JPH06124733A - Secondary battery device - Google Patents

Secondary battery device

Info

Publication number
JPH06124733A
JPH06124733A JP26995992A JP26995992A JPH06124733A JP H06124733 A JPH06124733 A JP H06124733A JP 26995992 A JP26995992 A JP 26995992A JP 26995992 A JP26995992 A JP 26995992A JP H06124733 A JPH06124733 A JP H06124733A
Authority
JP
Japan
Prior art keywords
battery
container
liquid
heat exchanger
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26995992A
Other languages
Japanese (ja)
Other versions
JP2959298B2 (en
Inventor
Katsunori Nishimura
勝憲 西村
Hidetoshi Honbou
英利 本棒
Akihiro Goto
明弘 後藤
Mamoru Mizumoto
守 水本
Tatsuo Horiba
達雄 堀場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP26995992A priority Critical patent/JP2959298B2/en
Publication of JPH06124733A publication Critical patent/JPH06124733A/en
Application granted granted Critical
Publication of JP2959298B2 publication Critical patent/JP2959298B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To provide battery performance independent of outside humidity via the control of battery operation humidity, and avoid an ignition accident without exposing a battery directly to the atmosphere, even if a battery housing container is broken, by connecting a heat exchanger to a battery device and covering the outer wall of the device with an insulation material. CONSTITUTION:A cell 1 with the side and bottom covered with a nonaqueous cooling medium 7, is housed a battery housing container 8. While external positive and negative terminals 10 and 11 are being led out, the cell 1 is secured with a battery fastener 9, and the upper side of the cell 1 is concealed with a cover having a vent valve 12. The end of a humidity measurement instrument 13 is inserted in a cooling medium located along the periphery of the container 8, and the container 8 is provided with a heat exchanger 16 for supplying secondary feed water 17. Also, a pump controller 18 is operated, according to the temperature indicated with the instrument 13, and the feed water 17 is circulated through the medium 8 on the operation of a pump 15 connected to the heat exchanger 16. Furthermore, the outer wall of the container 8 is covered with an insulation material not shown herein. According to this construction, a high- output type nonaqueous electrolytic secondary battery can be efficiently cooled.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は非水電解液二次電池に係
わり、特に電池の温度制御と異常対策に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to temperature control of a battery and measures against abnormalities.

【0002】[0002]

【従来の技術】二次電池の冷却を含めた温度制御の必要
性は、電池の規模の拡大とともに高まる。コイン型電池
あるいはAAサイズ程度の円筒型電池は、同時に使用す
る電池数が少なければ、電池容器等への熱伝導と自然放
冷によって電池が充分に冷却されるので、冷却設備の必
要性は低い。しかし、複数個の電池ブロックを同時に運
転する集合電池、例えば自動車用電源や電力貯蔵用電源
は、充放電時に自然冷却熱量を上回ったジュール熱を発
生する。また、充放電時間を短縮すると、単位時間当り
の発熱量がさらに増大する。このために、局所的であっ
ても電池温度が許容最高温度を超えた場合には、構成す
る単電池の性能や安全性が著しく低下する。したがっ
て、大型電池の運転時には、全ての単電池を均一に冷却
する冷却装置が必須となる。電池作動温度の均一化は、
電池の運転制御を容易にするためにも望ましい。
2. Description of the Related Art The need for temperature control including cooling of a secondary battery increases as the battery scale increases. If a coin type battery or a cylindrical type battery of about AA size is used at the same time, the battery is sufficiently cooled by heat conduction to the battery container and natural cooling, so that cooling equipment is not necessary. . However, an assembled battery that simultaneously operates a plurality of battery blocks, such as a power supply for automobiles and a power storage power supply, generates Joule heat that exceeds the amount of natural cooling heat during charging and discharging. Further, when the charging / discharging time is shortened, the heat generation amount per unit time further increases. For this reason, if the battery temperature exceeds the maximum allowable temperature even locally, the performance and safety of the constituent cells will be significantly reduced. Therefore, when operating a large battery, a cooling device that uniformly cools all the unit cells is essential. To make the battery operating temperature uniform,
It is also desirable for facilitating operation control of the battery.

【0003】一般の電池の冷却には、気体冷却と液体冷
却の二方式が考えられるが、冷媒の取扱い易さから前者
の考案例が多い。据置型高温電池の冷却には、乾燥した
不活性気体を冷媒とした冷却方法(特公平4−51472号)
が公開されている。その他に、集合電池を冷却するため
に、換気扇(特公平4−29186号)または送風機(独国特
許DE4029−018−A)による強制空冷方式が、既に提案
されている。
There are two possible cooling methods for a general battery, a gas cooling method and a liquid cooling method, but in many cases the former is devised because of the ease of handling the refrigerant. Cooling method for stationary high temperature battery using dry inert gas as refrigerant (Japanese Patent Publication No. 4-51472)
Has been published. In addition, a forced air cooling method using a ventilation fan (Japanese Patent Publication No. 4-29186) or a blower (German Patent DE 4029-018-A) has already been proposed to cool the assembled battery.

【0004】リチウム二次電池などの非水電解液二次電
池は、エネルギー密度と出力が優れている電池である
が、電池内部で正極と負極の短絡,過充電,過放電に伴
う発熱、または電解液の分解によって、電池内圧が上昇
し、ついには電池容器が破裂する事故の発生の可能性が
ある。このとき電池が大気に直接曝されると、電池が発
火する危険性が高い。したがって、このような電池を冷
却するためには、冷却効率が高いと同時に、電池容器の
破裂等の事故に対応できる冷却方法が必要である。しか
しながら、両方の条件を満たす有効な手段は、未だ見い
出されていない。
A non-aqueous electrolyte secondary battery such as a lithium secondary battery is a battery having excellent energy density and output. However, a short circuit between the positive electrode and the negative electrode inside the battery, heat generation due to overcharge or overdischarge, or Due to the decomposition of the electrolytic solution, the internal pressure of the battery rises, which may eventually cause the battery container to burst. At this time, if the battery is directly exposed to the atmosphere, there is a high risk of ignition of the battery. Therefore, in order to cool such a battery, it is necessary to have a cooling method which has high cooling efficiency and at the same time can cope with an accident such as a rupture of the battery container. However, an effective means satisfying both conditions has not yet been found.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、電池
内部に異常が生じ、電池容器が破裂する状況まで考慮し
た非水電解液二次電池を提供するにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a non-aqueous electrolyte secondary battery that takes into consideration the situation where an abnormality occurs inside the battery and the battery container bursts.

【0006】[0006]

【課題を解決するための手段】本発明では、液体を冷媒
として利用した非水電解液電池の液体冷却方式を考案し
た。ただし、本発明で対象とする電池の電池活物質の多
くが、水に対して反応性が極めて高いので、用いる液体
冷媒は非水液体である。電池活物質が水に対して安定で
あれば、本発明において水を冷媒として使用しても問題
はない。
The present invention has devised a liquid cooling system for a non-aqueous electrolyte battery using a liquid as a refrigerant. However, since most of the battery active materials of the battery targeted by the present invention have extremely high reactivity with water, the liquid refrigerant used is a non-aqueous liquid. If the battery active material is stable to water, there is no problem in using water as a refrigerant in the present invention.

【0007】液体冷却法が非水電解液電池の冷却に適し
ている理由は、つぎの通りである。液体は気体と比較す
ると、比熱と熱伝導率が大きいので、電池をより効率的
に冷却できる。また、電池内部の短絡などの電池の異常
が発生して、電池容器が破壊されたとき、あるいは故障
した電池を交換するために外部の電池収納容器を開放し
たときに、大気がその電池と接触することを回避できる
利点がある。
The reason why the liquid cooling method is suitable for cooling a non-aqueous electrolyte battery is as follows. Since liquid has a larger specific heat and thermal conductivity than gas, the battery can be cooled more efficiently. Also, when a battery abnormality such as a short circuit inside the battery occurs and the battery container is destroyed, or when the external battery storage container is opened to replace the defective battery, the atmosphere contacts the battery. There is an advantage that can be avoided.

【0008】本発明の対象となる具体的な電池の形式と
しては、リチウム二次電池が挙げられる。電極と電解液
を収納した密閉型単電池を容器の中に収納し、電池容器
の上端部まで非水液体冷媒を満す。単電池の電極端子を
電池と冷媒を収納した容器の外部まで引き出して、収納
容器を密閉する。電極端子部は、冷媒に腐食されない被
覆物(高分子など)で覆う。また、冷媒の液面を電池容
器の上端部より下にすることで、被覆が劣化して端子が
露出しても、冷媒が電解されることを防止する。
A specific type of battery to which the present invention is applied is a lithium secondary battery. The sealed unit cell containing the electrode and the electrolytic solution is placed in a container, and the non-aqueous liquid refrigerant is filled up to the upper end of the battery container. The electrode terminal of the unit cell is pulled out to the outside of the container containing the battery and the refrigerant, and the container is sealed. The electrode terminal portion is covered with a coating (polymer or the like) that is not corroded by the refrigerant. Further, by setting the liquid level of the refrigerant below the upper end of the battery container, the refrigerant is prevented from being electrolyzed even if the coating is deteriorated and the terminals are exposed.

【0009】使用する冷媒は、比熱,熱伝導性と沸点が
高く、単電池容器および単電池を収納する容器を腐食せ
ず、熱分解,空気酸化,電気分解などを受けにくい物質
が適している。さらに、電極端子間の短絡を防止するた
めに、電気的絶縁性の液体が望ましい。例を挙げると、
アルカンなどの炭化水素,ケトン類,シリコーン系油な
どの非プロトン性の非水液体が適している。また、収納
された一部の電池の容器が破裂して、使用不能になった
電池を交換するとき、電池収納容器を開けて電池を取り
出す際に、破損した電池からの発火の危険性があるの
で、負極活物質と緩やかに反応して、反応性の低い物質
へ変換する液体も適している。例えばメタノール,エタ
ノール,エチレングリコールなどの低級アルコールを冷
媒として利用して、負極に含まれるリチウムをリチウム
アルコラートへ変え、破損した電池中の負極活物質の反
応性を低下させることは効果的である。この過程で発生
する水素ガスは、電池容器に取り付けた圧力弁などから
回収する。
As the refrigerant to be used, a substance having a high specific heat, high thermal conductivity and a high boiling point, which does not corrode the single cell container and the container accommodating the single cell, and is not easily subject to thermal decomposition, air oxidation, electrolysis, etc. is suitable. . Furthermore, an electrically insulating liquid is desirable in order to prevent a short circuit between the electrode terminals. For example,
Hydrocarbons such as alkanes, ketones, aprotic non-aqueous liquids such as silicone oils are suitable. In addition, there is a risk of ignition from the damaged battery when some of the stored batteries are ruptured and the batteries that cannot be used are replaced or the batteries are opened and the batteries are removed. Therefore, a liquid that slowly reacts with the negative electrode active material and is converted into a material having low reactivity is also suitable. For example, it is effective to use a lower alcohol such as methanol, ethanol, or ethylene glycol as a refrigerant to convert lithium contained in the negative electrode into lithium alcoholate to reduce the reactivity of the negative electrode active material in the damaged battery. Hydrogen gas generated in this process is collected from a pressure valve attached to the battery container.

【0010】本発明の液体冷却方式を採用した電池は、
その設置場所が屋外の冷暗所であれば、冷媒を強制流通
させない静置状態でも、自然冷却と冷却媒の対流とによ
って充分に冷却可能である。さらに冷却効率を向上させ
るために、その二次電池に撹拌機、あるいは液循環用ポ
ンプと熱交換器(または放熱器)を取り付け、液体を循
環させる。このようにして、電池の温度上昇を抑える。
また、電池収納容器内部の液体中、あるいは熱交換器の
液入口付近に温度測定器を設置し、測定した温度を電気
信号に変換し、それを熱交換器へ伝達して、液温を制御
することも有効な手段である。液温の上昇からショー
ト,逆充電等による電池の異常発生を検知することもで
きる。外気温度の変化が大きい時、または寒冷時では、
電池装置の外壁の一部または全体を断熱材で覆うことに
より、電池温度を正常作動温度に保持できる。
A battery employing the liquid cooling system of the present invention is
If the place of installation is an outdoor cool and dark place, it can be sufficiently cooled by natural cooling and convection of the cooling medium even in a stationary state in which the refrigerant is not forced to flow. In order to further improve the cooling efficiency, an agitator, or a liquid circulation pump and a heat exchanger (or radiator) are attached to the secondary battery to circulate the liquid. In this way, the temperature rise of the battery is suppressed.
In addition, a temperature measuring device is installed in the liquid inside the battery container or near the liquid inlet of the heat exchanger, and the measured temperature is converted into an electric signal and transmitted to the heat exchanger to control the liquid temperature. Doing is also an effective means. It is also possible to detect an abnormality in the battery due to a short circuit, reverse charging, etc. from the rise in the liquid temperature. When there is a large change in outside temperature or when it is cold,
By covering a part or the whole of the outer wall of the battery device with a heat insulating material, the battery temperature can be maintained at a normal operating temperature.

【0011】[0011]

【作用】非水液体中に非水電解液二次電池を設置し、撹
拌機、または液循環装置と熱交換器を用いることによっ
て、冷却熱量が増加し、高出力型または大容量型の二次
電池を効率よく冷却することができる。さらに、冷媒の
比熱が大きいので、冷媒浴の温度均一性が良好で、電池
の恒温運転も可能にし、電池性能の安定化ならびに長寿
命化に役立つ。
[Function] By installing a non-aqueous electrolyte secondary battery in a non-aqueous liquid and using a stirrer or a liquid circulation device and a heat exchanger, the amount of cooling heat is increased and a high output type or large capacity type secondary battery is provided. The secondary battery can be cooled efficiently. Further, since the specific heat of the refrigerant is large, the temperature uniformity of the refrigerant bath is good, the constant temperature operation of the battery is possible, and it is useful for stabilizing the battery performance and prolonging its life.

【0012】[0012]

【実施例】つぎに本発明の実施例を図面に基づいて説明
する。
Embodiments of the present invention will now be described with reference to the drawings.

【0013】[実施例1]図2は本発明で用いた単電池
全体1の外観図を示している。電池は、下部に空隙2を
設けたステンレス製の箱型容器3(空隙部2を含めた外
寸法:200×200×50mm)で密封してあり、互い
に絶縁させた正極端子4と負極端子5が、上方のステン
レス製天板に取り付けられている。電池の下部に空隙2
を確保することによって、冷媒が電池の底面からも熱を
吸収できる。複数の電池を連結して固定するために、天
板上の四ヶ所に電気的に絶縁された突起部6を付けた。
本実施例で使用した電極は、LiMn24正極とLi−
Pb合金負極であり、ステンレス鋼の金網で集電した。
各電極間には、ポリプレン製不織布(厚さ50μm)にL
iClO4 +プロピレンカーボネート電解液を染み込ま
せたセパレータを挿入し、単電池1個に正極10枚,負
極9枚を交互に、並列接続した。
[Embodiment 1] FIG. 2 is an external view of an entire unit cell 1 used in the present invention. The battery is hermetically sealed in a box-shaped container 3 made of stainless steel having an air gap 2 in the lower portion (outer dimension including the air gap 2: 200 × 200 × 50 mm), and the positive electrode terminal 4 and the negative electrode terminal 5 are insulated from each other. Is attached to the upper stainless steel top plate. Void 2 at the bottom of the battery
By ensuring that, the refrigerant can also absorb heat from the bottom surface of the battery. In order to connect and fix a plurality of batteries, electrically insulated protrusions 6 were provided at four positions on the top plate.
The electrodes used in this example are LiMn 2 O 4 positive electrode and Li-
It was a Pb alloy negative electrode and was collected by a stainless steel wire mesh.
Between the electrodes, a non-woven fabric made of polypropylene (thickness: 50 μm)
A separator impregnated with an iClO 4 + propylene carbonate electrolytic solution was inserted, and 10 positive electrodes and 9 negative electrodes were alternately connected in parallel to one single cell.

【0014】つぎに、図1のように、容器空隙部に非水
冷媒としてデカン(C1022)を満たした箱型電池収納
容器8(300×300×250mm)の中に、直列接続
した3個の単電池1を浸漬した。各電池は、上述の突起
部6をセラミックス製板9にはめ込んで、各二次電池1
を連結、固定した。電池容器から絶縁された外部正極端
子10,外部負極端子11,ガス抜き弁12,温度測定
器13を電池収納容器8のステンレス製天板に取り付け
た。ガス抜き弁12は、電池収納容器8の内部の温度上
昇、または単電池1からのガス発生などによって、増加
した圧力を低下させるために設置した。
Next, as shown in FIG. 1, a series connection was made in a box-shaped battery storage container 8 (300 × 300 × 250 mm) in which the container cavity was filled with decane (C 10 H 22 ) as a non-aqueous refrigerant. Three unit cells 1 were immersed. In each battery, the above-mentioned protrusion 6 is fitted into the ceramic plate 9 so that each secondary battery 1
Were connected and fixed. The external positive electrode terminal 10, the external negative electrode terminal 11, the gas vent valve 12, and the temperature measuring device 13 insulated from the battery container were attached to the stainless steel top plate of the battery storage container 8. The gas vent valve 12 was installed in order to reduce the increased pressure due to the temperature rise inside the battery container 8 or the gas generation from the unit cell 1.

【0015】図1の電池1を室温にて8時間率で充放電
させて、冷媒の温度を温度測定器13から測定した。各
サイクルの放電末期に、デカンの温度が約10℃上昇し
た。電池収納容器8の内圧の上昇は極僅かであった。こ
の実施例から、使用したデカンは電池の自然放冷を妨げ
ることなく、電池は外気によって冷却されることが実証
された。
The battery 1 shown in FIG. 1 was charged and discharged at room temperature for 8 hours, and the temperature of the refrigerant was measured by the temperature measuring device 13. At the end of discharge in each cycle, the temperature of decane increased by about 10 ° C. The increase in the internal pressure of the battery container 8 was extremely small. From this example, it was demonstrated that the decane used did not interfere with the natural cooling of the battery, and the battery was cooled by the outside air.

【0016】[実施例2]冷媒を循環させるために、図
1の電池収納容器8に撹拌機14を取り付けて、図3の
ような電池装置を組み立てた。冷媒をエタノールに変え
て、撹拌機14を作動させながら、室温にて8時間率で
充放電させた。冷媒のエタノールの温度は、最高で7℃
上昇した。この実施例のように冷媒を強制的に撹拌する
と、電池の冷却効率が向上する。
[Embodiment 2] In order to circulate the refrigerant, an agitator 14 was attached to the battery container 8 of FIG. 1 to assemble a battery device as shown in FIG. The refrigerant was changed to ethanol, and charge / discharge was performed at room temperature for 8 hours while operating the stirrer 14. Refrigerant ethanol has a maximum temperature of 7 ° C
Rose. Forcibly stirring the coolant as in this embodiment improves the cooling efficiency of the battery.

【0017】[実施例3]さらに、冷却効率を上げるた
めに、図1の外部に液循環ポンプ15と熱交換器16を
設置し、図4のような電池装置を組み立てた。冷媒7は
15℃の二次供給水17によって冷却した。冷媒7の温
度は温度測定器13で測定し、温度を電気信号に変換
し、それをポンプ制御器18へ入力する。測定した温度
に応じて、ポンプ15によって送られる冷媒の流速を制
御する。この装置を用い、冷媒としてシリコーン系油を
使用して、[実施例1]に記載した8時間率の充放電サ
イクルを行った。まず、冷媒の流速は2dm3min-1で約
6分で全冷媒を交換するようにした。単電池の放電末期
における冷媒の温度上昇は1〜2℃に抑えられ、[実施
例1]よりも電池の冷却効率が大幅に改善された。つぎ
に、図4の電池収納容器8を30℃に保った恒温槽中に
設置し、ポンプ15の回転速度を変えて、同様な充放電
サイクル試験をおこなった。冷媒の温度は、ポンプで送
られる冷媒の流速に依存し、15〜30℃の範囲で調節
することができた。本実施例で使用した熱交換器を、ラ
ジエーター型の放熱器に変えても、同程度の冷却効率が
得られた。 [実施例4]電池の作動温度を高めるために、単電池と
冷媒の収納容器8の全面を断熱材で覆い、外気温5℃の
場所に設置した。20℃の二次供給水を流したところ、
電池容器内を循環する液体の温度は、充電末期で18
℃,放電末期で20℃であった。この実施例から、本発
明の液体冷却方式が電池の冷却のみならず、電池の恒温
作動にも有効であることが示された。
[Embodiment 3] Further, in order to increase the cooling efficiency, a liquid circulation pump 15 and a heat exchanger 16 were installed outside the FIG. 1, and a battery device as shown in FIG. 4 was assembled. The refrigerant 7 was cooled by the secondary supply water 17 at 15 ° C. The temperature of the refrigerant 7 is measured by the temperature measuring device 13, the temperature is converted into an electric signal, and the electric signal is input to the pump controller 18. The flow rate of the refrigerant sent by the pump 15 is controlled according to the measured temperature. Using this apparatus, a silicone oil was used as a refrigerant, and the charge / discharge cycle of 8 hours described in [Example 1] was performed. First, the flow rate of the refrigerant was 2 dm 3 min -1 , and all the refrigerant was replaced in about 6 minutes. The temperature rise of the refrigerant in the final stage of discharge of the single cell was suppressed to 1 to 2 ° C., and the cooling efficiency of the cell was significantly improved as compared with [Example 1]. Next, the battery storage container 8 of FIG. 4 was installed in a constant temperature bath kept at 30 ° C., and the same charge / discharge cycle test was performed by changing the rotation speed of the pump 15. The temperature of the refrigerant was dependent on the flow rate of the pumped refrigerant and could be adjusted in the range 15-30 ° C. Even if the heat exchanger used in this example was replaced with a radiator type radiator, the same cooling efficiency was obtained. [Example 4] In order to raise the operating temperature of the battery, the entire surface of the storage container 8 for the unit cells and the refrigerant was covered with a heat insulating material, and the container was set at a place where the outside temperature was 5 ° C. When the secondary supply water at 20 ° C was run,
The temperature of the liquid circulating in the battery container is 18 at the end of charging.
It was 20 ° C at the end of discharge. This example shows that the liquid cooling system of the present invention is effective not only for cooling the battery but also for constant temperature operation of the battery.

【0018】[0018]

【発明の効果】本発明の液体冷却方式によって、高出力
型の非水電解液二次電池を効率的に冷却できる。また、
電池装置に熱交換器を設置し、装置外壁を断熱材で覆う
ことによって、電池の作動温度を制御し、外気温度に依
存しない電池性能が得られる。さらに、電極と電解液を
収納する容器が破壊されて、電池が大気に直接触れるこ
とによる電池の発火事故を回避し、電池の異常発生時の
安全性が向上する。
According to the liquid cooling system of the present invention, a high-power type non-aqueous electrolyte secondary battery can be efficiently cooled. Also,
By installing a heat exchanger in the battery device and covering the outer wall of the device with a heat insulating material, the operating temperature of the battery can be controlled and battery performance independent of the outside air temperature can be obtained. Further, the container containing the electrode and the electrolytic solution is destroyed, so that a battery ignition accident due to the battery being in direct contact with the atmosphere can be avoided, and the safety in the event of a battery abnormality is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例による二次電池装置の構成
図。
FIG. 1 is a configuration diagram of a secondary battery device according to an embodiment of the present invention.

【図2】本発明の一実施例による二次電池装置の外観
図。
FIG. 2 is an external view of a secondary battery device according to an embodiment of the present invention.

【図3】撹拌機を設置した本発明の一実施例による二次
電池装置の構成図。
FIG. 3 is a configuration diagram of a secondary battery device according to an embodiment of the present invention in which a stirrer is installed.

【図4】液循環用ポンプと熱交換器を接続した本発明の
一実施例による二次電池装置の構成図。
FIG. 4 is a configuration diagram of a secondary battery device according to an embodiment of the present invention in which a liquid circulation pump and a heat exchanger are connected.

【符号の説明】[Explanation of symbols]

1…単電池、2…電池容器の空隙部分、3…単電池容
器、4…正極端子、5…負極端子、6…電池固定用突起
部、7…非水冷媒、8…電池収納容器、9…電池固定
具、10…外部正極端子、11…外部負極端子、12…
ガス抜き弁、13…温度測定器、14…液撹拌機、15
…ポンプ、16…熱交換器、17…二次供給水、18…
ポンプ制御器。
DESCRIPTION OF SYMBOLS 1 ... Single battery, 2 ... Void part of battery container, 3 ... Single battery container, 4 ... Positive electrode terminal, 5 ... Negative electrode terminal, 6 ... Battery fixing protrusion, 7 ... Non-aqueous refrigerant, 8 ... Battery storage container, 9 ... Battery fixture, 10 ... External positive electrode terminal, 11 ... External negative electrode terminal, 12 ...
Gas vent valve, 13 ... Temperature measuring device, 14 ... Liquid agitator, 15
… Pump, 16… Heat exchanger, 17… Secondary supply water, 18…
Pump controller.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 水本 守 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 (72)発明者 堀場 達雄 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Mamoru Mizumoto 4026 Kuji Town, Hitachi City, Hitachi, Ibaraki Prefecture Hitachi Research Laboratory Ltd. (72) Inventor Tatsuo Horiba 4026 Kuji Town, Hitachi City, Ibaraki Prefecture Hitachi Inside Hitachi Research Laboratory

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】1個または2個以上の電池ブロック群から
なる二次電池装置であって、該電池ブロック群の少なく
とも一部分が液体に浸漬されていることを特徴とする二
次電池装置。
1. A secondary battery device comprising one or more battery block groups, wherein at least a part of the battery block group is immersed in a liquid.
【請求項2】請求項1記載の液体が電池容器を腐食しな
い非水液体であることを特徴とする二次電池装置。
2. A secondary battery device, wherein the liquid according to claim 1 is a non-aqueous liquid that does not corrode a battery container.
【請求項3】請求項1記載の液体が電極活物質と反応す
る非水液体であることを特徴とする二次電池装置。
3. A secondary battery device, wherein the liquid according to claim 1 is a non-aqueous liquid that reacts with an electrode active material.
【請求項4】電池と液体を収納した容器に撹拌機を設け
たことを特徴とする請求項1又は2あるいは3記載の二
次電池装置。
4. The secondary battery device according to claim 1, wherein the container containing the battery and the liquid is provided with an agitator.
【請求項5】電池と液体を収納した容器の外部に設置し
た熱交換器または放熱器を介して、液体をポンプで循環
することを特徴とする請求項1〜4記載の二次電池装
置。
5. The secondary battery device according to claim 1, wherein the liquid is circulated by a pump through a heat exchanger or a radiator installed outside the container containing the battery and the liquid.
【請求項6】電池と液体を収納した容器の外壁全体、ま
たは少なくとも該容器の一部を断熱材で覆ったことを特
徴とする請求項1〜5記載の二次電池装置。
6. The secondary battery device according to claim 1, wherein the entire outer wall of the container containing the battery and the liquid, or at least a part of the container is covered with a heat insulating material.
JP26995992A 1992-10-08 1992-10-08 Lithium secondary battery device Expired - Fee Related JP2959298B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26995992A JP2959298B2 (en) 1992-10-08 1992-10-08 Lithium secondary battery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26995992A JP2959298B2 (en) 1992-10-08 1992-10-08 Lithium secondary battery device

Publications (2)

Publication Number Publication Date
JPH06124733A true JPH06124733A (en) 1994-05-06
JP2959298B2 JP2959298B2 (en) 1999-10-06

Family

ID=17479606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26995992A Expired - Fee Related JP2959298B2 (en) 1992-10-08 1992-10-08 Lithium secondary battery device

Country Status (1)

Country Link
JP (1) JP2959298B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002008737A (en) * 2000-06-23 2002-01-11 Mitsubishi Heavy Ind Ltd Energy supply system
JP2003346922A (en) * 2002-05-28 2003-12-05 Mitsubishi Heavy Ind Ltd Temperature adjusting device and method for power storage device, and power storage device
JP2004208470A (en) * 2002-12-26 2004-07-22 Toshiba Battery Co Ltd Charger of secondary battery
WO2008093182A1 (en) * 2007-02-01 2008-08-07 Toyota Jidosha Kabushiki Kaisha Power supply device
WO2008093184A1 (en) * 2007-02-01 2008-08-07 Toyota Jidosha Kabushiki Kaisha Power supply device
JP2009016205A (en) * 2007-07-05 2009-01-22 Toyota Motor Corp Power supply device
JP2010519714A (en) * 2007-02-27 2010-06-03 ダイムラー・アクチェンゲゼルシャフト Battery with thermal plate
US20100136389A1 (en) * 2007-06-20 2010-06-03 Toyota Jidosha Kabushiki Kaisha Power storage unit and vehicle having power storage unit
JP2010519712A (en) * 2007-02-27 2010-06-03 ダイムラー・アクチェンゲゼルシャフト Battery with thermal plate
JP2012510697A (en) * 2008-11-28 2012-05-10 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Battery module
JP2012530330A (en) * 2009-04-30 2012-11-29 エルジー・ケム・リミテッド Battery system, battery module, and method for cooling battery module
JP2018010848A (en) * 2016-06-30 2018-01-18 トヨタ自動車株式会社 battery
CN112448066A (en) * 2020-10-29 2021-03-05 清华大学 Battery thermal management system and control method thereof
JP2021125411A (en) * 2020-02-07 2021-08-30 株式会社デンソー Cell device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4636031B2 (en) 2007-02-01 2011-02-23 トヨタ自動車株式会社 Power supply
JP4636030B2 (en) 2007-02-01 2011-02-23 トヨタ自動車株式会社 Power supply

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002008737A (en) * 2000-06-23 2002-01-11 Mitsubishi Heavy Ind Ltd Energy supply system
JP4633889B2 (en) * 2000-06-23 2011-02-16 三菱重工業株式会社 Energy supply system
JP2003346922A (en) * 2002-05-28 2003-12-05 Mitsubishi Heavy Ind Ltd Temperature adjusting device and method for power storage device, and power storage device
JP2004208470A (en) * 2002-12-26 2004-07-22 Toshiba Battery Co Ltd Charger of secondary battery
JP2008192382A (en) * 2007-02-01 2008-08-21 Toyota Motor Corp Power supply device
US8283063B2 (en) 2007-02-01 2012-10-09 Toyota Jidosha Kabushiki Kaisha Power supply device
WO2008093182A1 (en) * 2007-02-01 2008-08-07 Toyota Jidosha Kabushiki Kaisha Power supply device
JP4636032B2 (en) * 2007-02-01 2011-02-23 トヨタ自動車株式会社 Power supply
WO2008093184A1 (en) * 2007-02-01 2008-08-07 Toyota Jidosha Kabushiki Kaisha Power supply device
JP2010519714A (en) * 2007-02-27 2010-06-03 ダイムラー・アクチェンゲゼルシャフト Battery with thermal plate
JP2010519712A (en) * 2007-02-27 2010-06-03 ダイムラー・アクチェンゲゼルシャフト Battery with thermal plate
US20100136389A1 (en) * 2007-06-20 2010-06-03 Toyota Jidosha Kabushiki Kaisha Power storage unit and vehicle having power storage unit
US8227101B2 (en) 2007-06-20 2012-07-24 Toyota Jidosha Kabushiki Kaisha Power storage unit with coolant resistivity detector
JP2009016205A (en) * 2007-07-05 2009-01-22 Toyota Motor Corp Power supply device
US7974095B2 (en) 2007-07-05 2011-07-05 Toyota Jidosha Kabushiki Kaisha Power source apparatus
JP2012510697A (en) * 2008-11-28 2012-05-10 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Battery module
JP2012530330A (en) * 2009-04-30 2012-11-29 エルジー・ケム・リミテッド Battery system, battery module, and method for cooling battery module
JP2018010848A (en) * 2016-06-30 2018-01-18 トヨタ自動車株式会社 battery
JP2021125411A (en) * 2020-02-07 2021-08-30 株式会社デンソー Cell device
CN112448066A (en) * 2020-10-29 2021-03-05 清华大学 Battery thermal management system and control method thereof
CN112448066B (en) * 2020-10-29 2021-07-30 清华大学 Battery thermal management system and control method thereof

Also Published As

Publication number Publication date
JP2959298B2 (en) 1999-10-06

Similar Documents

Publication Publication Date Title
JPH06124733A (en) Secondary battery device
Chakkaravarthy et al. Zinc—air alkaline batteries—A review
US5871859A (en) Quick charge battery with thermal management
JP4662530B2 (en) Battery pack
US5487955A (en) Cooled zinc-oxygen battery
JP2001060466A (en) Set battery
JP2001507856A (en) Mechanical and thermal improvements in metal hydride batteries, battery modules, and battery packs
JP2011129505A (en) Battery pack, and vehicle equipped with this
JPH09266016A (en) Method for cooling cylindrical battery
JP2009016238A (en) Electric storage device and vehicle
JPH11126585A (en) Battery pack and electric appliance using it
JP2001060465A (en) Battery
JP4635442B2 (en) Battery pack
CN114448049A (en) Temperature control system and method and energy storage charging system
JPH11238530A (en) Cooling method for modular battery and its manufacture
CN107925138B (en) Energy storage device with reduced temperature variability between cells
US5447807A (en) Power source
JP4593930B2 (en) Battery pack
CN209786146U (en) Battery module thermal management system
JP4752180B2 (en) Battery pack
CN107681077A (en) A kind of battery modules
CN220324538U (en) Battery pack
CN213845358U (en) Power lithium battery heat dissipation plate
CN217158311U (en) Multifunctional storage battery
RU155156U1 (en) HIGH POWER BATTERY BASED ON LITHIUM-POLYMERIC BATTERIES

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees