movable die plate 1, and an output shaft 3a thereof has a toothed output pulley 4 fixed thereto. Reference numeral 5 denotes a compound rotary member to which the rotation of the servomotor 3 is transmitted, and includes a toothed driven pulley 6, a second nut body 7, a connecting rotary body 8, and a first nut body 9,
Each of the members 6 to 9 is integrated so as to rotate integrally. Reference numeral 10 denotes a support member attached to the movable die plate 1, which rotatably holds the composite rotary member 5 via a radial bearing 11 and a thrust bearing 12. Reference numeral 13 denotes a toothed belt (timing belt) stretched between the toothed output pulley 4 and the toothed driven pulley 6, and the forward / reverse rotation of the servomotor 3 is a combined rotation via the toothed belt 13. It is adapted to be transmitted to the member 5.

【0013】14は中空状の第1のネジ部材で、該第1
のネジ部材14のネジ部14a(例えば本実施例では左
ネジ形成されたもの)が前記第1のナット体9に螺合さ
れていて、この第1のナット体9と第1のネジ部材14
とによって後記する圧縮用ピン17を前後進させるため
の第1の回転−直線変換機構が構成されている。15
は、その先端側が第1のネジ部材14を挿通した第2の
ネジ部材で、該第2のネジ部材15のネジ部15a(例
えば本実施例では右ネジ形成されたもの)が前記第2の
ナット体7に螺合されていて、この第2のナット体7と
第2のネジ部材15とによって後記するエジェクトピン
19を前後進させるための第2の回転−直線変換機構が
構成されている。なお、本実施例では第1,第2の回転
−直線変換機構には、公知のボールネジメカニズムが採
用されているが、ネジ結合メカニズムには任意のものを
用いることができる。なおまた本実施例では、上記した
ように第1のネジ部材14と第2のネジ部材15とを2
重軸構造とすることによって、機構のコンパクト化を図
り、可動ダイプレート1上の部材配置のスペース効率を
向上させている。
Reference numeral 14 is a hollow first screw member.
The threaded portion 14a of the threaded member 14 (for example, the threaded part formed in the present embodiment has a left-hand thread) is screwed into the first nut body 9, and the first nut body 9 and the first threaded member 14 are joined together.
And constitute a first rotation-linear conversion mechanism for moving the compression pin 17, which will be described later, back and forth. 15
Is a second screw member whose tip side is inserted through the first screw member 14, and the screw portion 15a of the second screw member 15 (for example, one formed with a right screw in the present embodiment) is the second screw member. The second nut body 7 and the second screw member 15 are screwed to the nut body 7, and constitute a second rotation-linear conversion mechanism for moving the eject pin 19 described later forward and backward. . In the present embodiment, the known ball screw mechanism is adopted as the first and second rotation-linear conversion mechanisms, but any screw coupling mechanism can be used. In addition, in the present embodiment, the first screw member 14 and the second screw member 15 are connected to each other as described above.
By adopting the heavy shaft structure, the mechanism is made compact and the space efficiency of the member arrangement on the movable die plate 1 is improved.

【0014】上記したように、第1のネジ部材14と第
2のネジ部材15とが互いに逆ネジ方向の関係にあるの
で、本実施例では、前記サーボモータ3の逆転で第1の
ネジ部材14が前進(図示左行き)すると共に、第2の
ネジ部材15が後退(図示右行き)するようになってお
り、他方、サーボモータ3の正転で第1のネジ部材14
が後退すると共に、第2のネジ部材15が前進するよう
になっている。また本実施例では、第1のネジ部材14
のネジリードと第2のネジ部材15のネジリードとの比
を、例えば1:2に設定してあり、これによってサーボ
モータ3の1回転当たりに、第2のネジ部材15を第1
のネジ部材14の2倍の量だけ直線移動させ得るように
構成されている。
As described above, since the first screw member 14 and the second screw member 15 are in the opposite screw direction to each other, in this embodiment, the reverse rotation of the servomotor 3 causes the first screw member to rotate. 14 moves forward (to the left in the drawing) and the second screw member 15 moves backward (to the right in the drawing), while the forward rotation of the servomotor 3 causes the first screw member 14 to rotate.
And the second screw member 15 moves forward. Further, in this embodiment, the first screw member 14
The ratio of the screw lead of the second screw member 15 to that of the second screw member 15 is set to, for example, 1: 2.
It is configured so that it can be linearly moved by an amount twice that of the screw member 14.

【0015】16は前記第1のネジ部材14の先端側に
固定された圧縮用プレートで、該圧縮用プレート16に
は複数本の圧縮用ピン17が植設・固定されていて、こ
の圧縮用ピン17は可動側金型2内をスライド可能とさ
れている。18は、前記第1のネジ部材14並びに圧縮
用プレート16を挿通した前記第2のネジ部材15の先
端側に固定されたエジェクト用プレートで、該エジェク
ト用プレート18には複数本のエジェクトピン19が植
設・固定されていて、このエジェクトピン19も可動側
金型2内をスライド可能とされている。
Reference numeral 16 denotes a compression plate fixed to the tip side of the first screw member 14, and a plurality of compression pins 17 are planted and fixed to the compression plate 16 for compression. The pin 17 is slidable inside the movable mold 2. Reference numeral 18 denotes an eject plate fixed to the tip end side of the second screw member 15 having the first screw member 14 and the compression plate 16 inserted therethrough, and the eject plate 18 has a plurality of eject pins 19. Are planted and fixed, and the eject pin 19 is also slidable in the movable mold 2.

【0016】次に、上記した構成に基づく動作を説明す
る。先ず、エジェクト動作について説明する。金型(キ
ャビティ)内の成形品(樹脂)が固化・冷却されると、
型開きが開始されて可動ダイプレート1が離型方向に駆
動され、これに伴って成形品を貼り付けた状態で可動側
金型2が固定側金型から分離する。この型開き行程の途
上もしくは型開き完了後にエジェクト動作が開始され、
マシン(射出成形機)のシステムコントローラが前記サ
ーボモータ3に正転方向の回転を指示し、サーボモータ
3が正転を開始する(このエジェクト動作開始時には、
圧縮用ピン17とエジェクトピン19とは図1に原点位
置にある)。サーボモータ3が正転すると、前記したよ
うに第1の回転−直線変換機構の第1のネジ部材14が
後退して、これと一体の前記圧縮用プレート16並びに
圧縮用ピン17が後退し、また、前記第2の回転−直線
変換機構の第2のネジ部材15が前進して、これと一体
の前記エジェクト用プレート18並びにエジェクトピン
19が前進する。
Next, the operation based on the above configuration will be described. First, the eject operation will be described. When the molded product (resin) in the mold (cavity) is solidified and cooled,
The mold opening is started and the movable die plate 1 is driven in the releasing direction, and accordingly, the movable side mold 2 is separated from the fixed side mold with the molded product attached. The eject operation is started during the mold opening process or after the mold opening is completed.
The system controller of the machine (injection molding machine) instructs the servomotor 3 to rotate in the normal rotation direction, and the servomotor 3 starts normal rotation (at the start of the eject operation,
The compression pin 17 and the eject pin 19 are at the origin position in FIG. 1). When the servomotor 3 normally rotates, as described above, the first screw member 14 of the first rotation-linear conversion mechanism is retracted, and the compression plate 16 and the compression pin 17 which are integral with this are retracted, Further, the second screw member 15 of the second rotation-linear conversion mechanism advances, and the eject plate 18 and the eject pin 19 integrated with the second screw member 15 advance.

【0017】図2は、このエジェクト動作時の状態を表
わしており、同図に示すようにエジェクトピン19が前
進して、可動側金型2から図示せぬ成形品(製品)が分
離されて突き出される。なお、前記したように第1のネ
ジ部材14のネジリードと第2のネジ部材15のネジリ
ードとの比を1:2に設定してあるので、第2のネジ部
材15の前進量は第1のネジ部材14の後退量の2倍と
なり、比較的低トルクであるも高速エジェクト動作が可
能であるようになっている。なおまた、このエジェクト
動作時のサーボモータ3の正転回転量は、後述する圧縮
行程時の逆転回転量または正転回転量よりも格段に大き
なものとされている。
FIG. 2 shows a state at the time of this ejecting operation. As shown in the figure, the ejecting pin 19 advances to separate a molded product (product) (not shown) from the movable side mold 2. Stick out. Since the ratio of the screw lead of the first screw member 14 and the screw lead of the second screw member 15 is set to 1: 2 as described above, the advance amount of the second screw member 15 is the first amount. The amount of retreat of the screw member 14 is doubled, and high-speed eject operation is possible although the torque is relatively low. Further, the normal rotation amount of the servo motor 3 during the eject operation is significantly larger than the reverse rotation amount or the forward rotation amount during the compression stroke described later.

【0018】次に、圧縮動作について説明する。本実施
例では、金型内の樹脂に圧縮応力を加えるのに、前記圧
縮用ピン17による押圧力と前記エジェクトピン19に
よる押圧力とを交番的(切り換えて周期的)に用いるよ
うになっている。
Next, the compression operation will be described. In this embodiment, in order to apply a compressive stress to the resin in the mold, the pressing force by the compression pin 17 and the pressing force by the eject pin 19 are used alternately (switched periodically). There is.

【0019】可動側金型2と固定側金型とが所定の型締
力で密着した型締め状態において、固定側金型の樹脂注
入口に密着した加熱シリンダ先端のノズルから、金型内
の製品形成用空間たるキャビティ内に、溶融樹脂をスク
リューの高速前進で射出・充填する1次射出が行われ
る。この1次射出後、スクリューに前進圧力を与えてノ
ズルから溶融樹脂をキャビティ内に引き続き送り込む保
圧が実行されるが、この保圧と並行して圧縮動作が行わ
れる。この圧縮行程に際しては、マシンのシステムコン
トローラはサーボモータ3に対して、逆転と正転を交互
に繰り返すように指示し、これによって本実施例では、
サーボモータ3は逆転及び停止と正転及び停止とを例え
ば0.1〜数秒周期で繰り返す。なお、圧縮動作の開始
前には、圧縮用ピン17とエジェクトピン19とは図1
に原点位置にある。
In a mold clamped state in which the movable mold 2 and the fixed mold are in close contact with each other with a predetermined mold clamping force, from the nozzle at the tip of the heating cylinder in close contact with the resin injection port of the fixed mold, Primary injection is performed by injecting and filling the molten resin into the cavity, which is a space for product formation, by high-speed advance of the screw. After this primary injection, a forward pressure is applied to the screw to hold the molten resin continuously from the nozzle into the cavity. A holding operation is performed in parallel with the holding pressure. At the time of this compression stroke, the system controller of the machine instructs the servomotor 3 to alternately repeat the reverse rotation and the forward rotation, whereby in this embodiment,
The servomotor 3 repeats reverse rotation and stop and forward rotation and stop at a cycle of 0.1 to several seconds, for example. Before the compression operation is started, the compression pin 17 and the eject pin 19 are different from those in FIG.
It is at the origin position.

【0020】この結果、サーボモータ3の逆転時には前
記第1の回転−直線変換機構の第1のネジ部材14が所
定量だけ前進して、これに伴って圧縮用ピン17が前進
して、例えば可動側金型2中の中子金型を介してキャビ
ティ内の樹脂(キャビティ内の外周部位の固化し始めた
樹脂;キャビティ外形の一部を構成する中子金型に接し
ている固化し始めた樹脂)に圧縮応力を加える。そし
て、圧縮用ピン17は、前進後その位置を所定秒時だけ
維持されるようにされ、然る後、システムコントローラ
の指令でサーボモータ3が正転駆動される。このサーボ
モータ3の正転時には前記第2の回転−直線変換機構の
第2のネジ部材15が所定量だけ前進して、これに伴っ
てエジェクトピン19が前進して該エジェクトピン19
の先端がキャビティ内の樹脂(キャビティ内の外周部位
の固化し始めた樹脂)に複数個所で圧縮応力を加える。
そして同様に、エジェクトピン19は、前進後その位置
を所定秒時だけ維持されるようにされる。この後、シス
テムコントローラの指令でサーボモータ3が逆転駆動さ
れ、再び圧縮用ピン17が前進して該圧縮用ピン17に
よって樹脂に圧縮応力が加えられる。以後、同様にして
サーボモータ3が所定秒時間隔で正転と逆転とを繰り返
すようにされ、圧縮用ピン17(中子金型)とエジェク
トピン19とによって交番的にキャビティ内の外周部位
の固化し始めた樹脂に圧縮応力が加えられる。図3はこ
の圧縮動作時の状態を表わしている。
As a result, when the servo motor 3 rotates in the reverse direction, the first screw member 14 of the first rotation-linear conversion mechanism advances by a predetermined amount, and the compression pin 17 advances accordingly, for example, Resin inside the cavity through the core mold in the movable mold 2 (resin that has started to solidify at the outer peripheral portion inside the cavity; solidification that is in contact with the core mold that forms a part of the outer shape of the cavity) Resin) with compressive stress. The position of the compression pin 17 is maintained only for a predetermined time after advancing, and after that, the servo motor 3 is driven in the normal direction according to a command from the system controller. During the normal rotation of the servomotor 3, the second screw member 15 of the second rotation-linear conversion mechanism advances by a predetermined amount, and accordingly, the eject pin 19 advances and the eject pin 19 advances.
The tip of the above applies compressive stress to the resin inside the cavity (the resin that has started to solidify at the outer peripheral portion inside the cavity) at a plurality of points.
Similarly, the eject pin 19 is made to maintain its position after advancing only for a predetermined time. Thereafter, the servomotor 3 is driven in reverse by a command from the system controller, the compression pin 17 moves forward again, and compression stress is applied to the resin by the compression pin 17. After that, the servo motor 3 is similarly made to repeat normal rotation and reverse rotation at a predetermined time interval, and the compression pin 17 (core die) and the eject pin 19 alternate between the outer peripheral portion in the cavity. Compressive stress is applied to the resin that has started to solidify. FIG. 3 shows a state during this compression operation.

【0021】次に図4及び図5によって、上記した金型
内の樹脂に対する交番的な圧縮応力の付加の様子を説明
する。図4は金型周辺の機構を模式的に示す図で、同図
は図示の都合上から簡略化して描いてあるが、圧縮用ピ
ンとエジェクトピンの駆動メカニズムは前記図1〜図3
の機構と基本的に同一である。図4において、2A,1
7A,19Aは前記図1〜図3のものと対応する可動側
金型,圧縮用ピン,エジェクトピンであり、20は可動
側金型2A中の所定量前後動可能とされた中子金型、2
1は固定側金型、22は可動側金型2A(中子金型20
を含む)と固定側金型21とで形成されるキャビティ、
23は加熱シリンダ、24はスクリュー、25は固定側
金型21の樹脂注入口に押し付けられたノズル部、26
aは溶融樹脂、26bは固化し始めた樹脂である。
Next, referring to FIGS. 4 and 5, the manner in which the alternating compressive stress is applied to the resin in the mold will be described. FIG. 4 is a diagram schematically showing the mechanism around the mold. The diagram is simplified for convenience of illustration, but the drive mechanism of the compression pin and the eject pin is shown in FIGS.
The mechanism is basically the same. In FIG. 4, 2A, 1
7A and 19A are movable molds, compression pins, and eject pins corresponding to those in FIGS. 1 to 3, and 20 is a core mold that can be moved back and forth by a predetermined amount in the movable mold 2A. Two
1 is a fixed side mold, 22 is a movable side mold 2A (core mold 20
) And a fixed-side mold 21.
Reference numeral 23 is a heating cylinder, 24 is a screw, 25 is a nozzle portion pressed against the resin injection port of the stationary mold 21, and 26
Reference symbol a is a molten resin, and reference symbol 26b is a resin that has started to solidify.

【0022】公知のように、キャビティ22内に射出・
充填された溶融樹脂は金型に接した部位から固化を始
め、固化は徐々に内部に進行する。圧縮用ピン17Aに
よる中子金型20を介した押圧力は、エジェクトピン1
9Aが後退している状態において、中子金型20と接し
ている固化し始めた樹脂26bに対して作用して圧縮応
力を加え、また、エジェクトピン19Aによる押圧力
は、圧縮用ピン17Aが後退している状態において、エ
ジェクトピン19Aの先端面と接している固化し始めた
樹脂26bに対して作用して圧縮応力を加える。斯様に
固化し始めた樹脂26bに対する別異の個所に対して交
番的に繰り返して圧縮応力を加えるようになすと、固化
し始めた樹脂26bや溶融樹脂26aの高分子の分子配
向を効果的に変えることが可能となり、樹脂は固化過程
で高分子がからみ易くなって結合強度を高めることがで
きる。
As is known, injection into the cavity 22
The filled molten resin begins to solidify from the portion in contact with the mold, and the solidification gradually proceeds inside. The pressing force exerted by the compression pin 17A through the core die 20 is the eject pin 1
In the state in which 9A is retracted, it acts on the resin 26b that has started to solidify and is in contact with the core die 20 to apply compressive stress, and the pressing force by the eject pin 19A is In the retracted state, the compressive stress is exerted by acting on the resin 26b which has started to solidify and is in contact with the tip end surface of the eject pin 19A. By alternately and repeatedly applying a compressive stress to different portions of the resin 26b which has started to solidify, the molecular orientation of the polymer of the resin 26b and the molten resin 26a which has started to solidify effectively. It becomes possible to change to the above, and the polymer can be easily entangled in the resin during the solidification process, and the bond strength can be increased.

【0023】図5は前記サーボモータ3の回転状態と金
型内樹脂に加えられる圧縮応力との関係を示しており、
本実施例では、原点からの逆回転量を原点からの正回転
量よりも大きくして、圧縮用ピン17A(中子金型)に
よる圧縮力をエジェクトピン19Aによるそれよりも大
きくなるように設定してある。なお、圧縮用ピン(中子
金型)による圧縮力とエジェクトピンによる圧縮力の大
小関係は任意に設定可能であることは言うまでもない。
FIG. 5 shows the relationship between the rotation state of the servomotor 3 and the compressive stress applied to the resin in the mold.
In this embodiment, the amount of reverse rotation from the origin is made larger than the amount of normal rotation from the origin, and the compression force by the compression pin 17A (core die) is set to be larger than that by the eject pin 19A. I am doing it. Needless to say, the magnitude relationship between the compression force of the compression pin (core die) and the compression force of the eject pin can be set arbitrarily.

【0024】以上詳述したように、本実施例において
は、単一のサーボモータの駆動力によって、エジェクト
動作と圧縮動作とを行わせるようにしているので、駆動
源の数を削減でき、可動ダイプレートに搭載するメカ重
量の低減とコストダウンとを図ることができる。
As described above in detail, in this embodiment, the ejecting operation and the compressing operation are performed by the driving force of a single servo motor, so that the number of driving sources can be reduced and the movable operation can be performed. It is possible to reduce the weight of the mechanism mounted on the die plate and reduce the cost.

【0025】なお、上述した実施例においては、金型内
の樹脂に圧縮応力を加えるのに、圧縮用ピンによる押圧
力とエジェクトピンによる押圧力とを交番的に用いてい
るが、圧縮動作は圧縮用ピンのみによって行うようにし
ても良いことは勿論である。
In the above-described embodiment, the pressing force by the compression pin and the pressing force by the eject pin are used alternately to apply the compressive stress to the resin in the mold, but the compression operation is Needless to say, it may be performed only by the compression pin.

【0026】[0026]

【発明の効果】以上のように本発明によれば、圧縮メカ
ニズムとエジェクトメカニズムの駆動源を共用化して駆
動源の数を削減し、可動ダイプレートに搭載するメカ重
量の低減及びコストダウンを可能とする射出圧縮成形機
が提供でき、その価値は大きい。
As described above, according to the present invention, it is possible to reduce the number of drive sources by sharing the drive source for the compression mechanism and the eject mechanism, thereby reducing the weight of the mechanism mounted on the movable die plate and reducing the cost. The injection compression molding machine can be provided and its value is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の1実施例に係る射出圧縮成形機におけ
る可動ダイプレートに搭載された要部メカニズムの原点
位置状態を示す説明図である。
FIG. 1 is an explanatory diagram showing an origin position state of a main part mechanism mounted on a movable die plate in an injection compression molding machine according to an embodiment of the present invention.

【図2】本発明の1実施例に係る射出圧縮成形機におけ
る可動ダイプレートに搭載された要部メカニズムによる
エジェクト動作時の状態を示す説明図である。
FIG. 2 is an explanatory diagram showing a state during an ejecting operation by a main part mechanism mounted on a movable die plate in an injection compression molding machine according to an embodiment of the present invention.

【図3】本発明の1実施例に係る射出圧縮成形機におけ
る可動ダイプレートに搭載された要部メカニズムによる
圧縮動作時の状態を示す説明図である。
FIG. 3 is an explanatory diagram showing a state during a compression operation by a main part mechanism mounted on a movable die plate in an injection compression molding machine according to an embodiment of the present invention.

【図4】本発明の1実施例による金型内の樹脂に対する
交番的な圧縮応力のかけ方の様子を示す説明図である。
FIG. 4 is an explanatory diagram showing how alternating compression stress is applied to the resin in the mold according to the first embodiment of the present invention.

【図5】本発明の1実施例によるサーボモータの回転状
態と金型内の樹脂に加えられる圧縮応力との関係を示す
説明図である。
FIG. 5 is an explanatory diagram showing the relationship between the rotation state of the servo motor and the compressive stress applied to the resin in the mold according to the first embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 可動ダイプレート 2,2A 可動側金型 3 サーボモータ 4 歯付き出力プーリ 5 複合回転部材 6 歯付き被動プーリ 7 第2のナット体 8 連結回転体 9 第1のナット体 10 支持部材 11 ラジアルベアリング 12 スラストベアリング 13 歯付きベルト(タイミングベルト) 14 第1のネジ部材 15 第2のネジ部材 16 圧縮用プレート 17,17A 圧縮用ピン 18 エジェクト用プレート 19,19A エジェクトピン 20 中子金型 21 固定側金型 22 キャビティ 23 加熱シリンダ 24 スクリュー 25 ノズル部 26a 溶融樹脂 26b 固化し始めた樹脂 1 Movable Die Plate 2, 2A Movable Side Mold 3 Servo Motor 4 Toothed Output Pulley 5 Composite Rotating Member 6 Toothed Driven Pulley 7 Second Nut Body 8 Connection Rotating Body 9 First Nut Body 10 Supporting Member 11 Radial Bearing 12 Thrust Bearing 13 Toothed Belt (Timing Belt) 14 First Screw Member 15 Second Screw Member 16 Compression Plate 17,17A Compression Pin 18 Eject Plate 19,19A Eject Pin 20 Core Mold 21 Fixed Side Mold 22 Cavity 23 Heating cylinder 24 Screw 25 Nozzle portion 26a Molten resin 26b Resin that has started to solidify

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 第1の方向と第2の方向とに正逆回転可
能な回転駆動源たるモータと、上記モータの回転力を直
線運動に変換する第1の回転−直線変換機構と、上記モ
ータの回転力を直線運動に変換する第2の回転−直線変
換機構と、上記第1の回転−直線変換機構と連結されて
前後動する圧縮用の押圧部材と、上記第2の回転−直線
変換機構と連結されて前後動する製品突出し用のエジェ
クト部材とを具備し、 上記モータの上記第1の方向への回転によって、上記第
1の回転−直線変換機構により上記押圧部材を前進させ
ると共に上記第2の回転−直線変換機構により上記エジ
ェクト部材を後退させ、また、上記モータの上記第2の
方向への回転によって、上記第1の回転−直線変換機構
により上記押圧部材を後退させると共に上記第2の回転
−直線変換機構により上記エジェクト部材を前進させる
ようにしたことを特徴とする射出圧縮成形機。
1. A motor, which is a rotational drive source capable of rotating in the first and second directions, and a first rotation-linear conversion mechanism for converting the rotational force of the motor into a linear motion. A second rotation-linear conversion mechanism that converts the rotational force of the motor into a linear motion, a compression pressing member that is connected to the first rotation-linear conversion mechanism and moves back and forth, and the second rotation-linear An ejecting member for projecting the product, which is connected to the converting mechanism and moves back and forth. The rotation of the motor in the first direction causes the pressing member to move forward by the first rotation-linear conversion mechanism. The eject member is retracted by the second rotation-linear conversion mechanism, and the pressing member is retracted by the first rotation-linear conversion mechanism by the rotation of the motor in the second direction. Second Rolling - injection compression molding machine is characterized in that so as to advance the ejection member by the linear conversion mechanism.
【請求項2】 請求項1記載において、 上記モータの一定回転量に対応する上記第1の回転−直
線変換機構による直線移動量は、上記モータによる同一
回転量に対応する上記第2の回転−直線変換機構による
直線移動量よりも小さく設定されたことを特徴とする射
出圧縮成形機。
2. The first rotation-corresponding to the constant rotation amount of the motor according to claim 1, wherein the linear movement amount by the linear conversion mechanism corresponds to the same rotation amount by the motor. An injection compression molding machine characterized by being set smaller than the linear movement amount by the linear conversion mechanism.
【請求項3】 請求項1記載において、 上記第1の回転−直線変換機構中の前後進するネジ部材
と上記第2の回転−直線変換機構中の前後進するネジ部
材とは、2重軸構造をとることを特徴とする射出圧縮成
形機。
3. The double screw shaft according to claim 1, wherein the screw member moving forward and backward in the first rotation-linear conversion mechanism and the screw member moving forward and backward in the second rotation-linear conversion mechanism are double shafts. An injection compression molding machine characterized by having a structure.
JP28312392A 1992-10-21 1992-10-21 Injection compression molding machine Pending JPH06126789A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28312392A JPH06126789A (en) 1992-10-21 1992-10-21 Injection compression molding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28312392A JPH06126789A (en) 1992-10-21 1992-10-21 Injection compression molding machine

Publications (1)

Publication Number Publication Date
JPH06126789A true JPH06126789A (en) 1994-05-10

Family

ID=17661527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28312392A Pending JPH06126789A (en) 1992-10-21 1992-10-21 Injection compression molding machine

Country Status (1)

Country Link
JP (1) JPH06126789A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012183687A (en) * 2011-03-04 2012-09-27 Seiko Epson Corp Injection compression mold, and method of injection compression molding
JP2018171811A (en) * 2017-03-31 2018-11-08 住友重機械工業株式会社 Injection molding machine
CN110696297A (en) * 2019-11-19 2020-01-17 瑞声精密制造科技(常州)有限公司 Injection molding shaping mold

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012183687A (en) * 2011-03-04 2012-09-27 Seiko Epson Corp Injection compression mold, and method of injection compression molding
JP2018171811A (en) * 2017-03-31 2018-11-08 住友重機械工業株式会社 Injection molding machine
CN110696297A (en) * 2019-11-19 2020-01-17 瑞声精密制造科技(常州)有限公司 Injection molding shaping mold
WO2021097950A1 (en) * 2019-11-19 2021-05-27 瑞声声学科技(深圳)有限公司 Deformation-prevention injection mold

Similar Documents

Publication Publication Date Title
JP4546267B2 (en) Mold clamping device and mold clamping method
US20050191379A1 (en) Molding machine and control method thereof
US6368095B1 (en) Injection drive mechanism for a servo injection molding machine
JPH06126789A (en) Injection compression molding machine
JPH038254B2 (en)
JP4472939B2 (en) Molding device for injection molding machine
JPH1199545A (en) Mold clamping device of electromotor driven injection molding machine using oil pressure partially
JP3256785B2 (en) Ejector device for injection molding machine
JPH06126790A (en) Method for controlling compression in injection compression molding machine
JPH0839631A (en) Injection device of electromotive injection molding machine
JP3304950B2 (en) Molding machine
JP2866314B2 (en) Mold clamping device
JP2849292B2 (en) Injection equipment
JP3713356B2 (en) Control method of injection molding machine
JP3366180B2 (en) Injection molding machine for injection compression molding
JP2004314492A (en) Mold clamping device of injection molding machine or the like and core backing method
JP3712331B2 (en) Core compression injection molding machine
JP4304090B2 (en) Clamping device
JP3247678B2 (en) Injection molding machine
JP3607488B2 (en) Screw pre-plastic injection molding machine
JP3258196B2 (en) Control device for injection molding machine
JPH0691711A (en) Mold opening and closing device of molding machine
JP2675181B2 (en) Clamping device for electric injection molding machine
JPH0622826B2 (en) Injection compression molding method and apparatus
JPH1034718A (en) Injection molding machine