JPH1012432A - Variable magnetic field type magnetic circuit - Google Patents

Variable magnetic field type magnetic circuit

Info

Publication number
JPH1012432A
JPH1012432A JP8185382A JP18538296A JPH1012432A JP H1012432 A JPH1012432 A JP H1012432A JP 8185382 A JP8185382 A JP 8185382A JP 18538296 A JP18538296 A JP 18538296A JP H1012432 A JPH1012432 A JP H1012432A
Authority
JP
Japan
Prior art keywords
magnetic field
magnetic
permanent magnet
magnet
yoke
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8185382A
Other languages
Japanese (ja)
Inventor
Takeshi Ohashi
健 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP8185382A priority Critical patent/JPH1012432A/en
Publication of JPH1012432A publication Critical patent/JPH1012432A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To make the intensity of magnetic field variable in a wide range by being comprised of a permanent magnet which is provided rotatably or movably and a magnetic yoke which has a linear part with a permanent magnet in its midway and an air gap at other predetermined position and allowing the permanent magnet to rotate or move so as to make a magnetic field in the air gap of the magnetic yoke to be vaiable. SOLUTION: A columnar permanent magnet 2 is rotated and driven on a columnar axis as a center, and a magnetic yoke 1 is provided with a linear part 1a with the magnet interposed in its midway and an air gap 4 with a predetermined spacing in the other part. Then, a magnetic flux generating from the magnet 2 at the time when the magnetizing direction of the magnet 2 is clockwise, passes through the yoke 1 and leaks to the air gap 4 of the yoke 1, forming a closed magnetic circuit for returning to the counter pole of the magnet 2. At this point, the intensity of magnetic field of the air gap 4 becomes the maximum. Further, as the magnet 2 is rotated gradually in its magnetizing direction, the flow of magnetic flux in the closed magnetic circuit becomes small gradually, and when the magnetizing direction becomes at 90 degrees against the closed magnetic circuit, the intensity thereof becomes zero.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、可変磁場型磁気回
路に関する。更に詳しくは、磁場強度が1T以下の場合
に用いて最適であり、磁場計測器・磁場配向・放電プラ
ズマ発生・鉄材吸引などに適用可能な、永久磁石を用い
た可変磁場型磁気回路に関する。
The present invention relates to a variable magnetic field type magnetic circuit. More specifically, the present invention relates to a variable magnetic field type magnetic circuit using a permanent magnet, which is optimally used when the magnetic field strength is 1T or less and is applicable to a magnetic field measuring device, magnetic field orientation, discharge plasma generation, iron material suction, and the like.

【0002】[0002]

【従来の技術】一般的に、永久磁石と磁性材により構成
された永久磁石磁気回路では、該回路の空隙に発生する
磁場は強度と方向が一定であり、変化させることができ
ない。永久磁石磁気回路の利用において、磁場固定で可
変でないことが汎用性に欠ける点の1つであり、利用上
の障害になることがあった。また、作業上の必要で、永
久磁石磁気回路に作業者が接する場合、磁場が存在して
いるため、鉄材、鉄製工具を近付けられないことや、身
体への磁場の影響が懸念されることなどの問題があっ
た。
2. Description of the Related Art Generally, in a permanent magnet magnetic circuit composed of a permanent magnet and a magnetic material, a magnetic field generated in a gap in the circuit has a constant strength and direction and cannot be changed. In the use of the permanent magnet magnetic circuit, the fact that the magnetic field is not fixed and not variable is one of the points lacking in versatility, which sometimes hinders the use. Also, when workers need to contact the permanent magnet magnetic circuit due to the presence of a magnetic field, it is necessary to work, and it is impossible to bring iron materials and tools made of iron close, and there is a concern that the magnetic field may affect the body. There was a problem.

【0003】一方、電磁石では、コイルに流す電流値を
変えることにより、磁場を可変にすることが可能であ
る。更に、電流を反転させれば、磁場方向を逆転するこ
ともでき、磁場強度可変や強い磁場(〜2T前後まで)
が容易に得られる利点がある。
On the other hand, in an electromagnet, the magnetic field can be varied by changing the value of a current flowing through a coil. Further, if the current is reversed, the direction of the magnetic field can be reversed, and the magnetic field strength can be changed or a strong magnetic field (up to about 2T) can be obtained.
Is easily obtained.

【0004】しかし、電磁石で十分な起磁力を得るため
には、コイルを多く巻き、起磁力を稼がなければならな
い。該コイルのため電磁石回路の体積は大きくなり、使
用空間の大きさに制限がある場合、電磁石を利用できな
いことが多い。また、必要磁場発生空間が大きい場合や
必要磁場強度が大きい場合、コイルに流す電流が多くな
るため、コイルの発熱や消費電力が無視できなくなり、
コイル電源の容量が大きくなり、高価になる。
However, in order to obtain a sufficient magnetomotive force with an electromagnet, it is necessary to increase the number of coils and increase the magnetomotive force. Because of the coil, the volume of the electromagnet circuit becomes large, and in the case where the size of the working space is limited, the electromagnet cannot be used in many cases. Also, when the required magnetic field generation space is large or the required magnetic field strength is large, the current flowing through the coil increases, so the heat generation and power consumption of the coil cannot be ignored.
The capacity of the coil power supply is large and expensive.

【0005】また、電磁石はポールピースにコイルを巻
き付けてなるが、磁場はポールピースに垂直な方向に発
生するので、例えば内筒空隙の軸方向に磁場が必要なと
きは適用できない。このような場合、空心コイルが適用
できるが、強い磁場を発生することは容易でない。例え
ば、該空心コイルで大きな空間に100mT以上の磁場
を発生することは不可能ではないが難しい。また、磁場
強度や発生磁場空間が大きくなった場合、コイル電流を
高くしなければならないため、コイル発熱や消費電力な
ど、通常の電磁石と同じ問題が生じる。
An electromagnet is formed by winding a coil around a pole piece. However, since a magnetic field is generated in a direction perpendicular to the pole piece, it cannot be applied when a magnetic field is required in the axial direction of the inner cylinder space. In such a case, an air-core coil can be applied, but it is not easy to generate a strong magnetic field. For example, it is difficult, if not impossible, to generate a magnetic field of 100 mT or more in a large space with the air-core coil. In addition, when the magnetic field strength and the generated magnetic field space are increased, the coil current must be increased, which causes the same problems as ordinary electromagnets such as coil heat generation and power consumption.

【0006】このように、電磁石では種々の問題がある
ため、永久磁石を用いた可変磁場磁気回路が考案されて
いる。例えば、図5に示すように、対向する一対の永久
磁石51,52の空隙距離を変えることにより、磁場を
可変にすることができる。該磁気回路では、空隙距離を
大きくすると磁場強度は減少し、空隙距離を小さくする
と磁場強度は増加する。磁場強度の変化は、空隙距離に
対して比例するのではなく、図6に示すように、空隙距
離が短くなると急激に磁場強度は増加し、空隙距離が長
くなると磁場強度は漸減し、ある程度以上空隙距離を広
げても磁場強度はあまり小さくならない。
As described above, since there are various problems in the electromagnet, a variable magnetic field magnetic circuit using a permanent magnet has been devised. For example, as shown in FIG. 5, the magnetic field can be made variable by changing the gap distance between the pair of opposed permanent magnets 51 and 52. In the magnetic circuit, the magnetic field strength decreases as the gap distance increases, and the magnetic field strength increases as the gap distance decreases. The change in the magnetic field strength is not proportional to the air gap distance, but as shown in FIG. 6, the magnetic field strength sharply increases as the air gap distance decreases, and the magnetic field strength decreases gradually as the air gap distance increases, and exceeds a certain level. Even if the air gap distance is increased, the magnetic field intensity does not decrease so much.

【0007】しかし、上記可変磁場磁気回路では、磁場
発生方向を反転することは不可能である。また、空隙距
離を大きくすると、空隙内の磁場均一度は低下する。し
たがって、該可変磁場磁気回路は、磁場可変範囲が小さ
くて済む場合はよいが、大きい場合には不適である。
However, in the above-mentioned variable magnetic field magnetic circuit, it is impossible to reverse the magnetic field generation direction. When the gap distance is increased, the uniformity of the magnetic field in the gap decreases. Therefore, the variable magnetic field magnetic circuit is good when the magnetic field variable range is small, but unsuitable when the magnetic field variable range is large.

【0008】図7は、ダイポールリングを二重に入れた
構造で組み合わせた、二重ダイポールリング磁気回路を
示す。本磁気回路は、内筒ダイポールリング回路71が
内部空間に発生する径方向磁場強度と、外筒ダイポール
リング回路72が内部空間に発生する径方向磁場強度を
同一にして、外筒空間内に内筒を挿入設置する。内筒と
外筒を互いに反対方向に回転すると、磁場方向を変化さ
せることなく、磁場強度を+から−まで変化させること
ができる。該磁気回路では、内筒と外筒の磁場強度が加
算されるため、可変磁場強度範囲が広くなる。
FIG. 7 shows a double dipole ring magnetic circuit in which dipole rings are combined in a double structure. The present magnetic circuit is configured such that the radial magnetic field strength generated in the internal space by the inner cylinder dipole ring circuit 71 and the radial magnetic field strength generated in the internal space by the outer cylinder dipole ring circuit 72 are the same, and the inner magnetic field is formed in the outer cylindrical space. Insert and install the tube. When the inner cylinder and the outer cylinder are rotated in opposite directions, the magnetic field strength can be changed from + to-without changing the magnetic field direction. In the magnetic circuit, since the magnetic field strengths of the inner cylinder and the outer cylinder are added, the variable magnetic field strength range is widened.

【0009】しかし、該磁気回路では、外筒内に内筒を
入れ込む必要があるため、外筒の内径が大きくなり、磁
気回路全体が大きくなるとともに、使用磁石重量も増加
する。特に、該ダイポールリング回路の磁石部は複雑で
あるため、磁石のみで構造体を構成することは難しい。
磁石部を保持するヨーク構造体を、外側面に配置するた
め、外径は大きくなりやすい。
However, in the magnetic circuit, it is necessary to insert the inner cylinder into the outer cylinder, so that the inner diameter of the outer cylinder becomes large, the whole magnetic circuit becomes large, and the weight of the magnet used increases. In particular, since the magnet portion of the dipole ring circuit is complicated, it is difficult to form a structure using only magnets.
Since the yoke structure holding the magnet portion is arranged on the outer surface, the outer diameter is likely to be large.

【0010】したがって、外筒の内径は必要以上に大き
くする必要がある。また、外筒内部に内筒を入れ込み回
転するため、回転機構が複雑で規模が大きくなる。ま
た、磁場強度ゼロの時、内筒と外筒の逆方向磁場を内部
で対向させるため、反発力も大きくなり、回路保持構造
強度を増し、回転トルクも大きくしなければならない。
したがって、磁場可変範囲は広く取れるが、構造上・機
構上で種々の問題点が存在する。
Therefore, it is necessary to increase the inner diameter of the outer cylinder more than necessary. In addition, since the inner cylinder is inserted into the outer cylinder and rotated, the rotation mechanism is complicated and the scale becomes large. Further, when the magnetic field strength is zero, the opposite magnetic fields of the inner cylinder and the outer cylinder are internally opposed to each other, so that the repulsion force increases, the strength of the circuit holding structure increases, and the rotation torque must also increase.
Therefore, although the magnetic field variable range can be widened, there are various problems in structure and mechanism.

【0011】[0011]

【発明が解決しようとする課題】上述のように、広い範
囲で磁場強度を可変にでき、極性を変えることができ
る、構造・駆動の比較的簡単な永久磁石磁気回路が望ま
れている。そこで本発明は、磁場発生方向が一定で、磁
場強度が+から−まで広い範囲で可変にでき、極性を変
えることができる、構造の簡単な永久磁石を用いた可変
磁場磁気回路を提供することを目的とする。
As described above, there is a need for a permanent magnet magnetic circuit having a relatively simple structure and drive capable of varying the magnetic field strength and changing the polarity over a wide range. Accordingly, the present invention provides a variable magnetic field magnetic circuit using a permanent magnet having a simple structure, in which the direction of magnetic field generation is constant, the magnetic field strength can be varied in a wide range from + to-, and the polarity can be changed. With the goal.

【0012】[0012]

【課題を解決するための手段】本願の請求項1記載の発
明は、回転又は移動可能に設けられた永久磁石と、途中
で該永久磁石を挟み込む直線部を有し、且つ他の所定位
置に空隙を有する磁性ヨークとから成り、前記永久磁石
を回転又は移動させることにより前記磁性ヨークの前記
空隙に発生する磁場を可変にすることを特徴とする可変
磁場型磁気回路を提供する。
The invention according to claim 1 of the present application has a permanent magnet rotatably or movably provided, a linear portion sandwiching the permanent magnet in the middle, and is provided at another predetermined position. A variable magnetic field type magnetic circuit, comprising: a magnetic yoke having an air gap, wherein the magnetic field generated in the air gap of the magnetic yoke is made variable by rotating or moving the permanent magnet.

【0013】本願の請求項2記載の発明は、前記磁性ヨ
ークが複数個の永久磁石を並列に挟み込む複数の直線部
を有し、各永久磁石の回転位置又は移動位置を調整する
ことにより前記空隙に発生する磁場を可変にすることを
特徴とする請求項1記載の可変磁場型磁気回路を提供す
る。
According to a second aspect of the present invention, the magnetic yoke has a plurality of linear portions sandwiching a plurality of permanent magnets in parallel, and the rotational position or the moving position of each of the permanent magnets is adjusted to adjust the gap. 2. A variable magnetic field type magnetic circuit according to claim 1, wherein the magnetic field generated in said variable magnetic field is variable.

【0014】本願の請求項3記載の発明は、前記永久磁
石は円柱状をなし、磁化方向が円柱軸に対して垂直であ
り、且つ前記磁性ヨークの前記直線部に対して垂直な円
柱軸を中心にして回転可能に設けられていることを特徴
とする請求項1又は2記載の可変磁場型磁気回路を提供
する。
According to the invention of claim 3 of the present application, the permanent magnet has a cylindrical shape, the magnetization direction is perpendicular to the cylindrical axis, and the permanent magnet has a cylindrical axis perpendicular to the linear portion of the magnetic yoke. 3. The variable magnetic field type magnetic circuit according to claim 1, wherein the variable magnetic field type magnetic circuit is provided so as to be rotatable about a center.

【0015】本願の請求項4記載の発明は、前記永久磁
石は前記磁性ヨークの前記直線部に平行な方向に磁化さ
れており、且つ前記直線部に垂直な方向に移動可能に設
けられていることを特徴とする請求項1又は2記載の可
変磁場型磁気回路を提供する。
According to a fourth aspect of the present invention, the permanent magnet is magnetized in a direction parallel to the linear portion of the magnetic yoke, and is provided so as to be movable in a direction perpendicular to the linear portion. A variable magnetic field type magnetic circuit according to claim 1 or 2, is provided.

【0016】本発明の可変磁場型磁気回路は、磁性ヨー
クに挟み込まれた永久磁石の回転又は移動により、磁性
ヨークに設けられた空隙の磁場強度を可変にするもので
ある。
In the variable magnetic field type magnetic circuit according to the present invention, the magnetic field strength of the air gap provided in the magnetic yoke is made variable by rotating or moving a permanent magnet sandwiched between the magnetic yokes.

【0017】[0017]

【発明の実施の形態】図1は、本発明に係る可変磁場型
磁気回路の一実施形態を示す。永久磁石2は円柱状であ
り、円柱軸に垂直な方向に磁化されている。永久磁石2
は、図示しない回転駆動手段により水平な該円柱軸を中
心にして回転駆動される。磁性ヨーク1は例えば鉄製で
あり、永久磁石2を途中で挟み込む直線部1aを有して
おり、他の場所には所定間隔の空隙4を有している。こ
の磁性ヨーク1は、永久磁石2及び空隙4を介して四角
状の閉磁路を形成する。
FIG. 1 shows an embodiment of a variable magnetic field type magnetic circuit according to the present invention. The permanent magnet 2 has a columnar shape, and is magnetized in a direction perpendicular to the column axis. Permanent magnet 2
Is driven to rotate about the horizontal cylindrical axis by a rotation driving means (not shown). The magnetic yoke 1 is made of iron, for example, and has a linear portion 1a that sandwiches the permanent magnet 2 in the middle, and has a gap 4 at a predetermined interval in other places. The magnetic yoke 1 forms a square closed magnetic path via the permanent magnet 2 and the air gap 4.

【0018】次に、上記可変磁場型磁気回路における磁
場の可変動作について、図2の模式図を参照しながら説
明する。まず、最初は永久磁石2の磁化方向を右向きに
しておく(図2(a))。このとき永久磁石2より発生
する磁束は、磁性ヨーク1中を通り、磁性ヨーク1の空
隙4空間に滲み出し、反対側ヨークに再度侵入して永久
磁石2の反対極に戻るような閉磁路を形成する。この
時、空隙4に発生する磁場は、閉磁路に平行且つ左向き
となり、磁場強度は最大となる。
Next, the variable operation of the magnetic field in the variable magnetic field type magnetic circuit will be described with reference to the schematic diagram of FIG. First, the magnetization direction of the permanent magnet 2 is first set to the right (FIG. 2A). At this time, the magnetic flux generated from the permanent magnet 2 passes through the magnetic yoke 1, seeps into the space 4 of the magnetic yoke 1, enters the opposite yoke again, and returns to the opposite magnetic pole of the permanent magnet 2. Form. At this time, the magnetic field generated in the air gap 4 is parallel to the closed magnetic circuit and directed leftward, and the magnetic field intensity becomes maximum.

【0019】上記向きから永久磁石2を回転させて磁化
方向を徐々に回転させることにより、磁性ヨーク1を通
って閉磁路を形成する磁束の流れは、永久磁石2の磁化
方向と閉磁路の向きとのずれが大きくなるに従って徐々
に少なくなっていく(図2(b))。そして、永久磁石
2の磁化方向が閉磁路に対して90°に直行したとき、
永久磁石2の左右のヨークに流れる磁束量は等しくなる
ので、空隙4中に発生する磁場強度は“0”となる(図
2(c))。
By rotating the permanent magnet 2 from the above direction to gradually rotate the magnetization direction, the flow of the magnetic flux forming the closed magnetic path through the magnetic yoke 1 is determined by the magnetization direction of the permanent magnet 2 and the direction of the closed magnetic path. And gradually decreases as the deviation from (Fig. 2 (b)) increases. When the magnetization direction of the permanent magnet 2 is perpendicular to the closed magnetic path at 90 °,
Since the amount of magnetic flux flowing in the left and right yokes of the permanent magnet 2 becomes equal, the intensity of the magnetic field generated in the gap 4 becomes “0” (FIG. 2C).

【0020】永久磁石2を更に回転させると、空隙4の
磁場は反転して、逆方向(右側)への磁場強度が徐々に
強くなる。永久磁石2が最初の位置から180°回転し
て左向きになったとき、空隙4における逆方向磁場強度
は最大となる(図2(d))。
When the permanent magnet 2 is further rotated, the magnetic field in the gap 4 is reversed, and the magnetic field strength in the opposite direction (right side) gradually increases. When the permanent magnet 2 rotates 180 ° from the initial position and turns leftward, the reverse magnetic field strength in the gap 4 becomes maximum (FIG. 2D).

【0021】以上のように、永久磁石の回転に対応し
て、空隙4の磁場強度を可変にでき、且つ方向を反転す
ることが可能となる。また、該磁気回路ではヨーク空隙
中に磁場が発生するため、磁場方向は常に一定であり、
その向きが反転するのみである。
As described above, the strength of the magnetic field in the air gap 4 can be changed and the direction can be reversed in accordance with the rotation of the permanent magnet. Further, in the magnetic circuit, since a magnetic field is generated in the gap of the yoke, the direction of the magnetic field is always constant,
Only its direction is reversed.

【0022】図3は、本発明に係る可変磁場型磁気回路
の他の実施形態を示す。この可変磁場型磁気回路は、基
本的には図1に示した磁気回路と同一構成であるが、ほ
ぼ同等特性の永久磁石12及び13を設け、磁性ヨーク
11は両永久磁石を並列に挟み込む直線部11a,11
bを有し、且つ他の所定の位置に空隙14が設けられて
いる。
FIG. 3 shows another embodiment of the variable magnetic field type magnetic circuit according to the present invention. This variable magnetic field type magnetic circuit has basically the same configuration as the magnetic circuit shown in FIG. 1, but has permanent magnets 12 and 13 having substantially the same characteristics, and a magnetic yoke 11 is a straight line sandwiching both permanent magnets in parallel. Parts 11a, 11
b, and a gap 14 is provided at another predetermined position.

【0023】上記可変磁場型磁気回路は、ほぼ同等特性
の永久磁石各々を回転することにより、空隙14中の磁
場強度を可変にすることが可能である。該磁気回路での
各永久磁石の回転位置と空隙14中に発生する磁場方向
及び強度との関係は、永久磁石が1つの時より複雑にな
る。
The variable magnetic field type magnetic circuit can change the magnetic field strength in the air gap 14 by rotating each of the permanent magnets having substantially the same characteristics. The relationship between the rotational position of each permanent magnet in the magnetic circuit and the direction and strength of the magnetic field generated in the air gap 14 is more complicated than when there is only one permanent magnet.

【0024】次に、上記可変磁場型磁気回路における磁
場の可変動作について、図4の模式図を参照しながら説
明する。まず、最初は永久磁石12,13はどちらも磁
性ヨークの直線部11a,11bに平行な方向右側に向
けておく(図4(a))。この時、両永久磁石から発生
する磁束は両方とも空隙14を含む磁路方向に回り、閉
磁路を形成する。この時、空隙14には左側向きに最大
磁場が得られる。
Next, the variable operation of the magnetic field in the variable magnetic field type magnetic circuit will be described with reference to the schematic diagram of FIG. First, both the permanent magnets 12 and 13 are directed rightward in a direction parallel to the linear portions 11a and 11b of the magnetic yoke (FIG. 4A). At this time, both magnetic fluxes generated from both permanent magnets rotate in the direction of the magnetic path including the air gap 14 to form a closed magnetic path. At this time, a maximum magnetic field is obtained in the gap 14 in the leftward direction.

【0025】次に、例えば永久磁石13を固定してお
き、永久磁石12を回転させると、永久磁石12,13
の発生する磁束のうち、空隙14を含む閉磁路を通る磁
束は徐々に減少し、直線部11aから直線部11bへ至
る閉磁路を通る磁束が増加する(図4(b))。何故な
ら、永久磁石12が回転するに従って磁束が直線部11
aを左側へ流れやすくなり、且つ空隙14を含む磁路の
方が磁気抵抗が大きいためである。そして、永久磁石1
2を180°回転して磁化方向が直線部11aに平行な
方向左側に向いた時、空隙14に発生する磁場はほぼ
“0”となる(図4(c))。この後、永久磁石12を
更に同一方向に回転させれば空隙14には左側向きの磁
場が徐々に大きくなり、360°回転して最初の位置に
戻ったときに、空隙14には再び左側向きに最大磁場が
得られる。
Next, for example, when the permanent magnet 13 is fixed and the permanent magnet 12 is rotated, the permanent magnets 12 and 13 are rotated.
Of the magnetic fluxes generated, the magnetic flux passing through the closed magnetic path including the air gap 14 gradually decreases, and the magnetic flux passing through the closed magnetic path from the linear portion 11a to the linear portion 11b increases (FIG. 4B). Because, as the permanent magnet 12 rotates, the magnetic flux
This is because it is easier to flow a to the left and the magnetic path including the air gap 14 has a higher magnetic resistance. And the permanent magnet 1
When the direction of magnetization is turned 180 ° and turned to the left in the direction parallel to the linear portion 11a, the magnetic field generated in the gap 14 becomes substantially “0” (FIG. 4C). Thereafter, when the permanent magnet 12 is further rotated in the same direction, the leftward magnetic field gradually increases in the gap 14, and when the rotor rotates 360 ° and returns to the initial position, the gap 14 has the leftward direction again. A maximum magnetic field is obtained.

【0026】次に、図4(c)の状態から、今まで回転
していた永久磁石12を最初の位置から180°回転さ
せた状態、すなわち磁化方向が直線部11aに平行な方
向左向きで固定し、今まで固定していた永久磁石13を
回転させる(図4(d))。すると、空隙14には、今
までと逆方向の磁場(右側方向)が発生し、永久磁石1
3の回転により徐々に磁場強度が増加する。永久磁石1
3を180°回転させて磁場方向が直線部11bに平行
な方向左向きになった時、最初と方向が逆で絶対値の等
しい磁場が、空隙14中に得られる。
Next, from the state shown in FIG. 4C, the permanent magnet 12 which has been rotated until now is rotated by 180 ° from the initial position, that is, the magnetization direction is fixed to the left parallel to the linear portion 11a. Then, the permanent magnet 13 fixed so far is rotated (FIG. 4D). Then, a magnetic field in the opposite direction (rightward direction) is generated in the gap 14, and the permanent magnet 1
The rotation of 3 gradually increases the magnetic field strength. Permanent magnet 1
When the direction of the magnetic field is turned to the left in the direction parallel to the straight line portion 11b by rotating 3 by 180 °, a magnetic field having the same absolute value as the initial direction is obtained in the air gap.

【0027】図3の可変磁場型磁気回路の場合、上記の
他にも磁石回転方法があり、上下2個の磁石を同時に同
一方向か逆方向に回転しても、空隙14中の磁場を可変
にできる。
In the case of the variable magnetic field type magnetic circuit shown in FIG. 3, there is another method of rotating the magnet, and even if the upper and lower two magnets are simultaneously rotated in the same or opposite directions, the magnetic field in the air gap 14 can be changed. Can be.

【0028】図3に示したような磁石を2個にした場合
の利点は、ヨーク空隙に対する永久磁石の漏れ磁場の影
響を小さくできることである。図1に示した磁石1個の
場合、永久磁石を軸方向に対して90°方向に向けた
時、空隙磁場強度は0となる。しかし、磁石の磁極面が
空隙方向を向いているため、該磁石と空隙空間の距離が
近い場合、該空隙空間に永久磁石よりの漏洩磁場が発生
し、完全に磁場が0にならない場合がある。
An advantage of using two magnets as shown in FIG. 3 is that the influence of the leakage magnetic field of the permanent magnet on the yoke gap can be reduced. In the case of one magnet shown in FIG. 1, when the permanent magnet is oriented at 90 ° with respect to the axial direction, the air gap magnetic field strength becomes zero. However, since the magnetic pole surface of the magnet faces the gap direction, if the distance between the magnet and the gap space is short, a leak magnetic field from the permanent magnet is generated in the gap space, and the magnetic field may not be completely zero. .

【0029】これを防ぐには、永久磁石と空隙空間の距
離を広げる必要がある。しかし、この場合、使用ヨーク
重量が増し、磁気回路が大型になる。一方、磁石2個を
使用する磁気回路では、磁石の動きは少し複雑になる
が、一方の磁石を回転する時、常に磁石−磁石間の磁路
が存在するため、磁石−空隙間の磁気抵抗の高い方向に
磁束が漏れることは少ない。
In order to prevent this, it is necessary to increase the distance between the permanent magnet and the gap space. However, in this case, the weight of the used yoke increases, and the magnetic circuit becomes large. On the other hand, in a magnetic circuit using two magnets, the movement of the magnet is slightly complicated, but when rotating one of the magnets, there is always a magnetic path between the magnet and the magnet. Magnetic flux is less likely to leak in the direction of high.

【0030】したがって、磁石が90°方向を向いた時
も、磁石から空隙への磁束の直接漏洩は少なく、確実に
空隙空間の磁場強度を0にできる。磁石2個を使用する
場合、既に述べたように基本的に3通りの回転モードが
存在するが、磁石を同時に同方向に回転することは、上
記のような理由で好ましくない。
Therefore, even when the magnet is oriented in the 90 ° direction, direct leakage of the magnetic flux from the magnet to the gap is small, and the magnetic field intensity in the gap space can be reliably reduced to zero. When two magnets are used, there are basically three rotation modes as described above. However, rotating the magnets simultaneously in the same direction is not preferable for the above-described reason.

【0031】磁石の個数は、1個の場合と2個の場合に
ついて開示したが、勿論3個以上でもよい。
The number of magnets has been disclosed for one and two magnets, but may be three or more.

【0032】上記のように永久磁石を回転することによ
り起磁力を可変にするだけでなく、永久磁石をヨーク軸
にほぼ垂直方向に挿入・引き抜きして、起磁力を変化さ
せてもよい。例えば図1に示した可変磁場型磁気回路に
おいて、永久磁石2の磁場方向が直線部1aに平行な方
向右向き又は左向きに固定されていて、直線部1aに垂
直な方向に移動可能な構成にすればよい。
In addition to making the magnetomotive force variable by rotating the permanent magnet as described above, the magnetomotive force may be changed by inserting and removing the permanent magnet in a direction substantially perpendicular to the yoke axis. For example, in the variable magnetic field type magnetic circuit shown in FIG. 1, the direction of the magnetic field of the permanent magnet 2 is fixed to the direction parallel to the linear portion 1a to the right or to the left, and can be moved in the direction perpendicular to the linear portion 1a. I just need.

【0033】ただし、磁石が1個だけの場合、磁石全体
が一方向に着磁されている磁石の抜き差しだけでは、磁
場強度は変えられるが、磁場方向(極性)を変えること
は困難である。この場合、1個の磁石を右方向と左方向
の2極に着磁し、該磁石を挿入・引き抜きして直線的に
変化させれば、磁場強度と極性を変化させることが可能
である。また、磁石が2個以上の場合は、回転型の磁石
と同様に幾つかの駆動モードが考えられるが、各磁石を
同時に又は個別に移動することにより、磁場強度と磁場
極性を変化させることが可能である。
However, when there is only one magnet, the magnetic field strength can be changed only by inserting and removing the magnet in which the entire magnet is magnetized in one direction, but it is difficult to change the magnetic field direction (polarity). In this case, it is possible to change the magnetic field strength and the polarity by magnetizing one magnet in two poles in the right and left directions, and inserting and extracting the magnet and changing the magnet linearly. When there are two or more magnets, several drive modes are conceivable as in the case of rotary magnets.However, it is possible to change the magnetic field strength and magnetic field polarity by moving each magnet simultaneously or individually. It is possible.

【0034】永久磁石の回転・移動はモータ等で駆動す
ればよく、駆動源は電気、油圧、空圧等、特に限定され
ない。なお、モータで駆動する場合、モータで直接磁石
を駆動してもよいし、減速機を入れてモータの必要トル
クを下げてもよい。また、複数個の磁石を使用する場
合、1個のモータで回転することも可能であるが、磁石
それぞれを複数個のモータで回転する方が、各磁石を精
密に回転制御可能なので望ましい。
The rotation and movement of the permanent magnet may be driven by a motor or the like, and the drive source is not particularly limited, such as electric, hydraulic, or pneumatic. In the case of driving by a motor, the magnet may be driven directly by the motor, or a reduction gear may be provided to reduce the required torque of the motor. When a plurality of magnets are used, it is possible to rotate them with one motor. However, it is preferable to rotate each magnet with a plurality of motors because the rotation of each magnet can be precisely controlled.

【0035】上記可変磁場型磁気回路は、磁気回路とし
てみた場合、起磁力発生源がコイルではなく永久磁石で
ある点以外は基本的に電磁石と同一構成である。したが
って、電磁石と同一の使用方法が可能である。発生磁場
が同一のとき、起磁力源として永久磁石を使用した方
が、磁気回路の大きさが小さくできる。また、電力を消
費しないため、熱発生を心配する必要がなく、経済的に
も優れている。ただし、普通に空隙中に発生可能な磁場
強度は、空隙距離にも依存するが、概ね最大で1T程度
である。
When viewed as a magnetic circuit, the variable magnetic field type magnetic circuit has basically the same configuration as the electromagnet except that the magnetomotive force generating source is not a coil but a permanent magnet. Therefore, the same usage as the electromagnet is possible. When the generated magnetic field is the same, the size of the magnetic circuit can be reduced by using a permanent magnet as the magnetomotive force source. In addition, since power is not consumed, there is no need to worry about heat generation, which is economically excellent. However, the magnetic field intensity that can be normally generated in the air gap depends on the air gap distance, but is generally at most about 1T.

【0036】[0036]

【発明の効果】以上説明した通り本発明によれば、磁場
強度可変で磁場方向且つ極性反転が可能な可変磁場型磁
気回路が実現できた。
As described above, according to the present invention, a variable magnetic field type magnetic circuit capable of changing the magnetic field intensity and inverting the direction of the magnetic field and inverting the polarity can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の可変磁場型磁気回路の一実施形態を示
す斜視図である。
FIG. 1 is a perspective view showing one embodiment of a variable magnetic field type magnetic circuit of the present invention.

【図2】図1の可変磁場型磁気回路の磁場可変動作を示
す説明図である。
FIG. 2 is an explanatory diagram showing a magnetic field variable operation of the variable magnetic field type magnetic circuit of FIG. 1;

【図3】本発明の可変磁場型磁気回路の他の実施形態を
示す斜視図図である。
FIG. 3 is a perspective view showing another embodiment of the variable magnetic field type magnetic circuit of the present invention.

【図4】図3の可変磁場型磁気回路の磁場可変動作を示
す説明図である。
FIG. 4 is an explanatory diagram showing a magnetic field variable operation of the variable magnetic field type magnetic circuit of FIG. 3;

【図5】従来の可変磁場型磁気回路の一例示す説明図で
ある。
FIG. 5 is an explanatory diagram showing an example of a conventional variable magnetic field type magnetic circuit.

【図6】図5の可変磁場型磁気回路における空隙間距離
と磁場強度の関係を示すグラフである。
6 is a graph showing a relationship between a gap distance and a magnetic field strength in the variable magnetic field type magnetic circuit of FIG. 5;

【図7】二重ダイポールリング磁気回路の一例を示す斜
視図である。
FIG. 7 is a perspective view showing an example of a double dipole ring magnetic circuit.

【符号の説明】[Explanation of symbols]

1,11 磁性ヨーク 1a,11a,11b 直線部 2,12,13 永久磁石 4,14 空隙 1,11 Magnetic yokes 1a, 11a, 11b Linear part 2,12,13 Permanent magnet 4,14 Air gap

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 回転又は移動可能に設けられた永久磁石
と、途中で該永久磁石を挟み込む直線部を有し、且つ他
の所定位置に空隙を有する磁性ヨークとから成り、前記
永久磁石を回転又は移動させることにより前記磁性ヨー
クの前記空隙に発生する磁場を可変にすることを特徴と
する可変磁場型磁気回路。
1. A permanent magnet rotatably or movably provided, and a magnetic yoke having a linear portion sandwiching the permanent magnet in the middle and having a gap at another predetermined position, and rotating the permanent magnet. Alternatively, the variable magnetic field type magnetic circuit is characterized in that a magnetic field generated in the gap of the magnetic yoke is changed by moving the magnetic field.
【請求項2】 前記磁性ヨークが複数個の永久磁石を並
列に挟み込む複数の直線部を有し、各永久磁石の回転位
置又は移動位置を調整することにより前記空隙に発生す
る磁場を可変にすることを特徴とする請求項1記載の可
変磁場型磁気回路。
2. The magnetic yoke has a plurality of linear portions sandwiching a plurality of permanent magnets in parallel, and adjusts a rotation position or a movement position of each permanent magnet to change a magnetic field generated in the gap. The variable magnetic field type magnetic circuit according to claim 1, wherein:
【請求項3】 前記永久磁石は円柱状をなし、磁化方向
が円柱軸に対して垂直であり、且つ前記磁性ヨークの前
記直線部に対して垂直な円柱軸を中心にして回転可能に
設けられていることを特徴とする請求項1又は2記載の
可変磁場型磁気回路。
3. The permanent magnet has a cylindrical shape, a magnetization direction is perpendicular to a cylindrical axis, and is provided rotatably about a cylindrical axis perpendicular to the linear portion of the magnetic yoke. 3. The variable magnetic field type magnetic circuit according to claim 1, wherein:
【請求項4】 前記永久磁石は前記磁性ヨークの前記直
線部に平行な方向に磁化されており、且つ前記直線部に
垂直な方向に移動可能に設けられていることを特徴とす
る請求項1又は2記載の可変磁場型磁気回路。
4. The magnetic yoke according to claim 1, wherein the permanent magnet is magnetized in a direction parallel to the linear portion of the magnetic yoke and is movable in a direction perpendicular to the linear portion. Or the variable magnetic field type magnetic circuit according to 2.
JP8185382A 1996-06-26 1996-06-26 Variable magnetic field type magnetic circuit Pending JPH1012432A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8185382A JPH1012432A (en) 1996-06-26 1996-06-26 Variable magnetic field type magnetic circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8185382A JPH1012432A (en) 1996-06-26 1996-06-26 Variable magnetic field type magnetic circuit

Publications (1)

Publication Number Publication Date
JPH1012432A true JPH1012432A (en) 1998-01-16

Family

ID=16169836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8185382A Pending JPH1012432A (en) 1996-06-26 1996-06-26 Variable magnetic field type magnetic circuit

Country Status (1)

Country Link
JP (1) JPH1012432A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007129050A (en) * 2005-11-02 2007-05-24 Japan Science & Technology Agency Magnetic circuit of permanent magnet, and permanent magnet device using same
JP2007215583A (en) * 2006-02-14 2007-08-30 Hitachi Metals Ltd Magnetic field control method and magnetic field generating device
WO2009040892A1 (en) * 2007-09-26 2009-04-02 Canon Anelva Corporation Magnet assembly capable of generating magnetic field whose direction is uniform and changeable and sputtering device using same
CN103247407A (en) * 2013-05-17 2013-08-14 中国科学院物理研究所 Magnetic field generator
CN104376956A (en) * 2013-08-12 2015-02-25 上海浩灵磁电器件有限公司 Switch-controllable and magnetic field strength-adjustable permanent magnet device
JP2018088369A (en) * 2016-11-29 2018-06-07 株式会社メルビル Sample holder
CN112447355A (en) * 2019-09-03 2021-03-05 北京中科三环高技术股份有限公司 Permanent magnet device
CN112967857A (en) * 2020-04-17 2021-06-15 北京中科三环高技术股份有限公司 Permanent magnet device
JP2021515391A (en) * 2018-02-23 2021-06-17 マグスウィッチ テクノロジー ワールドワイド プロプライエタリー リミテッドMagswitch Technology Worldwide Pty Ltd. Methods for engaging variable field magnetic couplers and ferromagnetic workpieces
CN114300215A (en) * 2021-12-31 2022-04-08 中国铁道科学研究院集团有限公司 Halbach array device with adjustable magnetic field
US11651883B2 (en) 2017-06-08 2023-05-16 Magswitch Technology Worldwide Pty Ltd. Electromagnet-switchable permanent magnet device
CN117063027A (en) * 2021-04-01 2023-11-14 三菱电机株式会社 Magnetic field applying device
US11839954B2 (en) 2017-04-27 2023-12-12 Magswitch Technology, Inc. Magnetic coupling device with at least one of a sensor arrangement and a degauss capability
US11901142B2 (en) 2017-04-27 2024-02-13 Magswitch Technology, Inc. Variable field magnetic couplers and methods for engaging a ferromagnetic workpiece

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007129050A (en) * 2005-11-02 2007-05-24 Japan Science & Technology Agency Magnetic circuit of permanent magnet, and permanent magnet device using same
JP2007215583A (en) * 2006-02-14 2007-08-30 Hitachi Metals Ltd Magnetic field control method and magnetic field generating device
WO2009040892A1 (en) * 2007-09-26 2009-04-02 Canon Anelva Corporation Magnet assembly capable of generating magnetic field whose direction is uniform and changeable and sputtering device using same
CN103247407A (en) * 2013-05-17 2013-08-14 中国科学院物理研究所 Magnetic field generator
CN104376956A (en) * 2013-08-12 2015-02-25 上海浩灵磁电器件有限公司 Switch-controllable and magnetic field strength-adjustable permanent magnet device
JP2018088369A (en) * 2016-11-29 2018-06-07 株式会社メルビル Sample holder
US11850708B2 (en) 2017-04-27 2023-12-26 Magswitch Technology, Inc. Magnetic coupling device with at least one of a sensor arrangement and a degauss capability
US11901142B2 (en) 2017-04-27 2024-02-13 Magswitch Technology, Inc. Variable field magnetic couplers and methods for engaging a ferromagnetic workpiece
US11901141B2 (en) 2017-04-27 2024-02-13 Magswitch Technology, Inc. Variable field magnetic couplers and methods for engaging a ferromagnetic workpiece
US11839954B2 (en) 2017-04-27 2023-12-12 Magswitch Technology, Inc. Magnetic coupling device with at least one of a sensor arrangement and a degauss capability
US11651883B2 (en) 2017-06-08 2023-05-16 Magswitch Technology Worldwide Pty Ltd. Electromagnet-switchable permanent magnet device
US11837402B2 (en) 2017-06-08 2023-12-05 Magswitch Technology, Inc. Electromagnet-switchable permanent magnet device
JP2021515391A (en) * 2018-02-23 2021-06-17 マグスウィッチ テクノロジー ワールドワイド プロプライエタリー リミテッドMagswitch Technology Worldwide Pty Ltd. Methods for engaging variable field magnetic couplers and ferromagnetic workpieces
CN112447355A (en) * 2019-09-03 2021-03-05 北京中科三环高技术股份有限公司 Permanent magnet device
CN112967857B (en) * 2020-04-17 2023-12-15 北京中科三环高技术股份有限公司 Permanent magnet device
CN112967857A (en) * 2020-04-17 2021-06-15 北京中科三环高技术股份有限公司 Permanent magnet device
CN117063027A (en) * 2021-04-01 2023-11-14 三菱电机株式会社 Magnetic field applying device
CN117063027B (en) * 2021-04-01 2024-04-16 三菱电机株式会社 Magnetic field applying device
CN114300215A (en) * 2021-12-31 2022-04-08 中国铁道科学研究院集团有限公司 Halbach array device with adjustable magnetic field
CN114300215B (en) * 2021-12-31 2024-03-26 中国铁道科学研究院集团有限公司 Halbach array device with adjustable magnetic field

Similar Documents

Publication Publication Date Title
US8198774B2 (en) Permanent magnet motor
JPH1012432A (en) Variable magnetic field type magnetic circuit
US8772998B2 (en) Electric machine
KR20050004286A (en) Rotary electric motor having a plurality of skewed stator poles and/or rotor poles
JP2009509482A (en) Magnetic motor
JP2016217371A (en) Engagement system and brake system using the same
JPS60207440A (en) Vibration motor
JP2608002B2 (en) Magnet chuck
CN105099062A (en) Self-driven rotation shaft
JP7049620B2 (en) Rotary electric machines, compressors, refrigeration equipment, vehicles
JPH07312885A (en) Superconducting actuator
JP2002124414A (en) Method of magnetizing rare-earth magnet and method of manufacturing rotating machine
JPS6043060A (en) Step motor
JP3635209B2 (en) Actuator
KR20160100567A (en) A Motor using the control magnetic line of force of permanent magnet
WO2012043446A1 (en) Dynamo-electric machine
JPH077909A (en) Cylindrical type linear motor
JP3897043B2 (en) Magnetic rotating device
KR970011504B1 (en) Motor with improved function
JP2003075559A (en) Step motor for clock
KR100293035B1 (en) Power generator using magnetic energy
JPH0522917A (en) Direct current motor
JP2003344098A (en) Method and apparatus for magnetizing magnetic encoder
JPH08237930A (en) Actuator
JPH097824A (en) Variable magnetic field permanent magnet circuit