JPH0612197B2 - Refrigeration equipment - Google Patents

Refrigeration equipment

Info

Publication number
JPH0612197B2
JPH0612197B2 JP61012480A JP1248086A JPH0612197B2 JP H0612197 B2 JPH0612197 B2 JP H0612197B2 JP 61012480 A JP61012480 A JP 61012480A JP 1248086 A JP1248086 A JP 1248086A JP H0612197 B2 JPH0612197 B2 JP H0612197B2
Authority
JP
Japan
Prior art keywords
temperature
compressor
refrigerant
heating
heating operation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61012480A
Other languages
Japanese (ja)
Other versions
JPS62169969A (en
Inventor
遊二 藤本
稔 荻田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP61012480A priority Critical patent/JPH0612197B2/en
Publication of JPS62169969A publication Critical patent/JPS62169969A/en
Publication of JPH0612197B2 publication Critical patent/JPH0612197B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、圧縮機からのホットガス冷媒を利用して庫内
空気を加熱する冷凍装置の改良に関する。
Description: TECHNICAL FIELD The present invention relates to an improvement of a refrigeration system that heats air in a refrigerator by using a hot gas refrigerant from a compressor.

(従来の技術) 従来より、この種の冷凍装置として、圧縮機,凝縮器、
膨張機構および蒸発器を直列に閉回路に接続して構成さ
れる循環冷媒回路に、上記圧縮機吐出側から分岐して上
記凝縮器および膨張機構をバイパスするバイパス通路を
設けるとともに、該バイパス通路に電磁開閉弁を介設し
て、加熱運転を行う際、電磁開閉弁を開にすることによ
り圧縮機からのホットガス冷媒をバイパス通路を介して
直接蒸発器に導いて、このホットガス冷媒によって庫内
空気を加熱するようにしたものはよく知られている(例
えば、特開昭59−122863号公報参照)。
(Prior Art) Conventionally, a compressor, a condenser,
A circulating refrigerant circuit configured by connecting an expansion mechanism and an evaporator in series in a closed circuit is provided with a bypass passage branched from the compressor discharge side to bypass the condenser and the expansion mechanism, and the bypass passage is provided in the bypass passage. When a heating operation is performed through an electromagnetic on-off valve, the electromagnetic on-off valve is opened to guide the hot gas refrigerant from the compressor directly to the evaporator through the bypass passage, and the hot gas refrigerant stores the hot gas refrigerant. It is well known that the inner air is heated (see, for example, JP-A-59-122863).

(発明が解決しようとする課題) ところが、上記の如きものでは、加熱運転を行う場合、
電磁開閉弁を開にしてホットガス冷媒を圧縮機からバイ
パス通路を介して直接蒸発器に送るようになされている
が、そのときの冷媒量は、加熱運転を開始する直前の状
態によるため、冷媒量が多かったり、少なかったりす
る。従って、冷媒量が多い場合には、圧縮機における冷
媒の圧縮仕事は大きくなるので、加熱運転が長時間続く
と、圧縮機は過負荷運転状態となって高圧圧力開閉器や
過電流リレーが作動して圧縮機は停止することになり、
連続運転が行えず装置の信頼性が低く、また圧縮機が頻
繁に停止するため、断続的な加熱運転を繰り返し行う必
要があって庫内の設定温度への収束に長時間を要すると
いう問題があった。
(Problems to be Solved by the Invention) However, in the above-mentioned case, when the heating operation is performed,
The electromagnetic on-off valve is opened to send the hot gas refrigerant from the compressor directly to the evaporator through the bypass passage, but the refrigerant amount at that time depends on the state immediately before starting the heating operation. The amount is large or small. Therefore, when the amount of refrigerant is large, the compression work of the refrigerant in the compressor becomes large, so if the heating operation continues for a long time, the compressor will be in an overload operation state and the high pressure switch and the overcurrent relay will operate. Then the compressor will stop,
Since continuous operation cannot be performed and the reliability of the device is low, and the compressor stops frequently, it is necessary to repeat intermittent heating operation, and it takes a long time to converge to the set temperature in the refrigerator. there were.

本発明は、上記の点に鑑みてなされたものであり、空気
温度が基準温度以下の加熱運転には、圧縮機と蒸発器と
の間を循環する冷媒量を最適の一定量に制御することに
より、長時間の加熱運転による圧縮機の過負荷運転状態
を抑えつつ圧縮機の連続運転を可能とする一方、空気温
度が基準温度より高いと、全冷媒等による加熱運転を行
い、装置の信頼性を高めるとともに、庫内温度を速やか
に所望温度に収束させること目的とする。
The present invention has been made in view of the above points, and in the heating operation in which the air temperature is equal to or lower than the reference temperature, it is possible to control the amount of the refrigerant circulated between the compressor and the evaporator to an optimum fixed amount. This enables continuous operation of the compressor while suppressing the overload operation state of the compressor due to long-time heating operation, while when the air temperature is higher than the reference temperature, heating operation is performed with all refrigerants, etc. The purpose is to improve the property and quickly bring the internal temperature to a desired temperature.

(課題を解決するための手段) 上記目的を達成するために、本発明の解決手段は、第1
図に示すように、先ず、圧縮機(1)、凝縮器(2又は
3)、膨張機構(4)及び蒸発器(5)を順次直列に接
続して閉回路に形成された循環冷媒回路(7)を備える
とともに、上記圧縮機(1)の吐出側から分岐し上記凝
縮器(2又は3)及び膨張機構(4)をバイパスして上
記蒸発器(5)の上流側に接続されたバイパス通路
(8)と、上記圧縮機(1)からの冷媒の流通を上記凝
縮器(2又は3)側とバイパス通路(8)側とに切換え
る切換手段(9)とを備えた冷凍装置を前提としてい
る。
(Means for Solving the Problems) In order to achieve the above object, the solving means of the present invention is
As shown in the figure, first, a circulating refrigerant circuit (closed circuit) formed by sequentially connecting a compressor (1), a condenser (2 or 3), an expansion mechanism (4) and an evaporator (5) in series ( 7), a bypass that is branched from the discharge side of the compressor (1) and bypasses the condenser (2 or 3) and the expansion mechanism (4) and is connected to the upstream side of the evaporator (5). A refrigerating apparatus provided with a passage (8) and a switching means (9) for switching the flow of the refrigerant from the compressor (1) to the condenser (2 or 3) side and the bypass passage (8) side. I am trying.

そして、上記循環冷媒回路(7)の凝縮器(2又は3)
と蒸発器(5)との間に設けられ、かつ開閉弁(11)
を有する液溜め部(B)と、被冷却空間の空気温度を検
出する温度検出手段(13a又は13b)とが設けられ
ている。加えて、該温度検出手段(13a又は13)が
検出した検出空気温度が設定温度より低温の基準温度以
下に低くなると、加熱運転開始前に、上記切換手段
(9)を圧縮機(1)からの冷媒が凝縮器(2又は3)
側に流通するよう切換えた状態で上記開閉弁(11)を
閉にして上記液溜め部(B)に上記循環冷媒回路(7)
内の冷媒を溜めるよう所定時間ポンプダウン運転を行う
ポンプダウン運転制御手段(C3)と、該ポンプダウン
運転制御手段(C3)によるポンプダウン運転後、上記
開閉弁(11)を開制御して上記液溜め部(B)から一
定量の冷媒を上記循環冷媒回路(7)の低圧側に流出せ
しめる計量式加熱運転を実行する加熱運転制御手段(C
4)とよりなる第1加熱手段(C1)が設けられてい
る。更に、上記温度検出手段(13a又は13b)が検
出した検出空気温度が上記設定温度より低く、かつ上記
基準温度より高いと、上記第1加熱手段(C1)の計量
式加熱運転と異なる加熱運転を実行して被冷却空間を加
熱する第2加熱手段(C2)が設けられた構成としてい
る。
And the condenser (2 or 3) of the circulating refrigerant circuit (7)
And an on-off valve (11) provided between the fuel cell and the evaporator (5)
And a temperature detecting means (13a or 13b) for detecting the air temperature of the space to be cooled are provided. In addition, when the detected air temperature detected by the temperature detecting means (13a or 13) becomes lower than the reference temperature lower than the set temperature, the switching means (9) is moved from the compressor (1) before the heating operation is started. The refrigerant is a condenser (2 or 3)
The on-off valve (11) is closed in a state where the circulation refrigerant circuit (7) is placed in the liquid reservoir (B).
The pump down operation control means (C3) for performing a pump down operation for a predetermined time so as to store the refrigerant therein, and after the pump down operation by the pump down operation control means (C3), the opening / closing valve (11) is controlled to be opened. Heating operation control means (C) for executing a metering type heating operation in which a fixed amount of refrigerant flows from the liquid reservoir (B) to the low pressure side of the circulating refrigerant circuit (7).
4) is provided with a first heating means (C1). Further, when the detected air temperature detected by the temperature detecting means (13a or 13b) is lower than the set temperature and higher than the reference temperature, a heating operation different from the metering type heating operation of the first heating means (C1) is performed. The second heating means (C2) for executing the heating to heat the cooled space is provided.

(作用) 上記の構成により、本発明では、被冷却空間の空気温度
が設定温度より低く、かつ基準温度より高い場合におい
ては、例えば、設定温度より−6℃未満であると、第2
加熱手段(C2)が加熱運転を実行し、例えば、圧縮機
(1)からの冷媒の全量をバイパス通路(8)に流通さ
せ、所謂通常の加熱運転を行い、迅速な加熱を行う。
(Operation) With the above configuration, in the present invention, when the air temperature of the cooled space is lower than the set temperature and higher than the reference temperature, for example, when the temperature is lower than the set temperature by −6 ° C., the second
The heating means (C2) performs a heating operation, for example, the entire amount of the refrigerant from the compressor (1) is circulated in the bypass passage (8), a so-called normal heating operation is performed, and rapid heating is performed.

一方、上記被冷却空間の空気温度が上記よ基準温度以下
になった場合においては、第1加熱手段(C1)が加熱
運転を実行し、先ず、加熱運転開始前、ポンプダウン運
転制御手段(C3)により、圧縮機(1)からの冷媒は
凝縮器(2又は3)側に導かれるとともに開閉弁(1
1)が閉にされた状態で所定時間ポンプダウン運転が行
われることにより、液溜め部(B)に冷媒が滞留するこ
とになる。このポンプダウン運転後は、加熱運転制御手
段(C4)により、上記開閉弁(11)が開制御され
て、上記液溜め部(B)から一定量の冷媒のみが上記循
環冷媒回路(7)の低圧側に流出する。これにより、上
記液溜め部(B)からの一定量の冷媒は、低圧の蒸発器
(5)側に導入され、この一定量の冷媒によって加熱運
転が開始され、庫内の加熱が行われるので、長時間の加
熱運転が行われても、圧縮機(1)が過負荷運転状態に
なることがなく圧縮機が頻繁に停止するのを防止でき、
連続運転により庫内を設定温度に速やかに収束させるこ
とができることになる。
On the other hand, when the air temperature of the cooled space becomes lower than the reference temperature, the first heating means (C1) executes the heating operation, and first, before the heating operation is started, the pump down operation control means (C3). ), The refrigerant from the compressor (1) is guided to the condenser (2 or 3) side and the on-off valve (1
When the pump down operation is performed for a predetermined time while 1) is closed, the refrigerant is retained in the liquid reservoir (B). After the pump down operation, the opening / closing valve (11) is controlled to be opened by the heating operation control means (C4) so that only a certain amount of the refrigerant from the liquid reservoir (B) is stored in the circulating refrigerant circuit (7). It flows to the low pressure side. As a result, a certain amount of the refrigerant from the liquid reservoir (B) is introduced to the low pressure evaporator (5) side, the heating operation is started by the constant amount of the refrigerant, and the inside of the refrigerator is heated. , Even if the heating operation is performed for a long time, the compressor (1) does not become the overload operation state, and it is possible to prevent the compressor from frequently stopping.
By continuous operation, the inside of the refrigerator can be quickly brought to the set temperature.

(実施例) 以下、本発明の実施例を第2図ないし第4図に基づいて
詳細に説明する。
(Example) Hereinafter, an example of the present invention will be described in detail with reference to FIGS. 2 to 4.

第2図は本発明を海上コンテナ用の冷凍装置(A)に適
用した実施例を示す。同図において、(1)は圧縮機、
(2)は水冷凝縮器、(3)は該水冷凝縮器(2)は冷
却水が循環しないときに作動する3個の送風ファン(3
a)…が付設された空冷凝縮器、(4)は膨張機構とし
ての膨張弁、(5)は2個の送風ファン(5a),(5
a)が付設された蒸発器である。これら各機器(1)〜
(5)はそれぞれ冷媒配管(6)…により冷媒循環可能
に直列に接続されて閉回路の循環冷媒回路(7)が構成
されており、冷媒を圧縮機(1)により順次空冷凝縮器
(3)、水冷凝縮器(2)、膨張弁(4)および蒸発器
(5)を経て圧縮機(1)に流通循環させることによ
り、水冷又は空冷凝縮器(2又は3)においてガス冷媒
の有する熱量を庫外に放出するとともに、蒸発器(5)
において液冷媒に庫内(被冷却空間)の熱量を吸収させ
て庫内を冷却するようになされている。
FIG. 2 shows an embodiment in which the present invention is applied to a refrigeration system (A) for a marine container. In the figure, (1) is a compressor,
(2) is a water-cooled condenser, (3) is the water-cooled condenser (2), and three blower fans (3) are operated when cooling water does not circulate.
a) ... Attached air-cooled condenser, (4) expansion valve as expansion mechanism, (5) two blower fans (5a), (5)
a) attached with a). Each of these devices (1)
Each of (5) is connected in series by a refrigerant pipe (6) so that the refrigerant can be circulated to form a closed circuit circulating refrigerant circuit (7). The refrigerant is sequentially cooled by an air-cooled condenser (3) by a compressor (1). ), A water-cooled condenser (2), an expansion valve (4), and an evaporator (5) to circulate and circulate through the compressor (1), so that the heat quantity of the gas refrigerant in the water-cooled or air-cooled condenser (2 or 3). Is discharged to the outside of the refrigerator and the evaporator (5)
In the above, the liquid refrigerant is made to absorb the amount of heat in the interior (cooled space) to cool the interior.

また、(8)は上記循環冷媒回路(7)における圧縮機
(1)吐出側から分岐し上記水冷,空冷凝縮器(2),
(3)および膨張弁(4)をバイパスして蒸発器(5)
の上流側に接続されたバイパス通路、(9)は上記循環
冷媒回路(7)の上記バイパス通路(B)との分岐部に
配設され、上記圧縮機(1)からの冷媒の流通を凝縮器
(2又は3)側とバイパス通路(8)側とに切換える切
換手段としての電動式三方弁である。該三方弁(9)の
切換操作により、加熱運転時、圧縮機(1)からのホッ
トガス冷媒を上記バイパス通路(8)を介して直接蒸発
器(5)に導くようになされている。また、上記水冷,
空冷凝縮器(2),(3)と膨張弁(4)との間の冷媒
配管(6)には、一対の電磁式の上流側開閉弁(10)
および下流側開閉弁(11)が相互間に所定管長を設け
て介設されており、上記圧縮機(1)のポンプダウン作
動により一定量の冷媒を溜めるための液溜め部(B)を
構成している。(12)は海上コンテナの航行直前の検
査時(PTI(pre−trip inspection)等に所望庫内温度
を予め設定する庫内温度設定器、(13a)は被冷却空
間の空気温度である吹出空気温度を検出する温度センサ
(冷蔵運転用)、(13b)は被冷却空間の空気温度で
ある吸込空気温度を検出する温度センサ(冷凍運転用)
であって、該温度センサ(13a)及び(13b)が温
度検出手段を構成している。
Further, (8) is branched from the discharge side of the compressor (1) in the circulating refrigerant circuit (7), and the water-cooled and air-cooled condenser (2),
(3) and expansion valve (4) bypassing evaporator (5)
A bypass passage (9) connected to the upstream side of the compressor (1) is arranged at a branch portion of the circulation refrigerant circuit (7) with the bypass passage (B) to condense the refrigerant flow from the compressor (1). It is an electrically operated three-way valve as a switching means for switching between the device (2 or 3) side and the bypass passage (8) side. By switching the three-way valve (9), hot gas refrigerant from the compressor (1) is directly guided to the evaporator (5) through the bypass passage (8) during the heating operation. In addition, the water cooling,
In the refrigerant pipe (6) between the air-cooled condensers (2) and (3) and the expansion valve (4), a pair of electromagnetic upstream side opening / closing valves (10) are provided.
And a downstream opening / closing valve (11) are provided with a predetermined pipe length interposed therebetween, and constitute a liquid reservoir (B) for storing a certain amount of refrigerant by the pump down operation of the compressor (1). is doing. (12) is an inside temperature setter that presets a desired inside temperature at the time of inspection immediately before navigation of a marine container (PTI (pre-trip inspection), etc.), and (13a) is blown air that is the air temperature of the cooled space. Temperature sensor for detecting temperature (for refrigerating operation), (13b) is temperature sensor for detecting intake air temperature which is the air temperature of the space to be cooled (for freezing operation)
The temperature sensors (13a) and (13b) form temperature detecting means.

さらに、上記三方弁(9)、上流側開閉弁(10)、下
流側開閉弁(11)、庫内温度設定器(12)および温
度センサ(13a),(13b)は、冷凍装置(A)を
運転制御するコントローラ(14)に信号の授受可能に
接続されている。
Further, the three-way valve (9), the upstream side opening / closing valve (10), the downstream side opening / closing valve (11), the internal temperature setting device (12), and the temperature sensors (13a) and (13b) are the refrigeration system (A). Is connected to a controller (14) for controlling the operation of the device so that signals can be exchanged.

そして、上記コントローラ(14)の内部には、第3図
に示すように、CPU(21)、RAM(22)、RO
M(23)、I/Oポート(24)およびA/D変換器
(25)が備えられている。
Inside the controller (14), as shown in FIG. 3, a CPU (21), a RAM (22), an RO.
An M (23), an I / O port (24) and an A / D converter (25) are provided.

また、該コントローラ(14)には、第1加熱手段(C
1)と、第2加熱手段(C2)とが設けられ、更に、該
第1加熱手段(C1)は、ポンプダウン運転制御手段
(C3)と加熱運転制御手段(C4)とより構成されて
いる。そして、該第2加熱手段(C2)は、上記温度セ
ンサ(13a)又は(13b)からの各出力信号を受
け、庫内温度(T)が設定温度(SP)より低下し、か
つ庫内温度(T)が基準温度、例えば、設定温度(S
P)より6℃低い温度より高い場合、上記三方弁(9)
を凝縮器(2),(3)側からバイパス通路(8)側に
切換えて、圧縮機(1)からの冷媒の全量がバイパス通
路(8)側に流通するようバイパス通路(8)を全開に
することにより、計量された一定量の冷媒によらない運
転すなわち通常の加熱運転を行うように構成されてい
る。
Further, the controller (14) includes a first heating means (C
1) and a second heating means (C2) are provided, and the first heating means (C1) further comprises a pump down operation control means (C3) and a heating operation control means (C4). . Then, the second heating means (C2) receives each output signal from the temperature sensor (13a) or (13b), the internal temperature (T) is lower than the set temperature (SP), and the internal temperature is (T) is a reference temperature, for example, a set temperature (S
If the temperature is 6 ° C lower than P), the above three-way valve (9)
Is switched from the condenser (2), (3) side to the bypass passage (8) side, and the bypass passage (8) is fully opened so that the entire amount of the refrigerant from the compressor (1) flows to the bypass passage (8) side. By doing so, it is configured to perform an operation that does not depend on the measured constant amount of refrigerant, that is, a normal heating operation.

また、上記ポンプダウン運転制御手段(C3)は、温度
センサ(13a)又は(13b)からの各出力信号を受
け、庫内温度(T)が上記温基準温度(設定温度(S
P)より−6℃以下)になった場合、加熱運転開始に先
立って、上記三方弁(7)を圧縮機(1)からの冷媒が
上記凝縮器(2),(3)側へ流通するように切換え、
かつ上記上流側開閉弁(10)を開に、下流側開閉弁
(11)を閉にして液溜め部(B)に冷媒を溜めるよう
所定時間ポンプダウン運転を行うように構成されてい
る。更に、上記加熱運転制御手段(C4)は、このポン
プダウン運転後、上記三方弁(7)を圧縮機(1)から
の冷媒がバイパス通路(8)側へ流通するように切換
え、かつ上記上流側開閉弁(10)を閉に、下流側開閉
弁(11)を開にすることにより、上記液溜め部(B)
から一定量の冷媒を循環冷媒回路(7)の低圧側に流出
させて計量式加熱運転を実行するように構成されてい
る。
Further, the pump down operation control means (C3) receives each output signal from the temperature sensor (13a) or (13b), and the inside temperature (T) is the temperature reference temperature (the set temperature (S
P) to -6 ° C or less), the refrigerant from the compressor (1) flows through the three-way valve (7) to the condensers (2) and (3) side before the heating operation is started. Switch to
In addition, the upstream side opening / closing valve (10) is opened and the downstream side opening / closing valve (11) is closed to perform a pump down operation for a predetermined time so as to store the refrigerant in the liquid reservoir (B). Further, the heating operation control means (C4) switches the three-way valve (7) so that the refrigerant from the compressor (1) flows to the bypass passage (8) side after the pump down operation, and the upstream side. By closing the side opening / closing valve (10) and opening the downstream side opening / closing valve (11), the liquid reservoir (B) is formed.
A certain amount of the refrigerant is discharged to the low pressure side of the circulation refrigerant circuit (7) to perform the metering type heating operation.

また、上記コントローラ(14)の内部構成は、第3図
に示されている。同図において、(MC)は圧縮機モー
タ、(MF1)は蒸発器(5)の送風ファンモータ、
(MF2)は空冷凝縮器(3)の送風ファンモータ、
(10c)は上記圧縮機モータ(MC)を作動させると
同時に空冷凝縮器(3)の送風ファンモータ(MF2)
への通電を許容する常開接点(10C−1)を有する圧
縮機リレー、(10F)は蒸発器(5)の送風ファンモ
ータ(MF1)を作動させる常開接点(10F−1)を
有する蒸発器ファンリレー、(20S1)は冷媒配管
(6)に介設されて循環冷媒回路(7)の冷媒流れを許
容又は阻止する電磁弁である。
The internal structure of the controller (14) is shown in FIG. In the figure, (MC) is a compressor motor, (MF1) is a blower fan motor of the evaporator (5),
(MF2) is a fan motor for the air-cooled condenser (3),
(10c) is a blower fan motor (MF2) of the air-cooled condenser (3) at the same time as operating the compressor motor (MC).
, A compressor relay having a normally open contact (10C-1) for allowing energization to, an evaporator (10F) having a normally open contact (10F-1) for operating the blower fan motor (MF1) of the evaporator (5) The fan fan relay (20S1) is an electromagnetic valve that is provided in the refrigerant pipe (6) and allows or blocks the refrigerant flow in the circulating refrigerant circuit (7).

そして、(31)は高圧圧力開閉器、(32)は過電流
リレーであり、該高圧圧力開閉器(31)および過電流
リレー(32)は上記圧縮機リレー(10C)に直列に
接続され、圧縮機(1)の負荷が所定値よりも大きくな
った場合や圧縮機(1)に過電流が流れた場合に圧縮機
(1)の作動を停止するようになされている。また(4
1)はポンプダウン運動制御用の低圧圧力開閉器であ
る。
Further, (31) is a high pressure switch, (32) is an overcurrent relay, the high pressure switch (31) and the overcurrent relay (32) are connected in series to the compressor relay (10C), The operation of the compressor (1) is stopped when the load of the compressor (1) becomes larger than a predetermined value or when an overcurrent flows through the compressor (1). Also (4
1) is a low-pressure pressure switch for pump down motion control.

尚、第2図および第3図中、(35)は熱交換器付アキ
ュムレシーバ、(Tr)は変圧器、(S)は運転/停止
スイッチ、(37)は油圧保護圧力開閉器、(38)は
ランプスイッチ、(39)は油圧リセットスイッチ、
(40)は圧縮機保護サーモ、(42)〜(45)は主
動の切換開閉器であってすべて連動しており、(42)
は電圧切換用、(43)は変圧器(Tr)の結線切換
用、(44),(45)は圧縮機モータ(MC)用であ
る。また、(60W)は水冷凝縮器(3)への冷却水循
環時に開作動する水用圧力開閉器であって、その開作動
時に空冷凝縮器(3)の送風ファンモータ(MF2)を
停止させるものである。
In FIGS. 2 and 3, (35) is an accumulator with a heat exchanger, (Tr) is a transformer, (S) is a start / stop switch, (37) is a hydraulic protective pressure switch, and (38) ) Is a lamp switch, (39) is a hydraulic reset switch,
(40) is a compressor protection thermometer, and (42) to (45) are main switching switches, which are all interlocked with each other.
Is for voltage switching, (43) is for switching connection of the transformer (Tr), and (44) and (45) are for compressor motor (MC). Further, (60W) is a water pressure switch that is opened when circulating the cooling water to the water-cooled condenser (3), and that stops the blower fan motor (MF2) of the air-cooled condenser (3) during the opening operation. Is.

次に、上記実施例の作動について説明するに、冷凍装置
(A)によって加熱運転を行う際、予め庫内温度設定器
(12)によって所望の設定温度(SP)を設定する。
そして、温度センサ(13a又は13b)によって庫内
温度(T)を検出し、該庫内温度(T)が、第4図に示
すように、上記設定温度(SP)よりも6゜C以上低い場
合には、第1加熱手段(C1)が、ホットガス冷媒によ
る加熱運転を次のようにして実行する。すなわち、コン
トローラ(14)により、下流側開閉弁(11)を閉、
上流側開閉弁(10)を開にするとともに、三方弁
(9)をホットガス冷媒が上記両開閉弁(10),(1
1)側に導かれるように切換作動させる。
Next, the operation of the above-described embodiment will be described. When the heating operation is performed by the refrigerating apparatus (A), a desired set temperature (SP) is set in advance by the inside temperature setting device (12).
Then, the temperature inside the storage (T) is detected by the temperature sensor (13a or 13b), and the temperature inside the storage (T) is lower than the set temperature (SP) by 6 ° C. or more as shown in FIG. In this case, the first heating means (C1) executes the heating operation with the hot gas refrigerant as follows. That is, the controller (14) closes the downstream opening / closing valve (11),
The upstream side opening / closing valve (10) is opened, and the three-way valve (9) is closed by the hot gas refrigerant.
Switching operation is performed so that it is guided to the 1) side.

この状態で、圧縮機(1)をポンプダウン作動させる
と、圧縮機(1)からの冷媒は、下流側開閉弁(11)
より上流側の冷媒配管(6)中に液化された状態で滞留
するようになる。次に、低圧圧力開閉器(41)が開放
してポンプダウン運転が終了すると、コントローラ(1
4)により、下流側開閉弁(11)を開,上流側開閉弁
(10)を閉にするとともに、三方切換弁(9)を圧縮
機(1)からの冷媒がバイパス通路(6)側に導かれる
ように切換える。これにより、上流側開閉弁(10)と
下流側開閉弁(11)との間の所定管長の冷媒配管
(6)中に滞留した一定量の冷媒のみが、低圧の蒸発器
(5)側に導入され、よって、この一定量の冷媒による
加熱運転、すなわち計量式加熱運転が行われる。
When the compressor (1) is pumped down in this state, the refrigerant from the compressor (1) is discharged from the downstream side opening / closing valve (11).
It will stay in the liquefied state in the refrigerant pipe (6) on the more upstream side. Next, when the low pressure switch (41) is opened and the pump down operation is completed, the controller (1
4), the downstream side on-off valve (11) is opened, the upstream side on-off valve (10) is closed, and the three-way switching valve (9) causes the refrigerant from the compressor (1) to flow to the bypass passage (6) side. Switch to be guided. As a result, only a certain amount of the refrigerant accumulated in the refrigerant pipe (6) having a predetermined pipe length between the upstream side opening / closing valve (10) and the downstream side opening / closing valve (11) is transferred to the low pressure evaporator (5) side. Therefore, the heating operation with the constant amount of the refrigerant, that is, the metering type heating operation is performed.

そして、庫内温度(T)が設定温度(SP)よりも1.
5℃低い温度まで加熱すると、圧縮機(1)の容量33
%運転を行い、以降三方弁(9)のPID制御によって
庫内温度(T)が設定温度(SP)に収束するようにな
されている。すなわち、庫内温度信号に対し比例値
(P),積分値(I),微分値(D)を各々演算するこ
とにより、温度変化の行き過ぎを抑制するとともに、オ
フセット量を小さくし、庫内温度(T)を設定温度(S
P)に速やかに収束させるようになされている。
Then, the internal temperature (T) is lower than the set temperature (SP) by 1.
When heated to a temperature 5 ° C lower, the capacity of the compressor (1) is 33
% Operation, and thereafter the PID control of the three-way valve (9) causes the internal temperature (T) to converge to the set temperature (SP). That is, by calculating the proportional value (P), the integral value (I), and the differential value (D) with respect to the in-compartment temperature signal, it is possible to suppress an excessive temperature change and reduce the offset amount to reduce the in-compartment temperature. (T) is the set temperature (S
P) is quickly converged.

尚、圧縮機(1)が能力不足(容量33%運転)で、庫
内温度(T)が設定温度(SP)よりも2.5℃以上高
くなると、三方弁(9)によりバイパス通路(8)を全
閉にしかつ圧縮機(1)を能力アップ(100%運転)
して庫内温度(T)を低下させる。これによって、庫内
温度(T)が設定温度(SP)より1℃高い温度までプ
ルダウンすると、再び三方弁(9)のPID制御を行う
ことで、庫内温度(T)は設定温度(SP)に近づくよ
うに制御される。
When the compressor (1) has insufficient capacity (33% capacity operation) and the internal temperature (T) is higher than the set temperature (SP) by 2.5 ° C or more, the three-way valve (9) causes the bypass passage (8). ) Is fully closed and the capacity of the compressor (1) is increased (100% operation)
Then, the internal temperature (T) is lowered. By this, when the internal temperature (T) is pulled down to a temperature higher than the set temperature (SP) by 1 ° C., the internal temperature (T) is set to the preset temperature (SP) by performing the PID control of the three-way valve (9) again. Controlled to approach.

一方、庫内温度(T)が設定温度(SP)より6℃未満
の温度範囲にある場合には、第2加熱手段(C2)が、
次のように加熱運転を実行する。つまり、上記三方弁
(9)を凝縮器(2),(3)側からバイパス通路
(8)側に切換えて、圧縮機(1)からの冷媒の全量が
バイパス通路(8)側に流通するようバイパス通路
(8)を全開にすることにより、計量された一定量の冷
媒によらない運転すなわち通常の加熱運転が行われるの
で、庫内の加熱が迅速に行われることになる。
On the other hand, when the internal temperature (T) is within the temperature range of 6 ° C. lower than the set temperature (SP), the second heating means (C2)
The heating operation is performed as follows. That is, the three-way valve (9) is switched from the condensers (2) and (3) side to the bypass passage (8) side, and the entire amount of the refrigerant from the compressor (1) flows to the bypass passage (8) side. By fully opening the bypass passage (8) as described above, an operation that does not rely on the measured constant amount of refrigerant, that is, a normal heating operation is performed, so that the inside of the refrigerator is quickly heated.

したがって、上記実施例では、加熱運転の際、庫内温度
が設定温度(SP)より6℃以上低い温度の場合、計量
式加熱運転が行われるので、圧縮機(1)が長時間運転
しても圧縮機(1)は過負荷運転状態になることがな
い。そのため、高圧圧力開閉器(31)が作動したり、
過電流リレー(32)に過大電流が流れて圧縮機(1)
が停止することがなくなるので、連続運転が可能にな
り、庫内温度(T)を速やかに設定温度(SP)に収束
させることができる。さらに、庫内温度(T)と設定温
度との温度差が6℃未満の場合には、通常の加熱運転を
行うことができ、庫内温度(T)を速やかに設定温度
(SP)に収束させることができる。
Therefore, in the above-described embodiment, when the temperature in the refrigerator is 6 ° C or more lower than the set temperature (SP) during the heating operation, the metering type heating operation is performed, so that the compressor (1) is operated for a long time. However, the compressor (1) never goes into the overload operation state. Therefore, the high pressure switch (31) operates,
Excessive current flows through the overcurrent relay (32) and the compressor (1)
Since it does not stop, the continuous operation becomes possible and the internal temperature (T) can be quickly converged to the set temperature (SP). Furthermore, when the temperature difference between the internal temperature (T) and the set temperature is less than 6 ° C, normal heating operation can be performed, and the internal temperature (T) quickly converges to the set temperature (SP). Can be made.

このように、庫内温度(T)と設定温度との差が6℃よ
り大きい場合に計量式加熱運転をすることとしたのは、
2つの開閉弁(10),(11)の開閉制御回数をでき
るだけ少なくして開閉弁の耐久性を向上させること、及
び前記差が6℃より小さい場合には加熱負荷が小さいの
で、計量によらない通常の加熱運転の時間は短いので高
圧圧力スイッチ(31)等が作動することはないと考え
られることによる。
In this way, when the difference between the internal temperature (T) and the set temperature is larger than 6 ° C., the measurement type heating operation is performed.
To improve the durability of the on-off valves by reducing the number of times of opening / closing control of the two on-off valves (10) and (11) as much as possible, and when the difference is less than 6 ° C., the heating load is small. This is because it is considered that the high-pressure pressure switch (31) and the like will not operate because the normal heating operation time is short.

尚、上記実施例では、切換手段として三方弁(9)を用
いたが、上記循環冷媒回路(7)のバイパス通路(8)
との分岐点より下流側およびバイパス通路(8)にそれ
ぞれ電磁式の開閉弁を設け、バイパス通路(8)に設け
た方の開閉弁を開度自在にしてもよく、上記実施例と同
様の作用,効果を奏し得るのはもとよりである。
Although the three-way valve (9) is used as the switching means in the above embodiment, the bypass passage (8) of the circulating refrigerant circuit (7) is used.
An electromagnetic on-off valve may be provided on each of the downstream side of the branch point and the bypass passage (8) and the on-off valve provided on the bypass passage (8) may be opened freely. Naturally, it is possible to exert the action and effect.

また、上記実施例における第2加熱手段(C2)の変形
例として、第5図に示すように、庫内温度(T)と設定
温度(SP)との温度差が6℃未満の場合に行われるホ
ットガス冷媒による加熱運転の代わりに、圧縮機(1)
を停止し庫内に露出した蒸発器ファンモータのみを作動
させることにより、該ファンモータの発熱を利用して庫
内を加熱するようにしたものであり、上記実施例と同様
の作用,効果を奏するのはもとより、圧縮機(1)の作
動や三方弁(9)の切換操作等の各作動が不要となって
圧縮機(1)等の耐久性が向上し、より一層装置の信頼
性が向上する。
As a modification of the second heating means (C2) in the above embodiment, as shown in FIG. 5, when the temperature difference between the internal temperature (T) and the set temperature (SP) is less than 6 ° C. Compressor (1) instead of heating operation with hot gas refrigerant
Is stopped and the evaporator fan motor exposed to the inside of the refrigerator is operated to heat the inside of the refrigerator by utilizing the heat generated by the fan motor. In addition to the performance, the operation of the compressor (1) and the operation of switching the three-way valve (9) are not necessary, and the durability of the compressor (1) is improved and the reliability of the device is further improved. improves.

(発明の効果) 以上の如く、本発明では、空気温度が基準温度より低い
場合、加熱運転開始時にポンプダウン運転を行い、液溜
め部(B)に溜められた一定量の冷媒のみを循環冷媒回
路(7)の低圧側に流出させ、この一定量の冷媒により
加熱運転を行うようにしたので、この計量式加熱運転に
よって冷媒量が少なく抑えられる。その結果、加熱運転
を長時間続けても、圧縮機(1)が過負荷運転状態とな
って高圧圧力開閉器(31)や過電流リレー(32)が
作動して圧縮機(1)が停止することがなく連続運転が
可能となり、装置の信頼性が向上するとともに、庫内を
速やかに設定温度に収束させることができる。
(Effects of the Invention) As described above, in the present invention, when the air temperature is lower than the reference temperature, the pump down operation is performed at the start of the heating operation, and only a certain amount of the refrigerant stored in the liquid reservoir (B) is circulated as the refrigerant. Since the refrigerant is caused to flow out to the low pressure side of the circuit (7) and the heating operation is performed by the constant amount of the refrigerant, the amount of the refrigerant can be suppressed to be small by the metering type heating operation. As a result, even if the heating operation is continued for a long time, the compressor (1) is in an overload operation state, the high pressure switch (31) and the overcurrent relay (32) are activated, and the compressor (1) is stopped. The continuous operation can be performed without doing so, the reliability of the apparatus is improved, and the inside of the refrigerator can be quickly converged to the set temperature.

更に、上記空気温度が基準温度より高い場合、第1加熱
手段(C1)が計量式加熱運転と異なる加熱運転を行う
ようにしたために、開閉弁(11)の開閉制御回数をで
きるだけ少なくすることができるので、該開閉弁(1
1)の耐久性を向上させるができる。また、上記空気温
度の低下が小さく、加熱負荷が小さいので、計量によら
ない加熱運転の時間は短く、高圧圧力スイッチ(31)
等が作動することはないことから、全冷媒による迅速な
加熱や、ファンモータの発熱による圧縮機を停止した加
熱を行うことができる。
Further, when the air temperature is higher than the reference temperature, the first heating means (C1) performs the heating operation different from the metering type heating operation, so that the opening / closing control frequency of the opening / closing valve (11) can be minimized. Therefore, the on-off valve (1
The durability of 1) can be improved. Further, since the decrease in the air temperature is small and the heating load is small, the heating operation time which does not depend on the measurement is short, and the high pressure switch (31)
Since the above does not operate, it is possible to perform quick heating with all the refrigerant and heating with the compressor stopped due to heat generation of the fan motor.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の構成を示すブロック図である。第2図
ないし第4図は本発明の実施例を示し、第2図は海上コ
ンテナ冷凍装置の冷媒配管系統図、第3図は同電気回路
図、第4図は加熱運転時の庫内温度の変化を示す図であ
る。また、第5図は本発明の変形例を示す第4図相当図
である。 (1)……圧縮機、(2)……水冷凝縮器、(3)……
空冷凝縮器、(4)……膨張弁、(5)……蒸発器、
(7)……冷媒回路、(8)……バイパス通路、(9)
……三方切換弁、(10)……上流側開閉弁、(11)
……下流側開閉弁、(13a,13b)……温度セン
サ、(14)……コントローラ、(B)液溜め部、(C
1)……第1加熱手段、(C2)……第2加熱手段、
(C3)……ポンプダウン運転制御手段、(C4)……
加熱運転制御手段。
FIG. 1 is a block diagram showing the configuration of the present invention. 2 to 4 show an embodiment of the present invention, FIG. 2 is a refrigerant piping system diagram of a marine container refrigerating apparatus, FIG. 3 is an electric circuit diagram thereof, and FIG. 4 is a temperature inside a refrigerator during heating operation. It is a figure which shows the change of. Further, FIG. 5 is a view corresponding to FIG. 4 showing a modification of the present invention. (1) …… Compressor, (2) …… Water-cooled condenser, (3) ……
Air-cooled condenser, (4) ... Expansion valve, (5) ... Evaporator,
(7) …… Refrigerant circuit, (8) …… Bypass passage, (9)
...... Three-way switching valve, (10) …… Upstream on-off valve, (11)
...... Downstream side open / close valve, (13a, 13b) ...... Temperature sensor, (14) ...... Controller, (B) Liquid reservoir, (C
1) ... first heating means, (C2) ... second heating means,
(C3) ... pump down operation control means, (C4) ...
Heating operation control means.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】圧縮機(1)、凝縮器(2又は3),膨張
機構(4)及び蒸発器(5)を順次直列に接続して閉回
路に形成された循環冷媒回路(7)を備えるとともに、
上記圧縮機(1)の吐出側から分岐し上記凝縮器(2又
は3)及び膨張機構(4)をバイパスして上記蒸発器
(5)の上流側に接続されたバイパス通路(8)と、上
記圧縮機(1)からの冷媒の流通を上記凝縮器(2又は
3)側とバイパス通路(8)側とに切換える切換手段
(9)とを備えた冷凍装置において、 上記循環冷媒回路(7)の凝縮器(2又は3)と蒸発器
(5)との間に設けられ、かつ開閉弁(11)を有する
液溜め部(B)と、 被冷却空間の空気温度を検出する温度検出手段(13a
又は13b)とを備える一方、 該温度検出手段(13a又は13b)が検出した検出空
気温度が設定温度より低温の基準温度以下に低くなる
と、加熱運転開始前に、上記切換手段(9)を圧縮機
(1)からの冷媒が凝縮器(2又は3)側に流通するよ
う切換えた状態で上記開閉弁(11)を閉にして上記液
溜め部(B)に上記循環冷媒回路(7)内の冷媒を溜め
るよう所定時間ポンプダウン運転を行うポンプダウン運
転制御手段(C3)と、該ポンプダウン運転制御手段
(C3)によるポンプダウン運転後、上記開閉弁(1
1)を開制御して上記液溜め部(B)から一定量の冷媒
を上記循環冷媒回路(7)の低圧側に流出せしめる計量
式加熱運転を実行する加熱運転制御手段(C4)とより
なる第1加熱手段(C1)と、 上記温度検出手段(13a又は13b)が検出した検出
空気温度が上記設定温度より低く、かつ上記基準温度よ
り高いと、上記第1加熱手段(C1)の計量式加熱運転
と異なる加熱運転を実行して被冷却空間を加熱する第2
加熱手段(C2)とを備えたことを特徴とする冷凍装
置。
1. A circulating refrigerant circuit (7) formed in a closed circuit by sequentially connecting a compressor (1), a condenser (2 or 3), an expansion mechanism (4) and an evaporator (5) in series. Be prepared
A bypass passage (8) branched from the discharge side of the compressor (1) and bypassing the condenser (2 or 3) and the expansion mechanism (4) and connected to the upstream side of the evaporator (5); In the refrigeration system provided with a switching means (9) for switching the flow of the refrigerant from the compressor (1) to the condenser (2 or 3) side and the bypass passage (8) side, the circulating refrigerant circuit (7) ), A liquid reservoir (B) provided between the condenser (2 or 3) and the evaporator (5) and having an opening / closing valve (11), and a temperature detecting means for detecting the air temperature of the cooled space. (13a
Or 13b), and when the detected air temperature detected by the temperature detecting means (13a or 13b) becomes lower than the reference temperature lower than the set temperature, the switching means (9) is compressed before the heating operation is started. In the circulating refrigerant circuit (7), the on-off valve (11) is closed in a state where the refrigerant from the machine (1) is switched to flow to the condenser (2 or 3) side and the liquid reservoir (B) is closed. The pump down operation control means (C3) for performing a pump down operation for a predetermined time so as to store the refrigerant, and the on-off valve (1) after the pump down operation by the pump down operation control means (C3).
The heating operation control means (C4) for controlling the opening of (1) to execute a metering type heating operation in which a constant amount of refrigerant is discharged from the liquid reservoir (B) to the low pressure side of the circulating refrigerant circuit (7). When the detected air temperature detected by the first heating means (C1) and the temperature detection means (13a or 13b) is lower than the set temperature and higher than the reference temperature, the measurement formula of the first heating means (C1) The second for heating the space to be cooled by executing a heating operation different from the heating operation
A refrigerating apparatus comprising: a heating means (C2).
JP61012480A 1986-01-23 1986-01-23 Refrigeration equipment Expired - Lifetime JPH0612197B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61012480A JPH0612197B2 (en) 1986-01-23 1986-01-23 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61012480A JPH0612197B2 (en) 1986-01-23 1986-01-23 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JPS62169969A JPS62169969A (en) 1987-07-27
JPH0612197B2 true JPH0612197B2 (en) 1994-02-16

Family

ID=11806552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61012480A Expired - Lifetime JPH0612197B2 (en) 1986-01-23 1986-01-23 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JPH0612197B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030032334A (en) * 2001-10-17 2003-04-26 엘지전자 주식회사 Method for defrost of direct cooling type refrigerator
CN101631996A (en) * 2006-10-13 2010-01-20 开利公司 The refrigerating plant that comprises micro channel heat exchanger
JP2012185184A (en) * 2012-07-02 2012-09-27 Seiko Epson Corp Temperature control apparatus of electronic component, and handler apparatus
JP2012208132A (en) * 2012-07-31 2012-10-25 Seiko Epson Corp Temperature control device of electronic component and handler device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5760160A (en) * 1980-09-30 1982-04-10 Daikin Ind Ltd Refrigerating plant for container
JPS59197764A (en) * 1983-04-23 1984-11-09 ダイキン工業株式会社 Refrigerator

Also Published As

Publication number Publication date
JPS62169969A (en) 1987-07-27

Similar Documents

Publication Publication Date Title
JPH04270876A (en) Defrosting controller for heat pump type air-conditioning machine
JPH0612197B2 (en) Refrigeration equipment
JPS5885043A (en) Operation control apparatus for cold insulation type air conditioner
JPS6373059A (en) Refrigerator
JP2910849B1 (en) Air conditioner defrost control device
JPH07305903A (en) Controller for freezer
JPH05308943A (en) Freezing equipment
JP2504416B2 (en) Refrigeration cycle
JPH01123966A (en) Refrigerator
JP3291314B2 (en) Refrigeration equipment
KR920009307B1 (en) Refrigerating cycle
JPH02106662A (en) Freezer device
JPS5952171A (en) Cooling device
KR920009306B1 (en) Refrigerating cycle
JPH084680A (en) Refrigerating device
JP2701634B2 (en) Refrigeration equipment
JPH01306782A (en) Heat pump type air-conditioner
JPS5952175A (en) Cooling device
JPH01239356A (en) Refrigerator
JPH065572Y2 (en) Refrigeration equipment
JPS6213963A (en) Refrigerator
JPH0633922B2 (en) Refrigeration system with thermo tank
JPH05322387A (en) Refrigerating device
JPS62237260A (en) Defrostation control method of heat pump type air conditioner
JPH0334614Y2 (en)