JPH06124892A - Patterning method for gaas oxide film - Google Patents

Patterning method for gaas oxide film

Info

Publication number
JPH06124892A
JPH06124892A JP25832292A JP25832292A JPH06124892A JP H06124892 A JPH06124892 A JP H06124892A JP 25832292 A JP25832292 A JP 25832292A JP 25832292 A JP25832292 A JP 25832292A JP H06124892 A JPH06124892 A JP H06124892A
Authority
JP
Japan
Prior art keywords
oxide film
temperature
substrate
gaas
predetermined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP25832292A
Other languages
Japanese (ja)
Inventor
清輝 ▲吉▼田
Kiyoteru Yoshida
Masahiro Sasaki
正洋 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Optoelectronics Technology Research Laboratory
Original Assignee
Optoelectronics Technology Research Laboratory
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Optoelectronics Technology Research Laboratory filed Critical Optoelectronics Technology Research Laboratory
Priority to JP25832292A priority Critical patent/JPH06124892A/en
Publication of JPH06124892A publication Critical patent/JPH06124892A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To provide a method for completely removing a GaAs oxide film without allowing oxygen to remain in patterning the GaAs oxide film using temperature raised desorption. CONSTITUTION:An oxide film is formed on a GaAs substrate, and Ga is selectively applied to a predetermined region to have it deposited. Temperature raised desorption is used to remove the oxide film with Ga deposited. As soon as the temperature raised desorption is completed, a temperature of the substrate is made at a predetermined temperature and the temperature is maintained for a predetermined time.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、化合物半導体のエピタ
キシャル成長に関し、特にGaAs基板上に化合物半導
体を選択的に成長させるために利用されるGaAs酸化
膜のパターニング方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to epitaxial growth of compound semiconductors, and more particularly to a method for patterning a GaAs oxide film used for selectively growing compound semiconductors on a GaAs substrate.

【0002】[0002]

【従来の技術】一般に、GaAs基板の表面に形成され
た酸化膜や、Ga基板の表面に形成された窒化膜は、昇
温脱離法を用いて除去できることが知られている。例え
ば、GaAs基板上に形成された自然酸化膜は、610
℃〜630℃にまで昇温すると脱離する。
2. Description of the Related Art Generally, it is known that an oxide film formed on the surface of a GaAs substrate and a nitride film formed on the surface of a Ga substrate can be removed by a thermal desorption method. For example, a natural oxide film formed on a GaAs substrate is 610
It desorbs when the temperature is raised to 630 ° C to 630 ° C.

【0003】また、GaAs酸化膜や、GaN膜に、G
aを付着させると上記脱離特性は、昇温側にシフトす
る。即ち、Gaを付着させるとGaを付着させないとき
に比べて低い温度で昇温脱離する。例えば、GaAs基
板上に形成された自然酸化膜は、540℃以下の温度で
昇温脱離する。
Further, G is added to a GaAs oxide film and a GaN film.
When a is attached, the above desorption characteristics shift to the temperature rising side. That is, when Ga is attached, the temperature rises and desorbs at a lower temperature than when Ga is not attached. For example, the natural oxide film formed on the GaAs substrate is thermally desorbed at a temperature of 540 ° C. or lower.

【0004】従来、GaAs酸化膜をマスクとして利用
し、GaAs基板上にGaAsを選択成長させる場合
は、上述の特性を利用して、GaAs酸化膜の所定の領
域にGaを付着させ、比較的低温で昇温脱離を行ってG
aAs酸化膜をパターニングし、GaAs酸化膜が除去
された領域にのみGaAsを選択成長させている。
Conventionally, when GaAs is selectively grown on a GaAs substrate by using the GaAs oxide film as a mask, Ga is attached to a predetermined region of the GaAs oxide film by utilizing the above-mentioned characteristics, and the GaAs oxide film is relatively low in temperature. Temperature rise desorption at
The aAs oxide film is patterned, and GaAs is selectively grown only in the region where the GaAs oxide film is removed.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、従来の
ように、比較的低温で昇温脱離を行っただけでは、酸化
膜が除去された界面に酸素が残留していることが多い。
従って、残留酸素が界面に存在する状態で、その後のエ
ピタキシャル成長が行われ、デバイスが作成された場
合、残留酸素が、そのデバイスの電気的特性及びその他
の特性に悪影響を与えるという問題点がある。
However, as in the conventional case, oxygen is often left at the interface where the oxide film is removed only by performing the thermal desorption at a relatively low temperature as in the conventional case.
Therefore, when a device is manufactured by performing the subsequent epitaxial growth with residual oxygen existing at the interface, there is a problem that the residual oxygen adversely affects the electrical characteristics and other characteristics of the device.

【0006】本発明は、昇温脱離法を用いたGaAs酸
化膜のパターニングにおいて、酸素を残留させることな
くGaAs酸化膜を完全に除去できる方法を提供するこ
とを目的とする。
It is an object of the present invention to provide a method for completely removing a GaAs oxide film without leaving oxygen in the patterning of the GaAs oxide film using the thermal desorption method.

【0007】[0007]

【課題を解決するための手段】本発明によれば、GaA
s基板上に酸化膜を形成し、前記酸化膜上の所定の領域
にGaを選択的に照射して付着させ、前記基板温度を時
間に比例して上昇させる昇温脱離法を用いて、前記所定
領域の酸化膜を除去するGaAs酸化膜のパターニング
方法において、前記基板の温度が予め定められた第1の
所定温度に達した後、前記基板の温度を予め定められた
第2の所定温度にして、該第2の所定温度を所定時間保
持するようにしたことを特徴とするGaAs酸化膜のパ
ターニング方法が得られる。
According to the present invention, GaA
s An oxide film is formed on a substrate, Ga is selectively irradiated and adhered to a predetermined region on the oxide film, and a thermal desorption method for raising the substrate temperature in proportion to time is used. In a method of patterning a GaAs oxide film for removing an oxide film in the predetermined region, after the temperature of the substrate reaches a predetermined first predetermined temperature, the temperature of the substrate is changed to a predetermined second predetermined temperature. Then, a method for patterning a GaAs oxide film is obtained, which is characterized in that the second predetermined temperature is maintained for a predetermined time.

【0008】[0008]

【実施例】以下、図面を参照して本発明の実施例を説明
する。始めに、本実施例で使用される装置を図1を参照
して説明する。この装置は、成長室(チャンバー)11
と、表面処理室(チャンバー)12とを有している。成
長室11と表面処理室12とはゲートバルブ13を介し
て接続されている。また、表面処理室12にはゲートバ
ルブ14を介して試料導入室15が接続されている。そ
れぞれの室は独立して、真空排気することが可能で、予
め所定の真空度にまで排気されている。
Embodiments of the present invention will be described below with reference to the drawings. First, the apparatus used in this embodiment will be described with reference to FIG. This device is a growth chamber (chamber) 11
And a surface treatment chamber (chamber) 12. The growth chamber 11 and the surface treatment chamber 12 are connected via a gate valve 13. A sample introduction chamber 15 is connected to the surface treatment chamber 12 via a gate valve 14. Each chamber can be independently evacuated and evacuated to a predetermined degree of vacuum in advance.

【0009】成長室11の内部には、ヒーター16を備
えた基板ホルダー(図示せず)が設けられている。ま
た、成長室11を規定する側壁には、基板ホルダーに向
かうように、Gaセル17、Asセル18、ガスノズル
19、四重極質量分析器20、及びRHEED(高速電
子線回折)電子銃21が設けられている。また、成長室
11の側壁には、RHEED電子銃21に対向するよう
にRHEEDスクリーン22が設けられている。さら
に、先端に取り付けられたメタルマスク23を移動させ
るためのマスク移動腕24が設けられている。
Inside the growth chamber 11, a substrate holder (not shown) equipped with a heater 16 is provided. Further, on the side wall defining the growth chamber 11, a Ga cell 17, an As cell 18, a gas nozzle 19, a quadrupole mass spectrometer 20, and a RHEED (high speed electron beam diffraction) electron gun 21 are provided so as to face the substrate holder. It is provided. Further, a RHEED screen 22 is provided on the side wall of the growth chamber 11 so as to face the RHEED electron gun 21. Further, a mask moving arm 24 for moving the metal mask 23 attached to the tip is provided.

【0010】また、表面処理室12の側壁にはハロゲン
ランプ25及び酸素導入ノズル26が設けられている。
A halogen lamp 25 and an oxygen introduction nozzle 26 are provided on the side wall of the surface treatment chamber 12.

【0011】以下、本発明の一実施例を説明する。ま
ず、GaAs(100)基板27を成長室11に導入す
る。基板27上には、自然酸化膜が形成されているの
で、ヒーター16で基板温度を610℃〜630℃にし
て、自然酸化膜を除去する。次に、基板27の温度を5
80℃に下げ、ガスノズル19からトリエチルガリウム
(TEG)を、Asセル18からAsを、基板27の表
面に同時に照射する。これにより基板27上にはGaA
sバッファ層が形成される。
An embodiment of the present invention will be described below. First, the GaAs (100) substrate 27 is introduced into the growth chamber 11. Since the natural oxide film is formed on the substrate 27, the substrate temperature is set to 610 ° C. to 630 ° C. by the heater 16 to remove the natural oxide film. Next, the temperature of the substrate 27 is set to 5
The temperature is lowered to 80 ° C. and the surface of the substrate 27 is simultaneously irradiated with triethylgallium (TEG) from the gas nozzle 19 and As cell 18 to As. As a result, the GaA on the substrate 27
An s buffer layer is formed.

【0012】次に、基板温度を室温にまで下げ、基板2
7を表面処理室12へ移動させる。そして、表面処理室
12の内部圧力が10Torrになるまで酸素導入ノズ
ル26より酸素を導入する。この状態で、基板27上の
GaAsバッファ層表面にハロゲンランプ25からの光
を15分間照射して、酸化膜を形成する。
Next, the substrate temperature is lowered to room temperature, and the substrate 2
7 is moved to the surface treatment chamber 12. Then, oxygen is introduced from the oxygen introduction nozzle 26 until the internal pressure of the surface treatment chamber 12 becomes 10 Torr. In this state, the surface of the GaAs buffer layer on the substrate 27 is irradiated with light from the halogen lamp 25 for 15 minutes to form an oxide film.

【0013】酸化膜形成後、再び、基板27を成長室1
1へ移動する。マスク移動腕24を用いて、メタルマス
ク23を基板の表面に近接させる。Gaセル17よりG
aを照射して、酸化膜の所定領域表面にGaを15mono
layer 付着させる。この後、基板27の温度を、60℃
/min の昇温レートで540℃まで昇温させる。このと
き、GaAs酸化膜の脱離は、四重極質量分析計20で
観測することができる。なお、上記温度(540℃)
は、予備実験によって求めており、表面に15monolaye
r のGaが付着したGaAs酸化膜が、540℃以下の
温度ですべて昇温脱離することは、四重極質量分析計を
用いて確認されている。
After the oxide film is formed, the substrate 27 is again placed in the growth chamber 1.
Move to 1. The metal mask 23 is brought close to the surface of the substrate by using the mask moving arm 24. G from Ga cell 17
a) to irradiate the surface of a predetermined area of the oxide film with Ga.
layer attach. After that, the temperature of the substrate 27 is changed to 60 ° C.
The temperature is raised to 540 ° C. at a heating rate of / min. At this time, desorption of the GaAs oxide film can be observed by the quadrupole mass spectrometer 20. The above temperature (540 ° C)
Is obtained by preliminary experiments, and 15 monolaye on the surface
It has been confirmed using a quadrupole mass spectrometer that the GaAs oxide film having the Ga of r attached thereto is all desorbed by heating at a temperature of 540 ° C. or lower.

【0014】基板温度が、540℃に達すると、直ちに
基板温度を520℃に下げる。そして、その温度を30
分間保持する。この熱処理を行う前と後では、拘束電子
線回折(RHEED)パターンは、4×6パターンか
ら、2×4パターンへと変化する。すなわち、表面の状
態がより平らになり、酸素分子が脱離したものと考えら
れる。
As soon as the substrate temperature reaches 540 ° C., the substrate temperature is lowered to 520 ° C. And the temperature is 30
Hold for minutes. Before and after this heat treatment, the restricted electron beam diffraction (RHEED) pattern changes from a 4 × 6 pattern to a 2 × 4 pattern. That is, it is considered that the surface condition became flatter and oxygen molecules were desorbed.

【0015】熱処理終了後、基板27の温度を500℃
にして、ガスノズル19よりトリメチルガリウム(TM
G)を、AsセルよりAs4 を、同時に照射してGaA
sをエピタキシャル成長させた。GaAs層は、GaA
s酸化膜上には成長しないので、この結晶成長によりG
aAs酸化膜が除去された領域のみに選択成長が行われ
る。
After the heat treatment, the temperature of the substrate 27 is set to 500 ° C.
Then, from the gas nozzle 19, trimethylgallium (TM
G) is simultaneously irradiated with As 4 from the As cell to produce GaA.
s was epitaxially grown. GaAs layer is GaA
Since it does not grow on the s oxide film, this crystal growth causes G
Selective growth is performed only in the region where the aAs oxide film is removed.

【0016】このようにして得られた試料の、深さ方向
の残留酸素濃度を2次イオン分析器(SIMS)で測定
した。その結果を図2に示す。図2では、縦軸に酸素濃
度、横軸にエッチング時間を取っている。図2に示すよ
うに、界面における酸素濃度は、GaAs基板の濃度と
変わらず、分析感度以下となっている。すなわち、残留
酸素は存在しないと考えて良い。
The residual oxygen concentration in the depth direction of the thus obtained sample was measured by a secondary ion analyzer (SIMS). The result is shown in FIG. In FIG. 2, the vertical axis represents oxygen concentration and the horizontal axis represents etching time. As shown in FIG. 2, the oxygen concentration at the interface is the same as that of the GaAs substrate and is below the analytical sensitivity. That is, it can be considered that there is no residual oxygen.

【0017】なお、上記実施例では、昇温脱離を行った
後、520℃で30分間、熱処理を行ったが、これに限
られるものではなく、400℃〜600℃で、10分か
ら3時間程度行えば良い。もちろん、高い温度では短い
時間、低い温度では長い時間という具合に、温度と時間
は適宜組み合わされなければならない。
In the above example, the thermal desorption was carried out and then the heat treatment was carried out at 520 ° C. for 30 minutes, but the present invention is not limited to this, and it is carried out at 400 ° C. to 600 ° C. for 10 minutes to 3 hours. Just do it. Of course, temperature and time must be appropriately combined, such as high temperature for short time and low temperature for long time.

【0018】また、上記熱処理を行う際に、ラジカル化
した水素をマスク開口部(GaAs酸化膜除去部)に付
着させて行うようにしても良い。
Further, when the heat treatment is performed, radicalized hydrogen may be attached to the mask opening (the GaAs oxide film removed portion).

【0019】[0019]

【発明の効果】本発明によれば、昇温脱離を行った後、
引き続いて、所定温度で所定時間、熱処理を加えるよう
にしたことで、酸化膜除去後の残留酸素を取り除くこと
ができる。よって、その後のエピタキシャル成長層に悪
影響を与えることがなく、デバイスの特性を向上させる
ことができる。
According to the present invention, after thermal desorption is performed,
Subsequently, by performing heat treatment at a predetermined temperature for a predetermined time, residual oxygen after removing the oxide film can be removed. Therefore, the characteristics of the device can be improved without adversely affecting the subsequent epitaxial growth layer.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に使用される装置の概略図で
ある。
FIG. 1 is a schematic diagram of an apparatus used in an embodiment of the present invention.

【図2】本発明の一実施例によって作成された試料の残
留酸素特性を表わすグラフである。
FIG. 2 is a graph showing residual oxygen characteristics of a sample prepared according to an example of the present invention.

【符号の説明】[Explanation of symbols]

11 成長室(チャンバー) 12 表面処理室(チャンバー) 13 ゲートバルブ 14 ゲートバルブ 15 試料導入室 16 ヒーター 17 Gaセル 18 Asセル 19 ガスノズル 20 四重極質量分析器 21 RHEED(高速電子線回折)電子銃 22 RHEEDスクリーン 23 メタルマスク 24 マスク移動腕 25 ハロゲンランプ 26 酸素導入ノズル 27 基板 11 growth chamber (chamber) 12 surface treatment chamber (chamber) 13 gate valve 14 gate valve 15 sample introduction chamber 16 heater 17 Ga cell 18 As cell 19 gas nozzle 20 quadrupole mass spectrometer 21 RHEED (high-speed electron beam diffraction) electron gun 22 RHEED screen 23 Metal mask 24 Mask moving arm 25 Halogen lamp 26 Oxygen introduction nozzle 27 Substrate

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 GaAs基板上に酸化膜を形成し、前記
酸化膜上の所定の領域にGaを選択的に照射して付着さ
せ、前記基板温度を時間に比例して上昇させる昇温脱離
法を用いて、前記所定領域の酸化膜を除去するGaAs
酸化膜のパターニング方法において、前記基板の温度が
予め定められた第1の所定温度に達した後、前記基板の
温度を予め定められた第2の所定温度にして、該第2の
所定温度を所定時間保持するようにしたことを特徴とす
るGaAs酸化膜のパターニング方法。
1. A thermal desorption method for forming an oxide film on a GaAs substrate, selectively irradiating and depositing a predetermined region on the oxide film with Ga, and increasing the substrate temperature in proportion to time. Method is used to remove the oxide film in the predetermined region.
In the method of patterning an oxide film, after the temperature of the substrate reaches a predetermined first predetermined temperature, the temperature of the substrate is set to a predetermined second predetermined temperature, and the second predetermined temperature is set to the predetermined second temperature. A method for patterning a GaAs oxide film, characterized in that it is held for a predetermined time.
JP25832292A 1992-09-28 1992-09-28 Patterning method for gaas oxide film Withdrawn JPH06124892A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25832292A JPH06124892A (en) 1992-09-28 1992-09-28 Patterning method for gaas oxide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25832292A JPH06124892A (en) 1992-09-28 1992-09-28 Patterning method for gaas oxide film

Publications (1)

Publication Number Publication Date
JPH06124892A true JPH06124892A (en) 1994-05-06

Family

ID=17318639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25832292A Withdrawn JPH06124892A (en) 1992-09-28 1992-09-28 Patterning method for gaas oxide film

Country Status (1)

Country Link
JP (1) JPH06124892A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0758143A1 (en) * 1995-08-07 1997-02-12 Motorola, Inc. Improved masking method during semiconductor device fabrication

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0758143A1 (en) * 1995-08-07 1997-02-12 Motorola, Inc. Improved masking method during semiconductor device fabrication

Similar Documents

Publication Publication Date Title
JP3895410B2 (en) Device comprising group III-V nitride crystal film and method for manufacturing the same
JPH06124892A (en) Patterning method for gaas oxide film
JP2704931B2 (en) Method for forming selective growth mask and method for removing same
JPH01245512A (en) Formation of iii-v compound semiconductor by epitaxial growth
JP2686699B2 (en) Method for forming GaN mask for selective growth
JPH0864530A (en) Selective growing method
JPS6230317A (en) Method and apparatus for growing semiconductor crystal
JPH0243720A (en) Molecular beam epitaxial growth method
JP2729866B2 (en) Compound semiconductor epitaxial growth method
JPS6134921A (en) Manufacture of semiconductor device
JPH05182910A (en) Molecular beam epitaxtially growing method
JP2520617B2 (en) Semiconductor crystal growth method and apparatus for implementing the same
JPS6134924A (en) Growing device of semiconductor crystal
JPS6134922A (en) Manufacture of super lattice semiconductor device
JPS6134926A (en) Growing device of semiconductor single crystal
JPS63248796A (en) Molecular beam epitaxy and its device
JPH0443631A (en) Growth method of compound semiconductor crystal and equipment therefor
JPH07142403A (en) Formation of mask for selective growth
JP2683612B2 (en) Method for forming structure of compound semiconductor
JPH0779084B2 (en) Semiconductor crystal growth method and apparatus for implementing the same
JPH01160899A (en) Method for growing compound semiconductor crystal and apparatus therefor
JPH01158720A (en) Method and apparatus for growing compound semiconductor crystal
JPH04219924A (en) Method for growing semiconductor crystal
JPH02191319A (en) Method of forming soi structure
JPH01150318A (en) Apparatus for formation of thin film

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19991130