JPH06125135A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPH06125135A
JPH06125135A JP27564792A JP27564792A JPH06125135A JP H06125135 A JPH06125135 A JP H06125135A JP 27564792 A JP27564792 A JP 27564792A JP 27564792 A JP27564792 A JP 27564792A JP H06125135 A JPH06125135 A JP H06125135A
Authority
JP
Japan
Prior art keywords
layer
quantum well
type
band
conduction band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP27564792A
Other languages
Japanese (ja)
Inventor
Hiroyuki Nobuhara
裕之 延原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP27564792A priority Critical patent/JPH06125135A/en
Publication of JPH06125135A publication Critical patent/JPH06125135A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To control finely the wavelength of a laser oscillation by a method wherein the widths of a quantum well in a conduction band and a quantum well in a valence band can be respectively changed independently. CONSTITUTION:An N-type AlAs0.57Sb0.43 layer 2, an I-type AlAs0.57Sb0.43 layer 3, an I-type InP layer 4, an I-type GaAs0.22Sb0.78 layer 5, an I-type InP layer 6, an I-type AlAs0.57Sb0.43 layer 7, a P-type AlAs0.57Sb0.43 layer 8 and a P<+> InP layer are continuously made to perform an epitaxial growth on the surface of an N-type InP substrate 1. A strain quantum well is formed of the layer 5, of which quantum wells are respectively formed in a conduction band and a valence band. Electrodes 10 and 11 are deposited and thereafter, when the laminated material is made to perform a mesa epitaxial growth to form into an element of a stripe structure and both end surfaces of the element are cleaved to form one pair of reflectors, a Fabry-Perot laser can be formed. The quantum well in the conduction band has a width about twice wider than that of the quantum well in the valence band. By changing the strength of the strain of the GaAsSb layer in the center of a well layer, the luminous wavelength of the laser can be adjusted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体レーザに関し、特
に量子井戸構造を含む活性層を備えた半導体レーザに関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laser, and more particularly to a semiconductor laser having an active layer containing a quantum well structure.

【0002】半導体レーザは、光通信や光情報処理シス
テム用光源として益々重要性が高まっている。応用分野
の拡がりと共に、それぞれの目的に合致したきめ細かい
特性と性能向上が要求されている。
Semiconductor lasers are becoming increasingly important as light sources for optical communication and optical information processing systems. Along with the expansion of application fields, fine characteristics and performance improvement that meet each purpose are required.

【0003】[0003]

【従来の技術】半導体レーザの性能向上に大きく貢献す
る技術として、近年、活性層に量子井戸構造を用いた素
子の開発が進んでいる。
2. Description of the Related Art In recent years, a device using a quantum well structure as an active layer has been developed as a technique that greatly contributes to the performance improvement of a semiconductor laser.

【0004】量子井戸構造では、電子の膜厚方向への量
子閉じ込め効果によって、電子の運動の自由度が2とな
る。この結果、状態密度がエネルギに対してステップ状
になると共に、伝導帯および価電子帯の量子井戸内でエ
ネルギ準位が離散的な値をとり、電子は各量子準位に局
在化する。
In the quantum well structure, the degree of freedom of electron movement is 2 due to the quantum confinement effect of electrons in the film thickness direction. As a result, the density of states becomes stepwise with respect to energy, and the energy levels take discrete values in the quantum wells of the conduction band and the valence band, and the electrons are localized at each quantum level.

【0005】電子遷移は、伝導帯と価電子帯の量子準位
間で生じるので、閾値電流密度が低減化し、輻射の単色
性が高まる。量子井戸構造は、異なる半導体材料の超格
子(準位が量子化される数十〜数百Å程度の薄層)を交
互積層して得られる。
Since the electronic transition occurs between the quantum levels in the conduction band and the valence band, the threshold current density is reduced and the radiation monochromaticity is enhanced. The quantum well structure is obtained by alternately stacking superlattices of different semiconductor materials (thin layers of tens to hundreds of Å whose levels are quantized).

【0006】図2は、簡単のために、単一井戸構造のエ
ネルギ帯図を模式的に示したものである。バンドギャッ
プエネルギEgの大きな材料Aからなる障壁層に、Eg
の小さな材料Bからなる井戸層が挟まれている。
FIG. 2 is a schematic energy band diagram of a single well structure for the sake of simplicity. In the barrier layer made of the material A having a large bandgap energy Eg, Eg
The well layers made of the small material B are sandwiched.

【0007】井戸層のポテンシャル井戸の深さは、伝導
帯側でΔEc、価電子帯側でΔEvとなっている。伝導
帯のポテンシャル井戸も価電子帯のポテンシャル井戸も
半導体材料Bで構成されているため、その幅は伝導帯
側、価電子帯側で同じである。すなわち、LWC=LWV
W
The depth of the potential well of the well layer is ΔEc on the conduction band side and ΔEv on the valence band side. Since both the conduction band potential well and the valence band potential well are made of the semiconductor material B, their widths are the same on the conduction band side and the valence band side. That is, L WC = L WV =
L W

【0008】各井戸内で量子化されている電子のエネル
ギEj(j=1、2、…)は、
The energy Ej (j = 1, 2, ...) Of the quantized electrons in each well is

【0009】[0009]

【数1】 …(1)[Equation 1] … (1)

【0010】ただし、hはプランクの定数であり、m*
は有効質量、と表すことができる。(1)式から量子準
位のエネルギEjは、有効質量と井戸幅の関数であるこ
とが判る。
However, h is Planck's constant, and m *
Can be expressed as the effective mass. It can be seen from the equation (1) that the quantum level energy Ej is a function of the effective mass and the well width.

【0011】III−V族化合物半導体においては、m
* e <<m* h であるため、量子準位間隔、たとえば、
|E1 −E2 |は伝導帯側の方が圧倒的に広い。再結合
遷移は、同じ量子数の準位間で生じるが、発光再結合は
j=1の基底準位間を考えれば実用上十分である。
In the III-V group compound semiconductor, m
Since * e << m * h , the quantum level spacing, for example,
| E 1 −E 2 | is overwhelmingly wider on the conduction band side. The recombination transition occurs between levels having the same quantum number, but the radiative recombination is practically sufficient considering the ground level of j = 1.

【0012】[0012]

【発明が解決しようとする課題】量子井戸構造を活性層
に持つ半導体レーザでは、量子井戸層の半導体材料を変
えてm* を変えるか、井戸幅LW を変えることによっ
て、Ejすなわち発光波長をシフトさせることが可能で
ある。
In a semiconductor laser having a quantum well structure in the active layer, the semiconductor material of the quantum well layer is changed to change m * or the well width L W to change Ej, that is, the emission wavelength. It is possible to shift.

【0013】半導体レーザの応用分野拡大に伴って、発
振波長の細かい調整も必要とされている。従来の量子井
戸レーザでは、半導体材料を変化させるとm* e とm*
h が同時に変化し、これに障壁層と井戸層間のヘテロ接
合で生じる格子歪の影響も加わるため、波長の調整は微
妙である。また、井戸幅を変化させると、その影響は伝
導帯と価電子帯の両方に現れる(LWC=LWV)ため、高
精度の波長調整が必ずしも容易ではなかった。
As the application field of semiconductor lasers expands, it is necessary to finely adjust the oscillation wavelength. In the conventional quantum well laser, when the semiconductor material is changed, m * e and m *
Since the h changes at the same time and the effect of the lattice strain generated in the heterojunction between the barrier layer and the well layer is added to this, the wavelength adjustment is delicate. Further, when the well width is changed, its effect appears in both the conduction band and the valence band (L WC = L WV ), so that highly accurate wavelength adjustment is not always easy.

【0014】本発明の目的は、伝導帯と価電子帯におけ
る量子準位のエネルギを独立して調整し、発振波長をよ
り細かく制御することのできる量子井戸レーザを提供す
ることである。
It is an object of the present invention to provide a quantum well laser capable of independently adjusting the energy of quantum levels in the conduction band and the valence band and controlling the oscillation wavelength more finely.

【0015】[0015]

【課題を解決するための手段】本発明の半導体レーザに
おいては、伝導帯の量子井戸幅と価電子帯の量子井戸幅
が異なる値を有する量子井戸構造を含む活性層を有す
る。
A semiconductor laser of the present invention has an active layer including a quantum well structure having a quantum well width of a conduction band and a quantum well width of a valence band different from each other.

【0016】伝導帯の量子井戸の幅LWCと価電子帯の量
子井戸の幅LWVの異なる量子井戸を形成するには、両方
のキャリア帯(伝導帯と価電子帯)で量子井戸を構成す
る材料の層に、より広い井戸幅を意図する一方のキャリ
ア帯では量子井戸の一部を形成し、もう一方のキャリア
帯では量子障壁の一部を形成する半導体材料の層を接続
すればよい。
In order to form a quantum well having a conduction band quantum well width L WC and a valence band quantum well width L WV different from each other, the quantum well is constituted by both carrier bands (conduction band and valence band). A layer of semiconductor material that forms a part of the quantum well in one carrier band and a part of the quantum barrier in the other carrier band is connected to the layer of material .

【0017】[0017]

【作用】LWC≠LWVの量子井戸の基本概念を、図1に示
す。図1(A)はLWC<LWVの場合を、また図1(B)
はLWC>LWVの場合を示す。
The basic concept of the quantum well of L WC ≠ L WV is shown in FIG. FIG. 1 (A) shows the case where L WC <L WV , and FIG. 1 (B)
Indicates the case of L WC > L WV .

【0018】いずれの場合も、従来の量子井戸構造で障
壁層である半導体Aと井戸層である半導体Bの間に、半
導体Cの薄層を挿入した積層構成となっている。すなわ
ち、従来の量子井戸構造では、A/B/Aであったもの
が、本発明では、A/C/B/C/Aとなっている。半
導体Cは一方のキャリア帯で量子井戸を形成し、他方の
キャリア帯で電位障壁を形成する。
In either case, the conventional quantum well structure has a laminated structure in which a thin layer of the semiconductor C is inserted between the semiconductor A which is a barrier layer and the semiconductor B which is a well layer. That is, the quantum well structure of the related art is A / B / A, whereas the quantum well structure of the present invention is A / C / B / C / A. The semiconductor C forms a quantum well in one carrier band and a potential barrier in the other carrier band.

【0019】この結果、半導体Cの挿入で幅広くなった
量子井戸では、(1)式から、
As a result, in the quantum well widened by the insertion of the semiconductor C, from the equation (1),

【0020】[0020]

【数2】 [Equation 2]

【0021】また、m* h >>m* e であるため、Ej
シフト効果は図1(B)の場合、すなわち伝導帯の量子
井戸幅を拡げた方が大きいことが判る。以下、本発明を
実施例に基づいてより詳しく述べる。
Since m * h >> m * e , Ej
It can be seen that the shift effect is larger in the case of FIG. 1B, that is, when the quantum well width of the conduction band is expanded. Hereinafter, the present invention will be described in more detail based on examples.

【0022】[0022]

【実施例】図3は、実施例により量子井戸レーザの活性
層量子井戸構造およびレーザ素子構造を示す。
EXAMPLE FIG. 3 shows an active layer quantum well structure and a laser device structure of a quantum well laser according to an example.

【0023】図3(B)で示すように、本実施例のレー
ザは、n型InP基板1上にたとえば有機金属分子線エ
ピタキシ(MOMBE)法を用いて連続的にヘテロエピ
タキシャル層を堆積することで形成することができる。
As shown in FIG. 3B, in the laser of this embodiment, a heteroepitaxial layer is continuously deposited on the n-type InP substrate 1 by using, for example, a metal organic molecular beam epitaxy (MOMBE) method. Can be formed with.

【0024】n型InP基板1の(100)面上に、厚
さ0.5μmのSiドープ、キャリア濃度5×1017
-3のn型AlAs0.57Sb0.43層2、アンドープ厚さ
30nmのi型AlAs0.57Sb0.43層3、厚さ1nm
のi型InP層4、厚さ2nmのi型GaAs0.22Sb
0.78層5、厚さ1nmのi型InP層6、厚さ100n
mのi型AlAs0.57Sb0.43層7、Znドープ、キャ
リア濃度5×1017cm-3、厚さ1.5μmのp型Al
As0.57Sb0.43層8、Znドープキャリア濃度2×1
18cm-3のp+ 型InP層9をこの順序で連続エピタ
キシャル成長させる。
On the (100) plane of the n-type InP substrate 1, a 0.5 μm-thick Si-doped substrate having a carrier concentration of 5 × 10 17 c
m −3 n-type AlAs 0.57 Sb 0.43 layer 2, undoped i-type AlAs 0.57 Sb 0.43 layer 3 with a thickness of 30 nm, thickness 1 nm
I-type InP layer 4, 2 nm-thick i-type GaAs 0.22 Sb
0.78 layer 5, i-type InP layer 6 with a thickness of 1 nm, thickness 100 n
m i-type AlAs 0.57 Sb 0.43 layer 7, Zn-doped, carrier concentration 5 × 10 17 cm −3 , p-type Al with a thickness of 1.5 μm
As 0.57 Sb 0.43 layer 8, Zn-doped carrier concentration 2 × 1
A 0 18 cm −3 p + type InP layer 9 is continuously epitaxially grown in this order.

【0025】AlAs0.57Sb0.43は、InPに格子整
合しているが、GaAs0.22Sb0. 78はより大きな格子
定数を持つ。したがって、i型GaAs0.22Sb0.78
5は、両側の層から約2%の圧縮歪を受ける。すなわ
ち、伝導帯および価電子帯で量子井戸を形成するi型G
aAs0.22Sb0.78層5は、歪量子井戸を形成する。
The AlAs 0.57 Sb 0.43, which is lattice matched to InP, GaAs 0.22 Sb 0. 78 has a larger lattice constant. Therefore, the i-type GaAs 0.22 Sb 0.78 layer 5 receives a compressive strain of about 2% from the layers on both sides. That is, i-type G that forms a quantum well in the conduction band and the valence band
The aAs 0.22 Sb 0.78 layer 5 forms a strained quantum well.

【0026】圧縮歪により、m* e はあまり影響を受け
ないが、m* h は減少する。この結果、(1)式よりE
1Vは無歪の場合より大きくなる。すなわち、図の下方へ
シフトする。なお、AlAs0.57Sb0.43は、間接遷移
型半導体であるが、発光再結合領域のGaAs0.22Sb
0.78は直接遷移型半導体である。
Due to compressive strain, m * e is less affected, but m * h is reduced. As a result, from equation (1), E
1V is larger than that without distortion. That is, the shift is made downward in the figure. Although AlAs 0.57 Sb 0.43 is an indirect transition type semiconductor, GaAs 0.22 Sb in the radiative recombination region is used.
0.78 is a direct transition semiconductor.

【0027】n側電極としてAuGe/Au電極10
を、またp側電極としてTi/Pt/Au電極11を蒸
着後、メサエッチングしてストライプ構造の素子とし、
両端面をへき開して一対の反射鏡を形成すると、ファブ
リーペロー型レーザが、図3(B)のように得られる。
AuGe / Au electrode 10 as n-side electrode
And a Ti / Pt / Au electrode 11 as a p-side electrode, and then mesa-etched to form a stripe structure element.
When both ends are cleaved to form a pair of reflecting mirrors, a Fabry-Perot type laser is obtained as shown in FIG.

【0028】このレーザを順方向バイアスすると、約
1.5μmの近赤外光で発振が生じる。上述のレーザに
おいて、伝導帯の量子井戸はたとえば価電子帯の量子井
戸に対して約2倍の幅を有する。i型GaAs0.22Sb
0.78層5の両側に配置したi型InP層4、6は、その
両側のi型AlAs0.57Sb0.43層3、7の価電子帯に
対して0.1eVのエネルギレベル差を有するが、動作
上支障はない。
When this laser is forward biased, near-infrared light of about 1.5 μm oscillates. In the lasers described above, the conduction band quantum wells have, for example, approximately twice the width of the valence band quantum wells. i-type GaAs 0.22 Sb
The i-type InP layers 4 and 6 arranged on both sides of the 0.78 layer 5 have an energy level difference of 0.1 eV with respect to the valence band of the i-type AlAs 0.57 Sb 0.43 layers 3 and 7 on both sides of the 0.78 layer 5. There is no hindrance.

【0029】中央のGaAs0.22Sb0.78層5は、歪を
内蔵するので、その厚さは臨界厚さ以下とする。通常2
0Å〜100Å程度の範囲の厚さが選択される。伝導帯
の量子井戸の幅の変化によってより大きな遷移エネルギ
の変化を得るには、価電子帯の量子井戸の幅を定めるG
aAs0.22Sb0.78層5の厚さは薄い方がよい。
Since the central GaAs 0.22 Sb 0.78 layer 5 has a built-in strain, its thickness is set to a critical thickness or less. Usually 2
A thickness in the range of 0Å to 100Å is selected. To obtain a larger change in transition energy by changing the width of the quantum well in the conduction band, the width G of the quantum well in the valence band is determined.
It is preferable that the aAs 0.22 Sb 0.78 layer 5 is thin.

【0030】また、上記したように、井戸層中央のGa
AsSbの組成、すなわち歪の大きさを変化させること
によって再結合領域の遷移間隔、すなわち、発光波長を
調整することが可能である。圧縮歪を大きくすれば、発
光波長は短波長側にシフトする。
Further, as described above, Ga at the center of the well layer is
It is possible to adjust the transition interval of the recombination region, that is, the emission wavelength by changing the composition of AsSb, that is, the magnitude of strain. If the compressive strain is increased, the emission wavelength shifts to the short wavelength side.

【0031】i型GaAs0.22Sb0.78層5の両側のi
型InP層4、6の厚さは、数Å〜数百Åの範囲で変化
させることができる。この時、E1Cはi型InP層4、
6がない場合と較べ、0.01〜0.2eV程度小さく
することができる。すなわち、発光波長を0.01〜
0.2eV長波長側にシフトさせることができる。
I on both sides of the i-type GaAs 0.22 Sb 0.78 layer 5
The thickness of the type InP layers 4 and 6 can be changed within the range of several Å to several hundred Å. At this time, E 1C is the i-type InP layer 4,
It can be reduced by about 0.01 to 0.2 eV as compared with the case where 6 is not present. That is, the emission wavelength is 0.01 to
It can be shifted to the 0.2 eV long wavelength side.

【0032】また、InP層4、6は、その両側のi型
AlAs0.57Sb0.43層3、7よりも狭いバンドギャッ
プを有し、したがってより高い屈折率を有する。このた
め、光閉じ込み効果も有する。この光閉じ込め効果によ
って閾値電流密度を低下させる作用も生じ得る。
Also, the InP layers 4, 6 have a narrower bandgap than the i-type AlAs 0.57 Sb 0.43 layers 3, 7 on both sides thereof, and thus have a higher refractive index. Therefore, it also has a light confinement effect. The effect of reducing the threshold current density may occur due to this optical confinement effect.

【0033】LWC>LWVである場合を説明したが、価電
子帯の量子井戸の幅LWVを伝導帯の量子井戸の幅LWC
り広くしてもよい。図4は、本発明の別の実施例による
量子井戸レーザを示す。図4(A)は、L WV>LWCであ
る単一量子井戸構造のエネルギ帯構造を示し、図4
(B)は図4(A)のエネルギ帯構造を実現する素子構
造を示す。
LWC> LWVI explained that the case is
Width L of the quantum well of the child bandWVIs the width L of the conduction band quantum wellWCYo
May be wider. FIG. 4 illustrates another embodiment of the present invention.
1 shows a quantum well laser. FIG. 4A shows L WV> LWCAnd
FIG. 4 shows an energy band structure of a single quantum well structure shown in FIG.
4B is an element structure for realizing the energy band structure of FIG.
Shows the structure.

【0034】図4(B)において、n型InP基板21
の(100)面上に、厚さ0.5μmのSiドープ、キ
ャリア濃度5×1017cm-3のn型InP層22、厚さ
30nmのi型InP層23、厚さ3.5nmのi型A
0.24Ga0.24In0.52As層24、厚さ7nmのi型
Ga0.47In0.53As層25、厚さ3.5nmのi型A
0.24Ga0.24In0.52As層26がこの順序で連続的
にヘテロエピタキシャル成長されている。
In FIG. 4B, the n-type InP substrate 21
On the (100) plane of, the n-type InP layer 22 having a thickness of 0.5 μm, a carrier concentration of 5 × 10 17 cm −3 , the i-type InP layer 23 having a thickness of 30 nm, and the i layer having a thickness of 3.5 nm. Type A
l 0.24 Ga 0.24 In 0.52 As layer 24, i-type Ga 0.47 In 0.53 As layer 25 with a thickness of 7 nm, i-type A with a thickness of 3.5 nm
A 0.24 Ga 0.24 In 0.52 As layer 26 is continuously heteroepitaxially grown in this order.

【0035】3層の混晶層24、25および26が、価
電子帯の量子井戸を形成し、その中央の混晶層25が伝
導帯の量子井戸を形成する。i型Al0.24Ga0.24In
0.52As層26の上に、厚さ100nmのi型InP層
27、厚さ1.5μmのZnドープ、キャリア濃度5×
1017cm-3のp型InP層28、厚さ0.5μmのZ
nドープ、キャリア濃度2×1018cm-3のp型In
0.75Ga0.25As0.5 0.5 層29が積層されている。
The three mixed crystal layers 24, 25 and 26 form a valence band quantum well, and the central mixed crystal layer 25 forms a conduction band quantum well. i-type Al 0.24 Ga 0.24 In
On the 0.52 As layer 26, an i-type InP layer 27 having a thickness of 100 nm, Zn doping having a thickness of 1.5 μm, and a carrier concentration of 5 ×
10 17 cm -3 p-type InP layer 28, Z having a thickness of 0.5 μm
n-doped, p-type In with carrier concentration 2 × 10 18 cm −3
A 0.75 Ga 0.25 As 0.5 P 0.5 layer 29 is laminated.

【0036】以上のヘテロエピタキシは、たとえばMO
VPE法を用いて一連の工程で行なうことができる。A
0.24Ga0.24In0.52As、Ga0.47In0.53As
は、いずれもInPにほぼ格子整合している。
The above heteroepitaxy is, for example, MO
It can be performed in a series of steps using the VPE method. A
l 0.24 Ga 0.24 In 0.52 As, Ga 0.47 In 0.53 As
Are almost lattice-matched to InP.

【0037】なお、n型InP基板21裏面にn側電極
としてAuGe/Au電極30を、またp型InP層2
8の上にp側電極としてTi/Pt/Au電極31が形
成されている。素子構造は、メサエッチングされてスト
ライプ構造を形成している。両端面はへき開され、ファ
ブリーペロ型共振器を構成している。
The AuGe / Au electrode 30 as the n-side electrode and the p-type InP layer 2 are formed on the back surface of the n-type InP substrate 21.
A Ti / Pt / Au electrode 31 is formed on p. 8 as a p-side electrode. The element structure is mesa-etched to form a stripe structure. Both end faces are cleaved to form a Fabry-Perot resonator.

【0038】本実施例の場合、電子の有効質量は正孔の
有効質量より小さい(m* e ≒0.1m* h )ため、
(1)式に基づくE1 の井戸幅変化に対応したエネルギ
準位の変化は、図3の場合と較べ、約1/10である。
[0038] In this embodiment, since the effective mass of electrons is hole effective mass is less than the (m * e ≒ 0.1m * h ),
The change of the energy level corresponding to the change of the well width of E 1 based on the equation (1) is about 1/10 as compared with the case of FIG.

【0039】しかし、精密な波長制御が必要な場合、よ
り微細な制御が可能となる。特に、本実施例の場合は、
歪効果による発光波長のシフトを考慮する必要がないの
で、波長制御がより簡単に行ない得る。
However, when precise wavelength control is required, finer control becomes possible. In particular, in the case of this embodiment,
Since it is not necessary to consider the shift of the emission wavelength due to the distortion effect, the wavelength control can be performed more easily.

【0040】なお、価電子帯と伝導帯で共に障壁を形成
する領域に不純物をドープして変調ドープ構造としても
よい。以上実施例に沿って本発明を説明したが、本発明
はこれらに制限されるものではない。たとえば、種々の
変更、改良、組み合わせ等が可能なことは当業者に自明
であろう。
It is also possible to dope an impurity into a region that forms a barrier in both the valence band and the conduction band to form a modulation doping structure. Although the present invention has been described above with reference to the embodiments, the present invention is not limited thereto. For example, it will be apparent to those skilled in the art that various modifications, improvements, combinations, and the like can be made.

【0041】たとえば、本発明をII−VI族化合物半
導体にも適用することができる。
For example, the present invention can be applied to II-VI group compound semiconductors.

【0042】[0042]

【発明の効果】伝導帯と価電子帯の量子井戸幅を独立し
て変え得るので、レーザ発振波長をきめ細かく制御でき
る。
Since the quantum well widths of the conduction band and the valence band can be changed independently, the laser oscillation wavelength can be finely controlled.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の基本概念を示す線図である。FIG. 1 is a diagram showing the basic concept of the present invention.

【図2】従来例による量子井戸レーザの説明線図であ
る。
FIG. 2 is an explanatory diagram of a quantum well laser according to a conventional example.

【図3】実施例による量子井戸レーザを示す図である。FIG. 3 is a diagram showing a quantum well laser according to an example.

【図4】別の実施例による量子井戸レーザを示す図であ
る。
FIG. 4 is a diagram showing a quantum well laser according to another embodiment.

【符号の説明】[Explanation of symbols]

1、21 n型InP基板 2 n型AlAs0.57Sb0.43層 3、7 i型AlAs0.57Sb0.43層 4、6、23 i型InP層 5 i型GaAs0.22Sb0.78層 8 p型AlAs0.57Sb0.43層 9 p+ 型InP層 10、30 AuGe/Au電極 11、31 Ti/Pt/Au電極 22 n型InP層 24、26 i型Al0.24Ga0.24In0.52As層 25 i型Ga0.47In0.53As層 27 i型InP層 28 p型InP層 29 p型In0.75Ga0.25As0.5 0.5 1, 21 n-type InP substrate 2 n-type AlAs 0.57 Sb 0.43 layer 3, 7 i-type AlAs 0.57 Sb 0.43 layer 4, 6, 23 i-type InP layer 5 i-type GaAs 0.22 Sb 0.78 layer 8 p-type AlAs 0.57 Sb 0.43 layer 9 p + type InP layer 10, 30 AuGe / Au electrode 11, 31 Ti / Pt / Au electrode 22 n type InP layer 24, 26 i type Al 0.24 Ga 0.24 In 0.52 As layer 25 i type Ga 0.47 In 0.53 As layer 27 i-type InP layer 28 p-type InP layer 29 p-type In 0.75 Ga 0.25 As 0.5 P 0.5 layer

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 1つの量子井戸における伝導帯の量子井
戸幅(LWC)と価電子帯の量子井戸幅(LWV)が異なる
値を有する量子井戸構造を含む活性層を有する半導体レ
ーザ。
1. A semiconductor laser having an active layer including a quantum well structure in which a quantum well width (L WC ) of a conduction band and a quantum well width (L WV ) of a valence band in one quantum well have different values.
【請求項2】 前記量子井戸構造が歪を内蔵する請求項
1記載の半導体レーザ。
2. The semiconductor laser according to claim 1, wherein the quantum well structure has a strain therein.
【請求項3】 前記量子井戸構造のうち、伝導帯および
価電子帯で共通して電位障壁として作用する領域にのみ
不純物をドープした変調ドープ活性層を備えた請求項1
または2記載の半導体レーザ。
3. A modulation-doped active layer in which impurities are doped only in a region of the quantum well structure that commonly acts as a potential barrier in both the conduction band and the valence band.
Alternatively, the semiconductor laser described in 2.
【請求項4】 量子井戸の材料にGaInAs混晶およ
びAlGaInAs混晶を、電位障壁の材料にInPを
用い、価電子帯の量子井戸幅を伝導帯の量子井戸幅より
も広くした(LWC<LWV)、請求項1〜3のいずれかに
記載の半導体レーザ。
4. A GaInAs mixed crystal and an AlGaInAs mixed crystal are used as the quantum well material and InP is used as the potential barrier material, and the quantum well width in the valence band is made wider than the quantum well width in the conduction band (L WC < L WV ), The semiconductor laser according to claim 1.
【請求項5】 量子井戸の材料にInPおよびGaAs
Sbを、電位障壁の材料にAlAsSbを用い、伝導帯
の量子井戸幅を価電子帯の量子井戸幅よりも広くした
(LWC>LWV)、請求項1〜3のいずれかに記載の半導
体レーザ。
5. InP and GaAs as the quantum well material
The Sb, using AlAsSb the material of the potential barrier, broadly the (L WC> L WV) than the quantum well width of the valence band of the quantum well width of the conduction band, a semiconductor according to claim 1 laser.
JP27564792A 1992-10-14 1992-10-14 Semiconductor laser Withdrawn JPH06125135A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27564792A JPH06125135A (en) 1992-10-14 1992-10-14 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27564792A JPH06125135A (en) 1992-10-14 1992-10-14 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPH06125135A true JPH06125135A (en) 1994-05-06

Family

ID=17558380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27564792A Withdrawn JPH06125135A (en) 1992-10-14 1992-10-14 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPH06125135A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0975073A1 (en) * 1998-06-19 2000-01-26 Nec Corporation Semiconductor laser
JP2016197616A (en) * 2015-04-02 2016-11-24 日本電信電話株式会社 Semiconductor laser

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0975073A1 (en) * 1998-06-19 2000-01-26 Nec Corporation Semiconductor laser
JP2016197616A (en) * 2015-04-02 2016-11-24 日本電信電話株式会社 Semiconductor laser

Similar Documents

Publication Publication Date Title
KR0153781B1 (en) Elimination of heterojunction band discontinuities and its method
USRE37177E1 (en) Semiconductor laser
Liau et al. Low‐threshold InGaAs strained‐layer quantum‐well lasers (λ= 0.98 μm) with GaInP cladding layers and mass‐transported buried heterostructure
JP3189791B2 (en) Semiconductor laser
JPH09139543A (en) Semiconductor laser element
US5331656A (en) Very short wavelength semiconductor laser
US10020637B2 (en) Method for manufacturing semiconductor device and semiconductor device
US5644587A (en) Semiconductor laser device
US7986721B2 (en) Semiconductor optical device including a PN junction formed by a second region of a first conductive type semiconductor layer and a second conductive type single semiconductor layer
JPH07112089B2 (en) Semiconductor light emitting device
JPH09199783A (en) Semiconductor light emitting element
WO1999057790A2 (en) Laser diode having separate-confinement, highly strained quantum wells
JPH06125135A (en) Semiconductor laser
JPH0677592A (en) Semiconductor laser element
US20030026306A1 (en) High output power semiconductor laser diode
JP3033333B2 (en) Semiconductor laser device
Choi et al. Room‐temperature continuous operation of GaAs/AlGaAs lasers grown on Si by organometallic vapor‐phase epitaxy
JPH07112090B2 (en) Semiconductor light emitting device
Agahi et al. Dependence of polarization mode and threshold current on tensile strain in AlGaAsGaAsP quantum well lasers
JP2005136267A (en) Semiconductor quantum dot element
JPH0669589A (en) Semiconductor laser element
JP3403915B2 (en) Semiconductor laser
Hayakawa et al. Molecular beam epitaxial growth of (AlyGa1− y) xIn1− xP (x∽ 0.5) on (100) GaAs
JP3255244B2 (en) Semiconductor laser
JPH07122811A (en) Semiconductor laser element

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000104