JPH077909A - Cylindrical type linear motor - Google Patents

Cylindrical type linear motor

Info

Publication number
JPH077909A
JPH077909A JP21915692A JP21915692A JPH077909A JP H077909 A JPH077909 A JP H077909A JP 21915692 A JP21915692 A JP 21915692A JP 21915692 A JP21915692 A JP 21915692A JP H077909 A JPH077909 A JP H077909A
Authority
JP
Japan
Prior art keywords
core
armature
core portion
mover
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21915692A
Other languages
Japanese (ja)
Other versions
JP3217476B2 (en
Inventor
Kinshiro Naito
欽志郎 内藤
Tokuzo Sekiyama
篤藏 関山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP21915692A priority Critical patent/JP3217476B2/en
Publication of JPH077909A publication Critical patent/JPH077909A/en
Application granted granted Critical
Publication of JP3217476B2 publication Critical patent/JP3217476B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Linear Motors (AREA)

Abstract

PURPOSE:To reduce magnetic leakage by making the line of magnetic force generated by an armature coil flow through a first core section consisting of a tabular magnetic bodies laminated in the stroke direction of a movable shaft and a secound core section composed of a tabular magnetic bodies laminated in the circumferential direction of the movable shaft. CONSTITUTION:Tabular magnetic bodies 27, which have circuit holes 23, through which magnetic shafts 13a, 13b can be passed, on the inside of an armature core 21 and in which the outsides are formed in the shape of an equilateral octagon 25, are laminated in the axial direction of movable shafts (PS) 13, thus forming a plurality of first core sections 29 in slots 31 at proper intervals. The first core sections 29 are brought into contact magnetically with each piece of the peripheries of the outsides of the first core sections 29, and the tabular magnetic substance 27 are laminated on the PSs 13 in the circumferential direction, thus forming second core sections 33. Armature coils 35 wound in a ring shape are inserted into the slots 31. That is, when ACs are made to flow through the armature coils 35, magnetic fields in dotted lines are generated. The magnetic fields are moved in the axial direction of the PSs 13, thus generating thrust in the azial direction by magnets mounted on the PSs 13.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、産業用ロボット、工
作機械等の駆動軸等に関するものであり、更に詳しくは
回転駆動と同時に直線駆動も要求される駆動モータに関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a drive shaft for industrial robots, machine tools and the like, and more particularly to a drive motor which requires linear drive as well as rotary drive.

【0002】[0002]

【従来の技術】工作機械、剪断加工機等の専用機におい
ては、従来から種々の構造のリニアモータが使用されて
いる。例えば、平板形リニアモータとしては図11に示
すような永久磁石形リニア同期モータがある。
2. Description of the Related Art Linear motors having various structures have been conventionally used in dedicated machines such as machine tools and shearing machines. For example, as a flat plate type linear motor, there is a permanent magnet type linear synchronous motor as shown in FIG.

【0003】この、永久磁石形リニア同期モータ101
は、二次側フレーム103の上面にN,S極交互となる
ように永久次磁石5が配設されている。そして、この永
久磁石105上に所定の間隔X寸法を保って、一次側磁
極片107a,107bが一次側フレーム109に固定
されて構成されている。
This permanent magnet type linear synchronous motor 101
Are provided with permanent secondary magnets 5 on the upper surface of the secondary side frame 103 so that N and S poles alternate. Then, the primary side magnetic pole pieces 107a and 107b are fixed to the primary side frame 109 while maintaining a predetermined distance X on the permanent magnet 105.

【0004】一次側巻線107a,107bは、U,
V,Wの3相巻線111が施されており、一次側磁極片
107aと107bとの間隔は、所定の位相をもって一
次側フレーム109に固定されている。この一次側フレ
ーム109は、図示を省略した機械側に接続されてい
る。
The primary windings 107a and 107b are U,
The V and W three-phase windings 111 are provided, and the interval between the primary side magnetic pole pieces 107a and 107b is fixed to the primary side frame 109 with a predetermined phase. The primary frame 109 is connected to the machine side (not shown).

【0005】図11に示した変位では、永久磁石105
のS極上部に、一次側磁極片107a,107bのW相
巻線111が配置されている。
In the displacement shown in FIG. 11, the permanent magnet 105 is used.
The W-phase winding 111 of the primary-side magnetic pole pieces 107a and 107b is arranged above the S pole.

【0006】平板形リニアモータは以上の様な構成であ
って、回転と直線運動を同時に要求される駆動装置には
利用できない。
The flat plate type linear motor has the above-mentioned structure and cannot be used for a driving device which requires simultaneous rotation and linear movement.

【0007】また、円筒形リニアモータとしては図12
に示すようなリニア誘導モータがある。この円筒形リニ
アモータは、棒状の導体からなるロッド121の周りに
一次鉄心123を配置し、その鉄心に適宜のスロット1
25を設け、そのスロット内に1次コイル127を設け
た構成となっている。
FIG. 12 shows a cylindrical linear motor.
There is a linear induction motor as shown in. In this cylindrical linear motor, a primary iron core 123 is arranged around a rod 121 made of a rod-shaped conductor, and an appropriate slot 1 is provided in the iron core.
25, and the primary coil 127 is provided in the slot.

【0008】このような円筒形リニアモータの1次鉄心
123は通常一体形成されるので、1次コイルによって
発生される磁力線の流れ方向が不均一になったり、また
は磁力線の漏洩が大きいという問題が生じる。
Since the primary iron core 123 of such a cylindrical linear motor is usually formed integrally, there arises a problem that the magnetic flux generated by the primary coil has a non-uniform flow direction or the magnetic flux leaks greatly. Occurs.

【0009】[0009]

【発明が解決しようとする課題】以上説明したように、
従来使用されている円筒形リニアモータは磁力線の漏洩
が大きく、発熱により温度が上昇したり、効率が悪いと
いう問題があった。
As described above,
Conventionally used cylindrical linear motors have the problems that the leakage of magnetic lines of force is large, the temperature rises due to heat generation, and the efficiency is low.

【0010】本発明はかかる問題を解決するためになさ
れたものである。
The present invention has been made to solve such a problem.

【0011】[0011]

【課題を解決するための手段】本発明は上記問題を解決
すべく、放射状に磁化したリング状の永久磁石を可動シ
ャフトに取付けた可動子と、内側に前記永久磁石の外形
より大きな円孔を有し、外側が多角形状の板状磁性体を
前記可動子のストローク方向に積層した複数個の第1コ
ア部と、前記第1コア部の外側周辺部に板状磁性体を前
記可動子の円周方向に積層した第2コア部とからなる電
機子コアと、前記第1コア部と第1コア部の間に設けた
スロットに挿入されたリング状に巻かれた電機子コイル
と、前記電機子コイルに電流を流すための電源を設けた
構成とした。
In order to solve the above problems, the present invention provides a mover having a radially magnetized ring-shaped permanent magnet mounted on a movable shaft, and a circular hole larger inside than the outer shape of the permanent magnet. A plurality of first core portions having outer side polygonal plate-like magnetic bodies stacked in the stroke direction of the mover, and plate-like magnetic bodies around the outer periphery of the first core part of the mover. An armature core composed of a second core portion laminated in the circumferential direction; an armature coil wound in a ring shape inserted into a slot provided between the first core portion and the first core portion; The armature coil is provided with a power supply for supplying a current.

【0012】[0012]

【作用】電機子コイルによって発生される磁界の磁力線
はその流れ方向に沿う板状の磁性体で構成される磁気回
路、即ち可動シャフトのストローク方向に積層された板
状の磁性体からなる第1コア部と可動シャフトの円周方
向に積層された板状の磁性体からなる第2コア部で構成
される磁気回路を流れる。このため磁気洩漏は少ない。
またこの磁界は、その中におかれている放射状に磁化し
た永久磁石を設けた可動シャフトに円周方向から均一に
作用する。従って、可動シャフトはストローク方向の推
力のみを受け、回転方向に及び上下、左右方向には吸引
力が作用しない。
The magnetic flux of the magnetic field generated by the armature coil is a magnetic circuit composed of plate-shaped magnetic bodies along the flow direction thereof, that is, a first magnetic body composed of plate-shaped magnetic bodies laminated in the stroke direction of the movable shaft. A magnetic circuit composed of a core portion and a second core portion made of a plate-shaped magnetic body laminated in the circumferential direction of the movable shaft flows. Therefore, there is little magnetic leakage.
The magnetic field also acts circumferentially uniformly on the movable shaft, which is provided with the radially magnetized permanent magnets contained therein. Therefore, the movable shaft receives only the thrust in the stroke direction, and the suction force does not act in the rotation direction and in the vertical and horizontal directions.

【0013】[0013]

【実施例】本発明をドリルに適用した第1実施例を示
す。図6において、ドリル1はドリルチャック3に取付
られており、このドリルはリニアモータ5によって軸方
向に駆動され、回転モータ7によって回転駆動される。
リニアモータ5と回転モータ7は連結手段6によって連
結されている。この連結手段6は直進運動する軸に回転
運動可能な手段、例えばスプライン軸を設けたものから
構成される。回転モータ7は公知技術によるものである
ので以下説明を省略する。なお、本発明は上記以外にも
ロボットアームに取付けてナット・ボルトを締め付けを
行う駆動モータ、専用工作機械に設けてタップ作業用の
駆動モータとしても利用できるものである。以下、リニ
アモータ5について本発明とともに説明する。
EXAMPLE A first example in which the present invention is applied to a drill will be described. In FIG. 6, a drill 1 is attached to a drill chuck 3, and the drill is axially driven by a linear motor 5 and rotationally driven by a rotary motor 7.
The linear motor 5 and the rotary motor 7 are connected by the connecting means 6. The connecting means 6 is composed of a linearly movable shaft provided with a rotatable means, for example, a spline shaft. Since the rotary motor 7 is of a known technique, its description is omitted below. In addition to the above, the present invention can be used as a drive motor that is attached to a robot arm and tightens nuts and bolts, or is provided in a dedicated machine tool and used as a drive motor for tap work. Hereinafter, the linear motor 5 will be described together with the present invention.

【0014】図1は本願発明の第1実施例の全体構成の
概略を示す断面図である。図1において、可動子11は
図2に示す様なリング状の磁極の異なる磁石13a,1
3bを可動シャフト13に交互に偶数個配設して構成さ
れる。前記磁石13a,13bは外側がN極またはS極
となるように放射状に磁化された永久磁石であって、そ
の材質はフィライトまたは任意の磁石鋼であってもよい
ものである。
FIG. 1 is a sectional view showing the outline of the overall construction of the first embodiment of the present invention. In FIG. 1, a mover 11 is composed of magnets 13a, 1 having different ring-shaped magnetic poles as shown in FIG.
3b are arranged alternately on the movable shaft 13 in an even number. The magnets 13a and 13b are permanent magnets that are radially magnetized so that the outside has N poles or S poles, and the material thereof may be phyllite or any magnetic steel.

【0015】また、電機子コア21は以下のように構成
されている。即ち、図3に示す様な内側に前記磁石13
a,13bが通過できる円孔23を有し、外側が多角
形、例えば正八角形25の形状をした板状磁性体27を
第5図に示すように前記可動シャフトの軸方向に積層し
て第1コア部29を複数個適当な間隔のスロット31を
おいて形成し、その外側周囲の各片に、磁気的に接触さ
せて板状磁性体を前記シャフトと円周方向に積層して第
2コア部33を形成する。
The armature core 21 is constructed as follows. That is, as shown in FIG.
A plate-shaped magnetic body 27 having a circular hole 23 through which a and 13b can pass and having a polygonal shape on the outside, for example, a regular octagon 25 is laminated in the axial direction of the movable shaft as shown in FIG. A plurality of 1-core portions 29 are formed with slots 31 at appropriate intervals, magnetically contacting each of the outer peripheral pieces, and a plate-like magnetic body is laminated on the shaft in the circumferential direction. The core part 33 is formed.

【0016】前記第1コア部29と第1コア部29の間
に設けられた前記スロット31に、図4に示すようにリ
ング状に巻かれた電機子コイル35を挿入する。前記電
機子コイルには図示省略の交流電源、例えば3相インバ
ータによる3相交流電源が接続されている。また、図示
は省略したが、前記可動子11の位置を検出する位置検
出器が適宜の場所に設けられており、この検出データに
より3相インバータを制御して電機子コイルの電流を制
御することもできる。
An armature coil 35 wound in a ring shape as shown in FIG. 4 is inserted into the slot 31 provided between the first core portion 29 and the first core portion 29. An AC power supply (not shown), for example, a three-phase AC power supply using a three-phase inverter is connected to the armature coil. Although not shown, a position detector for detecting the position of the mover 11 is provided at an appropriate position, and the detection data controls the three-phase inverter to control the current in the armature coil. You can also

【0017】前記第1実施例は以上のように構成したの
で、以下のように作用する。即ち、前記電機子コイル3
5に交流を流すと図1の点線で示す様に磁界が発生す
る。この磁界は可動シャフトの軸方向に移動するもので
あるため、可動シャフトに設けられた磁石により軸方向
の推力を発生する。さらに、電機子コア及び可動子は軸
中心に対して対称に設けられているので、軸と直角方向
の吸引力は一様で、特に一方の側に片寄ることはなく、
また回転力も生じない。従って、交流電流を適宜制御す
ることによって、可動シャフトの軸方向の速度及び位置
等の制御が自由にできる他に、回転方向には外部からこ
の駆動装置とは独立に制御が可能である。
Since the first embodiment is constructed as described above, it operates as follows. That is, the armature coil 3
When an alternating current is applied to 5, a magnetic field is generated as shown by the dotted line in FIG. Since this magnetic field moves in the axial direction of the movable shaft, the thrust provided in the axial direction is generated by the magnet provided on the movable shaft. Furthermore, since the armature core and the mover are provided symmetrically with respect to the axis center, the attraction force in the direction perpendicular to the axis is uniform, and there is no particular bias toward one side.
Also, no rotational force is generated. Therefore, by appropriately controlling the alternating current, the speed and the position of the movable shaft in the axial direction can be freely controlled, and the rotational direction can be externally controlled independently of the drive device.

【0018】また、本発明による電機子コアは第8図に
示すように第1コア部と第2コア部によって形成され、
各コア部は電機子コイルによって発生する磁力線の流れ
の方向に板状磁性体を積層してあるので、漏洩磁束も少
なく、磁気抵抗も少ない。従って、エネルギ損失が少な
く発熱も少ない。
The armature core according to the present invention is formed of a first core portion and a second core portion as shown in FIG.
Since each core portion is formed by laminating plate-shaped magnetic bodies in the direction of the flow of magnetic force lines generated by the armature coil, there is little leakage magnetic flux and magnetic resistance. Therefore, there is little energy loss and little heat generation.

【0019】図8は本発明の第2実施例の構成を示すも
のである。本実施例は前述した第1実施例と殆ど同じで
ある。以下、相異する点についてのみ述べる。なお同一
の部分は同一番号を付してある。第1実施においては、
図1に示す如く、電機子コイルの上方には可動子のスト
ローク方向に積載した第1コア部がなく、電機子コイル
の外径が小さいときには空隙が生じて問題がある。本実
施例では、図9に示すような内側円孔の径が前記第1コ
ア部の内径よりも大きく、かつ外側が同一形状の多角形
からなる板状磁性体を前記スロットの上方部分であって
電機子コイル51の外側にストローク方向に積層した第
3コア部53を設けた。
FIG. 8 shows the configuration of the second embodiment of the present invention. This embodiment is almost the same as the above-mentioned first embodiment. Only the different points will be described below. The same parts are given the same numbers. In the first implementation,
As shown in FIG. 1, there is no first core portion stacked above the armature coil in the stroke direction of the mover, and when the outer diameter of the armature coil is small, a gap occurs, which is a problem. In this embodiment, a plate-shaped magnetic body having a polygonal shape in which the inner circular hole has a diameter larger than the inner diameter of the first core portion and the outer side has the same shape as the upper portion of the slot is used as shown in FIG. The third core portion 53 stacked in the stroke direction is provided outside the armature coil 51.

【0020】本実施例は上記の様な構成であり、電機子
コイルの外径が小さい場合にも磁気損失の少ない電機子
コアが構成される。
The present embodiment is constructed as described above, and an armature core with a small magnetic loss is constructed even when the outer diameter of the armature coil is small.

【0021】図10は本発明の第3実施例を概略構成を
示すものである。図10において、可動子51は、可動
シャフト53に図11(A)に示すリング状の磁石53
を配設して構成されている。前記磁石は放射状に磁化さ
れており、図10では外側がN極となっているが、外側
をS極としてもよい。
FIG. 10 shows a schematic configuration of the third embodiment of the present invention. In FIG. 10, the mover 51 includes a ring-shaped magnet 53 shown in FIG.
Are arranged. The magnet is magnetized radially, and the outside is the N pole in FIG. 10, but the outside may be the S pole.

【0022】電機子コア61は以下のように構成され
る。即ち、両端部に図11(B)に示す内側に前記可動
シャフトが挿入可能な孔を有し、外側が多角形(本実施
例では8角形)の板状磁性体からなるヨークコアをスト
ローク方向に積層したヨーク部63を設け、中間の前記
磁石と対応した適宜な位置に、図11(B)に示すよう
に前記ヨークコアと外形状が同一で内径が前記磁石を挿
入できる径の内孔を有する板状磁性体をストローク方向
に積層した複数個の第1コア部65を適宜なスペースを
置いて設け、このスペースの外側に図11(C)に示す
ような外形状が前記ヨークと同一で内側円孔の径が前記
第1コア部の内径よりも大きい円孔を有する板状磁性体
をストローク方向に積層して第3コア部を設け、さらに
これらの積層したコア部外側の周辺部に図11(F)に
示すような板状磁性体を可動シャフト53の円周方向に
積層して第2コア部69を構成する。前記電機子コア6
1は第1コア部65、第2コア部67、第3コア部69
及びヨーク部69から構成されるものである。
The armature core 61 is constructed as follows. That is, a yoke core having a polygonal (octagonal in this embodiment) plate-like magnetic body on the inside has a hole into which the movable shaft can be inserted and is formed on both ends in the stroke direction. A laminated yoke portion 63 is provided, and at an appropriate position corresponding to the intermediate magnet, as shown in FIG. 11B, an inner hole having the same outer shape as that of the yoke core and an inner diameter of a diameter into which the magnet can be inserted is provided. A plurality of first core portions 65 in which plate-shaped magnetic bodies are laminated in the stroke direction are provided at appropriate spaces, and the outer shape is the same as that of the yoke and the inner shape is outside the spaces as shown in FIG. 11C. A plate-shaped magnetic body having circular holes whose diameter is larger than the inner diameter of the first core portion is laminated in the stroke direction to provide a third core portion, and further, a peripheral portion outside these laminated core portions is illustrated. 11 (F) a plate-shaped magnetic body Constituting the second core portion 69 are stacked in a circumferential direction of the movable shaft 53. The armature core 6
1 is a first core portion 65, a second core portion 67, a third core portion 69
And a yoke portion 69.

【0023】前記第1コア部65と第3コア部69によ
って形成されるスロットには、図11(E)に示すよう
なリング状に巻かれた電機子コイル71a,71bを挿
入する。また、電機子コイル71a,71bに直流電源
が接続されている。この直流電源は複数個を用いて前記
コイルの左方部分71aと右方部分71bの電流の向き
を反対にするか、又はコイルの巻方を反対にして、例え
ば図示のごとく磁力線の向きが反対になるように構成す
る。さらに、この直流電源は可動子の位置を検出する位
置検出器を設けて制御することもできる。第3実施例は
以上のように構成されているので、直流電流を制御する
ことにより、前記電機子コア61のストローク方向の軸
推進力が制御され、軸位置及び軸速度が制御できる。
Armature coils 71a and 71b wound in a ring shape as shown in FIG. 11E are inserted into the slots formed by the first core portion 65 and the third core portion 69. Further, a DC power supply is connected to the armature coils 71a and 71b. A plurality of DC power supplies are used to reverse the directions of the currents in the left portion 71a and the right portion 71b of the coil, or the windings of the coils are reversed so that, for example, the directions of magnetic lines of force are opposite. To be configured. Further, the DC power source can be controlled by providing a position detector that detects the position of the mover. Since the third embodiment is configured as described above, by controlling the direct current, the shaft propulsion force in the stroke direction of the armature core 61 can be controlled, and the shaft position and the shaft speed can be controlled.

【0024】[0024]

【発明の効果】以上説明したように、本発明によれば、
発熱量の少ない実用的な円筒形リニアモータを提供する
ことができる。
As described above, according to the present invention,
It is possible to provide a practical cylindrical linear motor that generates a small amount of heat.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例の全体構成の概略図を示す
ものである。
FIG. 1 is a schematic diagram of the overall configuration of a first embodiment of the present invention.

【図2】第1実施例に利用する永久磁石の一例を示す図
である。
FIG. 2 is a diagram showing an example of a permanent magnet used in the first embodiment.

【図3】第1実施例に利用する永久磁石の第1コア部の
コア材の形状を示す図である。
FIG. 3 is a diagram showing a shape of a core material of a first core portion of a permanent magnet used in the first embodiment.

【図4】第1実施例に利用する永久磁石の電機子コイル
を示す図である。
FIG. 4 is a diagram showing an armature coil of a permanent magnet used in the first embodiment.

【図5】第1実施例に利用する永久磁石の電機子コアの
断面を示す図である。
FIG. 5 is a view showing a cross section of an armature core of a permanent magnet used in the first embodiment.

【図6】本発明を利用した第1実施例の構成を示す図で
ある。
FIG. 6 is a diagram showing a configuration of a first embodiment using the present invention.

【図7】電機子コイルによる磁力線の流れを示す図であ
る。
FIG. 7 is a diagram showing a flow of lines of magnetic force generated by an armature coil.

【図8】本発明の第2実施例の構成全体の概略を示す図
である。
FIG. 8 is a diagram showing an outline of the entire configuration of a second embodiment of the present invention.

【図9】第2実施例に利用する第3コア部のコア材を示
す図である。
FIG. 9 is a diagram showing a core material of a third core portion used in the second embodiment.

【図10】本発明の第3実施例の構成全体の概略を示す
図である。
FIG. 10 is a diagram showing an outline of the entire configuration of a third embodiment of the present invention.

【図11】第3実施例に利用する主要部品の形状を示す
図である。
FIG. 11 is a diagram showing shapes of main components used in the third embodiment.

【図12】従来使用されている平板形リニアモータの1
例を示す図である。
FIG. 12: 1 of a flat plate type linear motor used conventionally
It is a figure which shows an example.

【図13】従来から知られている円筒形リニアモータの
1例を示す図である。
FIG. 13 is a diagram showing an example of a conventionally known cylindrical linear motor.

【符号の説明】[Explanation of symbols]

5 リニアモータ 6 連結手段 7 回転モータ 11 可動子 13 可動シャフト 15,15a,15b 永久磁石 21,61 電機子コア 29,63 第1コア部 31,69 第2コア部 53 第3コア部 35,51,71a,71b 電機子コイル 5 linear motor 6 connecting means 7 rotary motor 11 mover 13 movable shaft 15, 15a, 15b permanent magnet 21,61 armature core 29,63 first core part 31,69 second core part 53 third core part 35,51 , 71a, 71b Armature coil

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 放射状に磁化したリング状の永久磁石を
可動シャフトに偶数極取付けた可動子と、内側に前記永
久磁石の外形より大きな円孔を有し、外側が多角形状の
板状磁性体を前記可動子のストローク方向に積層した複
数個の第1コア部と、前記第1コア部の外側周辺部に板
状磁性体を前記可動子の円周方向に積層した第2コア部
とからなる電機子コアと、前記第1コア部と第1コア部
の間にスロットを設け、このスロットに挿入されたリン
グ状に巻かれた電機子コイルと、前記電機子コイルに交
流電流を流すための電源を設けたことを特徴とする円筒
形リニアモータ。
1. A plate-shaped magnetic body having a ring-shaped permanent magnet magnetized radially and having an even number of poles attached to a movable shaft, and a circular hole larger than the outer shape of the permanent magnet on the inner side and having a polygonal shape on the outer side. A plurality of first core portions stacked in the stroke direction of the mover, and a second core portion formed by stacking plate-shaped magnetic bodies in the outer peripheral portion of the first core portion in the circumferential direction of the mover. An armature core, a slot provided between the first core portion and the first core portion, and a ring-shaped armature coil inserted into the slot; and an AC current flowing through the armature coil. A cylindrical linear motor characterized by being equipped with a power source.
【請求項2】 前記電機子コアは、さらに前記スロット
の径方向外側部分に、内径が前記電機子コアの外径より
も大きな円孔を有し、外形が前記板状磁性体と同一形状
の板状磁性体を前記可動子のストローク方向に積層して
第3コア部を設けたことを特徴とする請求項1記載の円
筒形リニアモータ。
2. The armature core further has a circular hole, the inner diameter of which is larger than the outer diameter of the armature core, in the radially outer portion of the slot, and the outer shape of which is the same as that of the plate-shaped magnetic body. The cylindrical linear motor according to claim 1, wherein plate-shaped magnetic bodies are laminated in the stroke direction of the mover to provide a third core portion.
【請求項3】 放射状に磁化したリング状の永久磁石を
シャフトに単数極取付けた可動子と、内側に前記永久磁
石の外形より大きな円孔を有し、外側が多角形状の板状
磁性体を前記可動子のストローク方向に積層した複数の
第1コア部と、前記第1コア部の外側周辺部に磁性板を
前記可動子の円周方向に積層した第2コア部とを少なく
とも有する電機子コアと、前記第1コア部と第1コア部
の間に設けられたスロットに挿入されたリング状に巻か
れた少なくとも2以上の電機子コイルと、前記電機子コ
イルに直流電流を流し、シャフト方向右側と左側に反対
方向の磁界を発生させるための電源を設けたことを特徴
とする円筒形リニアモータ。
3. A mover in which a single pole is attached to a shaft of a radially magnetized ring-shaped permanent magnet, and a plate-like magnetic body having a polygonal shape on the outside and a circular hole larger than the outer shape of the permanent magnet. An armature having at least a plurality of first core portions laminated in the stroke direction of the mover, and a second core portion having magnetic plates laminated in the circumferential direction of the mover on an outer peripheral portion of the first core portion. A core, at least two or more ring-shaped armature coils inserted in a slot provided between the first core portion and the first core portion, and a DC current flowing through the armature coil to form a shaft. A cylindrical linear motor characterized in that a power source for generating magnetic fields in opposite directions is provided on the right side and the left side in the direction.
【請求項4】 前記可動シャフトに、回転駆動装置を設
けたことを特徴とする請求項1,2又は3記載の円筒形
リニアモータ。
4. The cylindrical linear motor according to claim 1, wherein the movable shaft is provided with a rotary drive device.
【請求項5】 前記可動子の位置を検出するための位置
検出器を設けて、リニアサーボモータとして使用するこ
とを特徴とする請求項1,2,3又は4記載の円筒形リ
ニアモータ。
5. The cylindrical linear motor according to claim 1, wherein a position detector for detecting the position of the mover is provided and is used as a linear servo motor.
JP21915692A 1992-08-18 1992-08-18 Cylindrical linear motor Expired - Fee Related JP3217476B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21915692A JP3217476B2 (en) 1992-08-18 1992-08-18 Cylindrical linear motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21915692A JP3217476B2 (en) 1992-08-18 1992-08-18 Cylindrical linear motor

Publications (2)

Publication Number Publication Date
JPH077909A true JPH077909A (en) 1995-01-10
JP3217476B2 JP3217476B2 (en) 2001-10-09

Family

ID=16731082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21915692A Expired - Fee Related JP3217476B2 (en) 1992-08-18 1992-08-18 Cylindrical linear motor

Country Status (1)

Country Link
JP (1) JP3217476B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7271509B2 (en) 2003-07-01 2007-09-18 Siemens Aktiengesellschaft Polygonal structure of a linear motor with ring winding
KR20100019354A (en) * 2008-08-08 2010-02-18 산요 덴키 가부시키가이샤 Linear synchronous motor
KR20100067625A (en) * 2008-12-11 2010-06-21 산요 덴키 가부시키가이샤 Linear synchronous motor
JP2011147275A (en) * 2010-01-14 2011-07-28 Sanyo Denki Co Ltd Linear synchronous motor
KR101230070B1 (en) * 2011-09-07 2013-02-05 미쓰비시덴키 가부시키가이샤 Stator for cylindrical linear motor, cylindrical linear motor and winding method of stator coil for cylindrical linear motor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7271509B2 (en) 2003-07-01 2007-09-18 Siemens Aktiengesellschaft Polygonal structure of a linear motor with ring winding
KR20100019354A (en) * 2008-08-08 2010-02-18 산요 덴키 가부시키가이샤 Linear synchronous motor
JP2010063348A (en) * 2008-08-08 2010-03-18 Sanyo Denki Co Ltd Linear synchronous motor
EP2151910A3 (en) * 2008-08-08 2017-03-15 Sanyo Denki Co., Ltd. Linear synchronous motor
KR20100067625A (en) * 2008-12-11 2010-06-21 산요 덴키 가부시키가이샤 Linear synchronous motor
JP2011083175A (en) * 2008-12-11 2011-04-21 Sanyo Denki Co Ltd Linear synchronous motor
JP2011147275A (en) * 2010-01-14 2011-07-28 Sanyo Denki Co Ltd Linear synchronous motor
KR101230070B1 (en) * 2011-09-07 2013-02-05 미쓰비시덴키 가부시키가이샤 Stator for cylindrical linear motor, cylindrical linear motor and winding method of stator coil for cylindrical linear motor

Also Published As

Publication number Publication date
JP3217476B2 (en) 2001-10-09

Similar Documents

Publication Publication Date Title
US6175178B1 (en) Low inductance electrical machine for flywheel energy storage
US5982070A (en) Electric motor or generator having amorphous core pieces being individually accomodated in a dielectric housing
US6177746B1 (en) Low inductance electrical machine
JP5956993B2 (en) Linear motor
CN107710569A (en) The electric motor/generator of improved multichannel
EP0395747A1 (en) Polyphase electronically commutated reluctance motor
US4742258A (en) Driven rotary shaft system using permanent magnets
US5418414A (en) Electric motor with permanent-magnet excitation
WO2017036353A1 (en) Alternating hybrid excitation component and applications thereof in motor and transformer
JP5773282B2 (en) Linear motor
JP2008193760A (en) Linear motor
US4794290A (en) Structure of active type magnetic bearing
JP2002354780A (en) Cylindrical magnetic field liner motor
JP3217476B2 (en) Cylindrical linear motor
KR20120068356A (en) Linear motor
US7791246B2 (en) Axial motor
US20220166302A1 (en) Bipolar linear step motor
JP2528915B2 (en) DC linear motor
JP2782847B2 (en) Pulse motor
KR20010056688A (en) Motor
JPH0928066A (en) Rotating machine
JP2650367B2 (en) Pulse motor
JPH10225030A (en) Permanent magnet type rotary machine
KR20010055263A (en) Rotary linear motor
JP2013094018A (en) Diamagnetic actuator

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080803

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20090803

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees