JPH06124833A - Magnetizing device for magnet - Google Patents

Magnetizing device for magnet

Info

Publication number
JPH06124833A
JPH06124833A JP29662892A JP29662892A JPH06124833A JP H06124833 A JPH06124833 A JP H06124833A JP 29662892 A JP29662892 A JP 29662892A JP 29662892 A JP29662892 A JP 29662892A JP H06124833 A JPH06124833 A JP H06124833A
Authority
JP
Japan
Prior art keywords
magnet
magnetized
disk
magnetizing device
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29662892A
Other languages
Japanese (ja)
Other versions
JP3271330B2 (en
Inventor
Keiichi Kimura
圭一 木村
Katsuyoshi Miyamoto
勝良 宮本
Misao Hashimoto
操 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP29662892A priority Critical patent/JP3271330B2/en
Publication of JPH06124833A publication Critical patent/JPH06124833A/en
Application granted granted Critical
Publication of JP3271330B2 publication Critical patent/JP3271330B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

PURPOSE:To prevent occurrence of loss caused by uneven magnetic flux density by evenly magnetizing a disk, used for large magnetic bearings, etc., in annular. CONSTITUTION:A magnetizing device for a magnet consisting of a mechanism that rotates a disk body or annular body, which is a magnetized object 1, around its center axis 2, and an electromagnet which generates a magnetic field by cutting a portion of rotational place of the disk body or annular body from both sides of the rotational plane.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、大型磁石、特に酸化物
超電導材料と組み合わせた磁気ベアリングに用いられる
磁石の着磁方法を提供する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention provides a method for magnetizing a large magnet, particularly a magnet used in a magnetic bearing in combination with an oxide superconducting material.

【0002】[0002]

【従来の技術】最近、酸化物バルク超電導材料の磁束ピ
ンニングを利用した磁気ベアリングの研究がおこなわれ
ている。この磁気ベアリングは、磁石と酸化物超電導バ
ルクの間に働く生じる磁気的な相互作用によりどちらか
一方を浮上させ、回転させることを特徴とする。この方
法は機械的な接触が不要であるため、極めて損失の少な
い回転が得られる。このことを利用して大型の円盤を回
転させ、電気エネルギーを回転の運動エネルギーとして
貯蔵する超電導フライホイールが検討されている。
2. Description of the Related Art Recently, magnetic bearings utilizing magnetic flux pinning of oxide bulk superconducting materials have been studied. This magnetic bearing is characterized in that one of them is levitated and rotated by a magnetic interaction generated between the magnet and the oxide superconducting bulk. Since this method does not require mechanical contact, extremely low loss rotation can be obtained. Utilizing this fact, a superconducting flywheel that rotates a large disk and stores electric energy as kinetic energy of rotation has been studied.

【0003】磁束ピンニング現象を利用して磁気浮上さ
せた物体が円滑に回転するには、磁石と超電導体のうち
少なくともどちらか一方が回転方向に対して均一な磁場
をつくらねばならない。現在の技術では、使用に耐えう
る酸化物超電導体の大きさが限られ、また着磁出来る磁
石の大きさが限られてしまうため、エネルギー貯蔵用フ
ライホイールに使用されるような円盤状あるいは円環状
の大型物体を磁気ベアリングで回転させるためには、小
さな部材を並べて用いる。すなわち複数の磁石を同心円
状に敷き詰めるように配置することによって回転方向に
均一な磁場をつくり、この同心円軌道に沿って酸化物超
電導体を配置し、そのどちらかをフライホイールに設置
して浮上回転させる方法がとられている。しかしなが
ら、形状や着磁方法に起因した磁石本体または磁石の継
ぎ目部分での表面磁束密度の不均一により回転に損失が
生じる問題があった。
In order for an object magnetically levitated by utilizing the magnetic flux pinning phenomenon to rotate smoothly, at least one of the magnet and the superconductor must create a uniform magnetic field in the rotating direction. With the current technology, the size of oxide superconductors that can withstand use is limited, and the size of magnets that can be magnetized is also limited. In order to rotate a large annular object with a magnetic bearing, small members are used side by side. In other words, by arranging multiple magnets so that they are spread concentrically, a uniform magnetic field is created in the direction of rotation, and oxide superconductors are arranged along this concentric orbit. The method of letting is taken. However, there is a problem that rotation loss occurs due to non-uniformity of the surface magnetic flux density at the magnet body or the joint portion of the magnet due to the shape and the magnetizing method.

【0004】[0004]

【発明が解決しようとする課題】本発明は上記の従来技
術の問題点を改良した回転方向に均一な同心円の表面磁
場分布を有する回転損失の少ない磁気ベアリング用大型
磁石の着磁装置を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention provides a magnetizing device for a large magnet for a magnetic bearing having a concentric circular surface magnetic field distribution in the direction of rotation, which is improved from the above problems of the prior art. The purpose is to

【0005】[0005]

【課題を解決するための手段】本発明は前記課題を解決
するものであって、被着磁体である円盤状体または円環
状体をその中心軸の回りに回転させる機構と、前記円盤
状体または円環状体の回転面の一部を回転面の両側から
回転面を切って磁場を発生させる電磁石とからなること
を特徴とする磁石の着磁装置である。また円盤状体また
は円環状体の中心軸の並進移動機構を設けることも特徴
とする。
Means for Solving the Problems The present invention is to solve the above problems, and is a mechanism for rotating a disk-shaped body or an annular body, which is a magnetized body, around its central axis, and the disk-shaped body. Alternatively, the magnetizing device is characterized in that the magnetizing device comprises an electromagnet for generating a magnetic field by cutting a part of the rotating surface of the annular body from both sides of the rotating surface. It is also characterized in that a translational movement mechanism for the central axis of the disk-shaped body or the annular body is provided.

【0006】[0006]

【作用】本発明は図1にその原理を示すように、着磁し
ようとする軸対象な被着磁体1の回転面の一部を回転面
をはさんで電磁石の磁極3A,3Bを配置して磁場5を
発生させ、着磁しようとする軸対称な被着磁体の中心軸
2を中心として回転させつつ徐々に磁場を印加し、磁極
内を連続的に通過させる手段を設けたものである。さら
に、上述した装置に着磁しようとする被着磁体の回転軸
を図1に示すように平行移動4することによって、半径
の異なる同心円の表面磁場分布を有する磁石になるよう
な着磁が可能である。この場合磁石の方を移動しても目
的を達することができるが被着磁体の回転軸を移動する
方が容易である。
In the present invention, as shown in the principle of FIG. 1, the magnetic poles 3A and 3B of the electromagnet are arranged with a part of the rotating surface of the magnetized object 1 to be magnetized which is to be magnetized sandwiching the rotating surface. A magnetic field 5 is generated by means of which a means for gradually applying a magnetic field while rotating it about the central axis 2 of the axisymmetric magnetized body to be magnetized and continuously passing through the magnetic poles is provided. . Further, by performing parallel movement 4 of the rotation axis of the magnetized body to be magnetized to the above-mentioned device as shown in FIG. 1, it is possible to magnetize the magnet having concentric surface magnetic field distributions with different radii. Is. In this case, the purpose can be achieved by moving the magnet, but it is easier to move the rotating shaft of the magnetized body.

【0007】上述した手段によって、従来一度に着磁で
きなかったような大きな磁石を連続的かつ同心円状に磁
化させることが可能である。着磁時の被着磁体の回転抵
抗を低くするために、電磁石の磁場を徐々に印加するこ
とが望ましい。また電磁石の極性を反転させることによ
って、半径の異なる同心円状の磁化が可能である。
By the means described above, it is possible to continuously and concentrically magnetize a large magnet which could not be magnetized at once. It is desirable to gradually apply the magnetic field of the electromagnet in order to reduce the rotational resistance of the magnetized body during magnetization. By reversing the polarity of the electromagnet, concentric magnetization with different radii is possible.

【0008】図2は本発明の装置によって磁化した磁石
の磁極を示したものである。図3は従来の方法で同様な
磁極を設けようとした場合の模式図である。すなわち、
従来の方法では、円周方向に磁石の継ぎ目が生じてしま
い、例えば、これが超電導体上を回転しようとした場
合、継ぎ目部分での表面磁束密度の不均一により回転ロ
スが生じてしまう。一方、本発明の着磁装置により磁化
した磁石は継ぎ目がないために、回転方向に対しての表
面磁束密度の不均一が少なくてすみ、その分回転ロスが
少なくてすむ。
FIG. 2 shows the magnetic poles of a magnet magnetized by the device of the present invention. FIG. 3 is a schematic diagram when a similar magnetic pole is provided by a conventional method. That is,
In the conventional method, a seam of the magnet is generated in the circumferential direction, and for example, when the magnet tries to rotate on the superconductor, a rotation loss occurs due to uneven surface magnetic flux density at the seam. On the other hand, since the magnet magnetized by the magnetizing device of the present invention is seamless, the unevenness of the surface magnetic flux density with respect to the rotation direction can be reduced, and the rotation loss can be reduced accordingly.

【0009】[0009]

【実施例】図4に示すように、ワイス型の電磁石12と
その磁極外部に同心円状の被着磁体1を支持して回転す
る機構を有する磁石の着磁装置を作製した。この装置の
被着磁体の中心軸2はシンクロナスモーターと駆動ベル
トでつながれており、回転が可能である。また上下方向
に並進移動11が可能である。すなわち図4において6
はポールピース、7はヨーク、8はコイルであり電磁石
12を構成している。9は被着磁体1の中心軸2を支持
する支持部材であり、図示しない機構により上下に移動
可能になっている。また中心軸2にはプーリー10が取
りつけられて図示しない駆動ベルトが掛けられ、回転さ
せられる。
EXAMPLE As shown in FIG. 4, a magnetizing device having a Weiss type electromagnet 12 and a mechanism for supporting and rotating a magnetized body 1 having a concentric circle outside the magnetic pole was produced. The central axis 2 of the magnetized body of this device is connected to a synchronous motor by a drive belt and can rotate. Further, translational movement 11 is possible in the vertical direction. That is, 6 in FIG.
Is a pole piece, 7 is a yoke, and 8 is a coil, which constitutes an electromagnet 12. Reference numeral 9 is a support member that supports the central axis 2 of the magnetized body 1, and is vertically movable by a mechanism (not shown). Further, a pulley 10 is attached to the central shaft 2 and a drive belt (not shown) is hung on and rotated.

【0010】適用例1 上記の装置を用いて圧延加工した直径30cm、厚さ1
cmの未着磁のPr系希土類磁石を図4の装置に設置
し、100rpmで回転させた。磁極の中心を磁石の半
径12.5cmの部分が通過するようにした。この後、
電磁石を起動させ、0.1T/min.の速度で1.5
Tまで励磁し、1.5Tで1分間磁場を保持して、その
後減磁した。このようにして着磁された磁石を装置から
とりはずし、その表面磁場分布を測定したところ、半径
12.5cmの円環状に磁化されていた。半径12.5
cmの磁石表面の円盤垂直方向の磁場の平均値は0.3
Tで磁界の不均一は±0.008T以内であった。
Application Example 1 Diameter 30 cm and thickness 1 rolled by using the above apparatus
An unmagnetized Pr-based rare earth magnet having a size of 10 cm was installed in the apparatus shown in FIG. 4 and rotated at 100 rpm. A portion having a radius of 12.5 cm of the magnet passed through the center of the magnetic pole. After this,
The electromagnet was started, and 0.1 T / min. At the speed of 1.5
It was excited to T, the magnetic field was kept at 1.5 T for 1 minute, and then demagnetized. The magnet magnetized in this manner was removed from the apparatus, and the surface magnetic field distribution was measured. As a result, it was magnetized in an annular shape with a radius of 12.5 cm. Radius 12.5
The average value of the magnetic field in the direction perpendicular to the disk on the magnet surface of 0.3 cm is 0.3.
The non-uniformity of the magnetic field at T was within ± 0.008T.

【0011】適用例2 適用例1で述べた着磁の後、磁極の中心を磁石の半径
7.5cmの部分が通過するように磁石を平行移動し、
100rpmで回転させ、適用例1と同様な条件で着磁
した。ただし、電磁石に印加する電流は適用例1におけ
る場合と極性を反転させて励磁した。この結果、磁石は
半径12.5cmと半径7.5cmの円環状に極性の異
なる表面磁束密度を有するように磁化されていた。半径
12.5cmおよび7.5cmの磁石表面の円盤垂直方
向の磁場の平均値はそれぞれ0.3Tおよび−0.3T
で磁界の不均一は±0.008T以内であった。
Application Example 2 After the magnetization described in Application Example 1, the magnet is moved in parallel so that a portion having a radius of 7.5 cm of the magnet passes through the center of the magnetic pole,
It was rotated at 100 rpm and magnetized under the same conditions as in Application Example 1. However, the current applied to the electromagnet was excited with the polarity reversed from that in the first application example. As a result, the magnet was magnetized so as to have surface magnetic flux densities having different polarities in an annular shape having a radius of 12.5 cm and a radius of 7.5 cm. The average values of the magnetic field in the disk vertical direction on the magnet surface with a radius of 12.5 cm and 7.5 cm are 0.3 T and -0.3 T, respectively.
Therefore, the non-uniformity of the magnetic field was within ± 0.008T.

【0012】[0012]

【発明の効果】以上説明したように、本発明の着磁装置
により円周方向に均一な同心円の表面磁場分布を有する
磁石の着磁が可能になった。この磁石は回転損失の少な
い磁気ベアリング用磁石として有用であり、この着磁装
置は、エネルギー貯蔵フライホイールに用いられる磁気
ベアリング用大型磁石の着磁装置として特に有用であ
る。
As described above, the magnetizing device of the present invention has made it possible to magnetize a magnet having a concentric circular surface magnetic field distribution in the circumferential direction. This magnet is useful as a magnet for a magnetic bearing with less rotation loss, and this magnetizing device is particularly useful as a magnetizing device for a large magnet for a magnetic bearing used in an energy storage flywheel.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の着磁装置の原理を示す図FIG. 1 is a diagram showing the principle of a magnetizing device of the present invention.

【図2】本発明の着磁装置によって着磁した磁石の表面
磁束密度分布の例を示す図
FIG. 2 is a diagram showing an example of a surface magnetic flux density distribution of a magnet magnetized by the magnetizing device of the present invention.

【図3】従来の方法で図2と同様な磁石を作製しようと
した場合の磁石の構造を示す図
FIG. 3 is a diagram showing a structure of a magnet when a magnet similar to that shown in FIG. 2 is to be manufactured by a conventional method.

【図4】本発明の着磁装置の実施例を示す図FIG. 4 is a diagram showing an embodiment of a magnetizing device of the present invention.

【符号の説明】[Explanation of symbols]

1 被着磁体 2 中心軸 3,3A,3B 磁極 1 magnetized body 2 central axis 3, 3A, 3B magnetic pole

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 被着磁体である円盤状体または円環状体
をその中心軸の回りに回転させる機構と、前記円盤状体
または円環状体の回転面の一部を回転面の両側から回転
面を切って磁場を発生させる電磁石とからなることを特
徴とする磁石の着磁装置。
1. A mechanism for rotating a disk-shaped body or a ring-shaped body, which is a magnetized body, around its central axis, and a part of the rotation surface of the disk-shaped body or the ring-shaped body is rotated from both sides of the rotation surface. A magnet magnetizing device comprising an electromagnet that cuts a surface to generate a magnetic field.
【請求項2】 円盤状体または円環状体の中心軸の並進
移動機構を設けることを特徴とする請求項1記載の磁石
の着磁装置。
2. The magnetizing device according to claim 1, further comprising a translational movement mechanism of a central axis of the disk-shaped body or the annular body.
JP29662892A 1992-10-09 1992-10-09 Magnet magnetizing device Expired - Lifetime JP3271330B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29662892A JP3271330B2 (en) 1992-10-09 1992-10-09 Magnet magnetizing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29662892A JP3271330B2 (en) 1992-10-09 1992-10-09 Magnet magnetizing device

Publications (2)

Publication Number Publication Date
JPH06124833A true JPH06124833A (en) 1994-05-06
JP3271330B2 JP3271330B2 (en) 2002-04-02

Family

ID=17836009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29662892A Expired - Lifetime JP3271330B2 (en) 1992-10-09 1992-10-09 Magnet magnetizing device

Country Status (1)

Country Link
JP (1) JP3271330B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006049794A (en) * 2004-06-30 2006-02-16 Uchiyama Mfg Corp Method and equipment for polarizing tone wheel
CN104347261A (en) * 2014-10-10 2015-02-11 宁波金鸡强磁股份有限公司 Orientation device and orientation method for radiation ring magnet

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6582647B1 (en) 1998-10-01 2003-06-24 Littelfuse, Inc. Method for heat treating PTC devices
US6628498B2 (en) 2000-08-28 2003-09-30 Steven J. Whitney Integrated electrostatic discharge and overcurrent device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006049794A (en) * 2004-06-30 2006-02-16 Uchiyama Mfg Corp Method and equipment for polarizing tone wheel
CN104347261A (en) * 2014-10-10 2015-02-11 宁波金鸡强磁股份有限公司 Orientation device and orientation method for radiation ring magnet

Also Published As

Publication number Publication date
JP3271330B2 (en) 2002-04-02

Similar Documents

Publication Publication Date Title
JP3961032B2 (en) Magnetic bearing device for rotor shaft
WO1995020264A1 (en) Magnetic levitation device
US6365997B1 (en) Magnetic bearing and its use
JPH05180225A (en) Superconductive bearing device
JP3271330B2 (en) Magnet magnetizing device
JPH1012432A (en) Variable magnetic field type magnetic circuit
US20160380526A1 (en) Apparatus and method for in-situ charging of superconductors
JP2893291B2 (en) Braking device
JPH08296648A (en) Bearing device and its starting method
JP3554054B2 (en) Superconducting bearing device
JPH07312885A (en) Superconducting actuator
Fukuyama et al. An Improvement of the Static and Dynamic Characteristics of Superconducting Magnetic Bearings Using MPMG-YBaCuO
JP2799802B2 (en) Superconducting levitation type rotating device
JPH0773089B2 (en) Device for magnetizing layers, tapes, strips, sheets or the like containing magnetizable materials
JP2609190B2 (en) Internal polishing equipment
JPH07327338A (en) Superconducting levitation rotary system
JP3192207B2 (en) Magnetic bearing
JPS62114466A (en) Rotating plate with magnet
JP6774669B1 (en) Generator
JP2605200B2 (en) Superconducting bearing device
JP3897043B2 (en) Magnetic rotating device
EP0298566A2 (en) Method and apparatus for converting stationary magnetic energy into mechanical energy
JPH07107720A (en) Motor with discoid rotor section
JPH08250323A (en) Method of magnetizing superconductor in superconducting magnetic levitation device
JP3607213B2 (en) Fluctuating magnetic field generator

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20000620

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090125

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100125

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 11