JPH06121978A - Method for removing impurity in waste water for washing printed circuit board - Google Patents

Method for removing impurity in waste water for washing printed circuit board

Info

Publication number
JPH06121978A
JPH06121978A JP3357045A JP35704591A JPH06121978A JP H06121978 A JPH06121978 A JP H06121978A JP 3357045 A JP3357045 A JP 3357045A JP 35704591 A JP35704591 A JP 35704591A JP H06121978 A JPH06121978 A JP H06121978A
Authority
JP
Japan
Prior art keywords
printed circuit
cleaning
electrolytic cell
circuit board
impurities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3357045A
Other languages
Japanese (ja)
Other versions
JP2923108B2 (en
Inventor
Akio Urata
昭雄 浦田
Mari Kokubu
真理 国分
Hiroyuki Hashimoto
浩幸 橋本
Takeshi Takahashi
剛 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Konica Minolta Inc
Original Assignee
Organo Corp
Konica Minolta Inc
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Konica Minolta Inc, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP3357045A priority Critical patent/JP2923108B2/en
Publication of JPH06121978A publication Critical patent/JPH06121978A/en
Application granted granted Critical
Publication of JP2923108B2 publication Critical patent/JP2923108B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Water Treatment By Sorption (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Physical Water Treatments (AREA)

Abstract

PURPOSE:To surely remove impurities such as microbe, metal ions and org. matter in waste water for washing printed circuit boards at low cost, and thereby, to supply the treated water reuseable for the washing of printed circuit boards. CONSTITUTION:The waste water for washing printed circuit boards is treated in adsorbing and removing processes 14, 15 using activated carbon and/or ion- exchange resin, and electrochemical removing process 2 using a fixed floor type three dimensional electrode 5 to remove impurities. In the electrochemical removing process, sterilization efficiency for microbe is high as compared to conventional UV irradiation, etc., and at least a part of metallic ion and org. matter can be removed by adsorption or decomposition in this process. By combining the adsorbing and removing processes, impurities in the waste washing water can almost completely be removed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、プリント基板洗浄排水
中の不純物除去方法に関し、より詳細にはプリント基板
洗浄用フラックス残渣等を含む洗浄排水を物理化学的吸
着処理と電気化学的処理を併用して該排水中に含有され
る微生物、金属類及び有機化合物等を除去しプリント基
板洗浄用に再使用するための方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for removing impurities in printed circuit board cleaning wastewater, and more specifically, a cleaning wastewater containing flux residues for cleaning printed circuit boards is combined with a physicochemical adsorption treatment and an electrochemical treatment. Then, the present invention relates to a method for removing microorganisms, metals and organic compounds contained in the waste water and reusing them for cleaning printed circuit boards.

【0002】[0002]

【従来技術】従来から電子工業におけるプリント基板の
半田付け工程に使用するフラックス残渣を洗浄除去する
ための洗浄剤としてフロン系溶剤が広く使用されてき
た。しかし該溶剤は人体に対する悪影響は勿論のこと、
例えば大気中のオゾン層を破壊する等自然環境に対して
大きな被害をもたらせつつある。そのため前記溶剤の使
用制限は全地球的規模の要請である。該溶剤を回避する
ためには、前記溶剤による洗浄を必要としない水溶性フ
ラックスを開発し、あるいは前記フロン系溶剤の代替洗
浄剤であるアルカリ鹸化剤等を使用することが必要であ
る。しかしこれらの代替技術が開発されてもフラックス
の使用は不可欠であり、プリント基板洗浄を行うと洗浄
排水中にはフラックス中に含まれる各種金属や有機物が
混入し、該排水をそのままプリント基板の洗浄に再使用
するとプリント基板の汚染を生じさせることになる。
2. Description of the Related Art Conventionally, a CFC solvent has been widely used as a cleaning agent for cleaning and removing a flux residue used in a soldering process of a printed circuit board in the electronic industry. However, the solvent not only has an adverse effect on the human body,
For example, it is causing great damage to the natural environment by destroying the ozone layer in the atmosphere. Therefore, restrictions on the use of the solvent are a global requirement. In order to avoid the solvent, it is necessary to develop a water-soluble flux that does not require cleaning with the solvent, or to use an alkaline saponifying agent, which is a substitute cleaning agent for the fluorocarbon solvent. However, even if these alternative technologies are developed, the use of flux is indispensable, and when cleaning the printed circuit board, various metals and organic substances contained in the flux are mixed in the cleaning wastewater, and the wastewater is directly cleaned from the cleaning board. When reused, it causes contamination of the printed circuit board.

【0003】従って前記排水を処理して不純物を除去し
清澄な洗浄水としてプリント基板の洗浄に再使用するこ
とが必要になる。通常の排水処理は、微粒子除去工程、
有機物除去工程、及びイオン性物質除去工程等から成
る。そしてプリント基板洗浄は通常40〜70℃程度の比較
的高温で行われ、上記各工程を経て清澄化された処理水
(実質的純水)中にも菌類や黴類等の微生物が繁殖し易
く、このような処理水をプリント基板洗浄に使用する
と、洗浄用ノズルの閉塞、プリント基板の汚染等を誘発
し、プリント基板の合格率の低下を招く等のトラブルが
生ずる。
Therefore, it is necessary to treat the waste water to remove impurities and to reuse it as clear cleaning water for cleaning the printed circuit board. The usual wastewater treatment is a fine particle removal process,
It includes an organic substance removing step, an ionic substance removing step, and the like. The printed circuit board is usually washed at a relatively high temperature of about 40 to 70 ° C, and microorganisms such as fungi and fungi easily grow in the treated water (substantially pure water) clarified through the above steps. When such treated water is used for cleaning the printed circuit board, troubles such as clogging of the cleaning nozzle, contamination of the printed circuit board, etc., and a decrease in the pass rate of the printed circuit board occur.

【0004】そして前記イオン性物質除去等にはイオン
交換樹脂や活性炭等が使用され、前記洗浄排水中に含ま
れる金属類、有機化合物は活性炭やイオン交換樹脂等に
吸着し除去される。しかし長時間洗浄排水の処理を行う
と活性炭やイオン交換樹脂の負荷が増大し、洗浄効率が
低下することがある。又前記プリント基板の洗浄排水中
の不純物特に微生物を滅菌し除去するために紫外線照射
を行う技術も開発されているが、紫外線照射のみでは十
分な滅菌効率を達成することができず微生物を含有する
洗浄排水を再使用してプリント基板の汚染を招き易いと
いう欠点がある。
Ion exchange resin, activated carbon, etc. are used for removing the ionic substances, and the metals and organic compounds contained in the cleaning waste water are adsorbed and removed by the activated carbon, ion exchange resin, etc. However, if the cleaning wastewater is treated for a long time, the load of activated carbon or ion exchange resin may increase, and the cleaning efficiency may decrease. Further, a technique of irradiating with ultraviolet rays to sterilize and remove impurities, especially microorganisms, in the cleaning wastewater of the printed circuit board has been developed, but sufficient ultraviolet light irradiation cannot achieve sufficient sterilization efficiency and contains microorganisms. There is a drawback that the cleaning drainage water is likely to be reused and the printed circuit board is easily contaminated.

【0005】[0005]

【発明が解決すべき問題点】プリント基板は微量の不純
物による汚染も極力回避しなければならず、微生物や有
機物をはじめとする洗浄排水中の不純物を可能な限り除
去した後に再使用することによりプリント基板の洗浄を
行うことが必要である。そして洗浄排水が大量に生ずる
ため大量処理を手間の掛からない手法で安価に行い得る
ことが特に望ましい。
Problems to be Solved by the Invention Printed circuit boards must be prevented from being contaminated by trace amounts of impurities as much as possible, and by removing impurities in cleaning waste water including microorganisms and organic substances as much as possible, they can be reused. It is necessary to clean the printed circuit board. Since a large amount of cleaning wastewater is generated, it is particularly desirable that the large-scale treatment can be carried out at a low cost by means of a labor-free method.

【発明の目的】従って本発明は、プリント基板の洗浄排
水を処理して該洗浄排水中の微生物や有機物等の不純物
を最大限除去した後にプリント基板の洗浄に再使用する
ための方法、特に大量の洗浄排水を比較的簡単な装置を
使用して安価に処理できる方法を提供することを目的と
する。
SUMMARY OF THE INVENTION Therefore, the present invention provides a method for treating printed circuit board cleaning wastewater to remove impurities such as microorganisms and organic substances in the cleaning wastewater to the maximum extent, and then reusing it for cleaning the printed circuit board, particularly in a large amount. It is an object of the present invention to provide a method capable of treating the cleaning wastewater of (1) at low cost by using a relatively simple device.

【0006】[0006]

【問題点を解決するための手段】本発明は、プリント基
板洗浄排水中の不純物除去方法において、該不純物の活
性炭及び/又はイオン交換樹脂吸着除去工程と固定床型
三次元電極を使用する電気化学的除去工程を含んで成る
ことを特徴とする不純物除去方法であり、本発明は不純
物を含有するプリント基板洗浄水を回収し再使用する方
法として使用することもできる。以下本発明を詳細に説
明する。本発明方法は、不純物の除去を物理化学的吸着
工程と電気化学的除去工程を併用することにより、該電
気化学的工程で不純物である微生物の滅菌をほぼ完全に
行うとともに他の不純物である金属や有機物を吸着や電
気化学的な酸化分解等により除去して吸着工程における
吸着剤の負荷を低減し、プリント基板の金属部分の腐食
を生じさせる可能性のあるオゾン、過酸化水素、次亜塩
素酸イオン等の酸化性薬剤を使用することなく、前記洗
浄排水をほぼ完全に清澄化された処理水としてプリント
基板洗浄用として供給し再使用することを可能にする。
なお本発明の微生物には、細菌(バクテリア)、糸状菌
(黴)、酵母、変形菌、単細胞の藻類、原生動物、ウイ
ルス等が含まれる。
The present invention relates to a method for removing impurities in a printed circuit board cleaning wastewater, in which the impurities are removed by activated carbon and / or ion-exchange resin adsorption and a fixed bed type three-dimensional electrode is used. The present invention can also be used as a method for collecting and reusing the cleaning water for cleaning a printed board containing impurities. The present invention will be described in detail below. In the method of the present invention, the removal of impurities is carried out in combination with the physicochemical adsorption step and the electrochemical removal step, whereby the microorganisms which are impurities are almost completely sterilized in the electrochemical step and the metal which is another impurity is used. Ozone, hydrogen peroxide, hypochlorite, which may remove organic substances and organic substances by adsorption or electrochemical oxidative decomposition to reduce the load on the adsorbent in the adsorption process and cause corrosion of the metal part of the printed circuit board. This makes it possible to supply the cleaning wastewater as substantially completely clarified treated water for cleaning a printed circuit board and reuse it without using an oxidizing agent such as an acid ion.
The microorganisms of the present invention include bacteria (bacteria), filamentous fungi (molds), yeasts, transformants, unicellular algae, protozoa, viruses and the like.

【0007】本発明における物理化学的吸着除去工程と
電気化学的除去工程による洗浄排水の処理の順序は限定
されずいずれの工程を先にしてもよく、又各工程も単一
である必要はなく複数の吸着除去工程及び電気化学的除
去工程を設けてもよい。本発明における吸着除去工程は
好ましくは活性炭吸着除去工程とイオン交換樹脂吸着除
去工程の少なくとも2工程を含むことが望ましく、この
両吸着除去工程の順序も限定されない。活性炭吸着除去
工程では洗浄排水中の有機物(主に非イオン性有機物)
を活性炭に吸着させて除去する。
The order of the treatment of the cleaning wastewater by the physicochemical adsorption removal step and the electrochemical removal step in the present invention is not limited, and any step may be performed first, and each step need not be a single step. A plurality of adsorption removal steps and electrochemical removal steps may be provided. The adsorption removal step in the present invention preferably includes at least two steps of an activated carbon adsorption removal step and an ion exchange resin adsorption removal step, and the order of both adsorption removal steps is not limited. Organic matter (mainly nonionic organic matter) in the cleaning wastewater in the activated carbon adsorption removal process
Is adsorbed on activated carbon and removed.

【0008】又イオン交換樹脂吸着除去工程では洗浄排
水中の不純物であるプリント基板の金属部分が溶解した
鉛,銅、亜鉛、錫、アルミニウム等の金属イオンや、フ
ラックスに由来する有機酸を除去する。使用するイオン
交換樹脂は脱イオン水製造等に従来から使用されている
ものを制限なく使用すればよく、粒状、粉状等の弱酸性
カチオン交換樹脂(交換基として例えばカルボン酸基を
有する)あるいは強酸性カチオン交換樹脂(交換基とし
て例えばスルホン酸基を有する)又は弱塩基性アニオン
交換樹脂(交換基として例えば3級アミン基を有する)
あるいは強塩基性アニオン交換樹脂(交換基として例え
ば4級アンモニウム塩基を有する)を単独であるいは組
み合わせて使用する。陽陰両イオン交換樹脂のうち、特
に水素型の強酸性カチオン交換樹脂は金属イオンの除去
に有効で、一方水酸基型の強塩基性アニオン交換樹脂は
有機物の除去に有効である。
In the ion exchange resin adsorption removal step, metal ions such as lead, copper, zinc, tin and aluminum, which are impurities in the cleaning waste water, in which the metal portion of the printed circuit board is dissolved, and organic acids derived from the flux are removed. . As the ion exchange resin to be used, those conventionally used in the production of deionized water may be used without limitation, and granular, powdery, etc. weakly acidic cation exchange resins (having, for example, a carboxylic acid group as an exchange group) or Strongly acidic cation exchange resin (having a sulfonic acid group as an exchange group) or weakly basic anion exchange resin (having a tertiary amine group as an exchange group)
Alternatively, a strongly basic anion exchange resin (having, for example, a quaternary ammonium salt group as an exchange group) is used alone or in combination. Among the positive and negative anion exchange resins, the hydrogen type strongly acidic cation exchange resin is particularly effective in removing metal ions, while the hydroxyl type strongly basic anion exchange resin is effective in removing organic substances.

【0009】本発明における電気化学的除去工程は、固
定床型三次元電極に洗浄排水を接触させることにより該
洗浄排水中の不純物を除去する工程である。該固定床型
三次元電極は電解槽本体に収容して固定床型三次元電極
電解槽を構成する。該固定床型三次元電極電解槽として
は次のような構成のものを使用することができる。該電
解槽は、固定床型三次元電極電解槽つまり固定床型単極
式電解槽及び固定床式複極式電解槽であり、これらの電
解槽では該電解槽の三次元電極が莫大な表面積を有する
ため電極表面と洗浄排水との接触面積を増大させること
ができ、これにより装置サイズを小さくし、かつ電気化
学的除去の効率を上げることができる点で有利である。
The electrochemical removal step in the present invention is a step of removing impurities in the cleaning wastewater by bringing the cleaning wastewater into contact with the fixed bed type three-dimensional electrode. The fixed bed type three-dimensional electrode is housed in the electrolytic cell body to form a fixed bed type three-dimensional electrode electrolytic cell. The fixed bed type three-dimensional electrode electrolytic cell having the following constitution can be used. The electrolytic cells are a fixed bed type three-dimensional electrode electrolytic cell, that is, a fixed bed type single electrode type electrolytic cell and a fixed bed type bipolar electrode type electrolytic cell. In these electrolytic cells, the three-dimensional electrode of the electrolytic cell has a huge surface area. This is advantageous in that the contact area between the electrode surface and the cleaning drainage can be increased, which allows the device size to be reduced and the electrochemical removal efficiency to be increased.

【0010】前記洗浄排水を固定床型三次元電極電解槽
に供給すると、該洗浄排水中の微生物は液流動によって
前記電解槽の陽極や陰極あるいは後述する誘電体や固定
床形成用粒子等に接触しそれらの表面で強力な酸化還元
反応を受けたり高電位の電流に接触し、その活動が弱ま
ったり自身が死滅して滅菌が行われると考えられる。従
って本発明の電気化学的除去工程では、洗浄排水中の微
生物が電圧が印加された電極や誘電体や固定床形成用粒
子等に接触すれば充分であり、両極間に電流を流して水
素及び酸素等のガス発生を伴う実質的な電解反応を生起
させることは必須ではなく、むしろ実質的な電解反応が
生じない低い電位を電極表面に印加することが好まし
い。これは微生物を滅菌する以外のガス発生反応に無駄
な電力を使うことになり不経済であり、かつ発生ガスが
電極表面上を覆ってしまい微生物が電極表面と接触する
効率も低下させ、滅菌効率を悪くすることがあるからで
ある。
When the cleaning wastewater is supplied to the fixed bed type three-dimensional electrode electrolytic cell, the microorganisms in the cleaning wastewater contact the anode or cathode of the electrolytic cell or the dielectric or particles for fixed bed formation described later due to liquid flow. However, it is considered that sterilization is performed by subjecting these surfaces to a strong redox reaction or contact with a high-potential electric current, which weakens their activity or kills themselves. Therefore, in the electrochemical removal step of the present invention, it is sufficient that the microorganisms in the cleaning wastewater come into contact with the electrodes to which a voltage is applied, the dielectric, the particles for forming a fixed bed, etc. It is not essential to cause a substantial electrolytic reaction accompanied by the generation of gas such as oxygen, but rather it is preferable to apply a low electric potential to the electrode surface so that a substantial electrolytic reaction does not occur. This is uneconomical because wasteful power is used for gas generation reactions other than sterilizing microorganisms, and the generated gas covers the electrode surface, reducing the efficiency with which microorganisms contact the electrode surface, resulting in sterilization efficiency. Because it can make things worse.

【0011】従って本発明においては、陽極電位及び陰
極電位を、それぞれ+2.0 V(vs.SHE)より卑な電位、及
び−2.0 V(vs.SHE)より貴な電位としてガス発生を伴わ
せながら電気化学的処理を行ってもよいが、印加電位を
陽極電位が実質的な酸素発生を伴わない+0.2 〜+1.2
V(vs.SCE)、陰極電位が実質的に水素発生を伴わない0
〜−1.0 V(vs.SCE)となるようにすることが望ましい。
つまり洗浄排水は大量に発生するため、本発明方法によ
る洗浄排水処理に必要な電力量は処理コストの大部分を
占めることが多い。電力量は、〔電力〕=〔電圧〕×
〔電流〕で表され、電流が流れずガスが発生しない場合
には電力量は零であるが、ガス発生が生ずる程度の電流
が流れると処理すべき水量が莫大であるため消費電力量
も莫大になる。処理すべき水量が僅かで流れる電流も僅
かな場合は電圧値の増減はさほど消費電力量には影響し
ないが、本発明のように大量処理の場合には僅かな電圧
降下が大きく消費電力量を減少させる。従って本発明の
電気化学的除去工程においては実質的にガスは発生が生
じない電位を印加することが望ましく、そして実際に効
率良く処理が行われていることを確認することが必要な
場合には僅少量のガスを発生させるために必要な最小限
の電位を印加しながら電気化学的処理を行うことが望ま
しい。
Therefore, in the present invention, the anode potential and the cathode potential are set to a base potential lower than +2.0 V (vs.SHE) and a potential lower than -2.0 V (vs.SHE), respectively, and gas generation is accompanied. While electrochemical treatment may be performed, the applied potential is +0.2 to +1.2 when the anodic potential does not substantially generate oxygen.
V (vs.SCE), the cathode potential is virtually zero with hydrogen generation
It is desirable to set the voltage to -1.0 V (vs. SCE).
That is, since a large amount of cleaning wastewater is generated, the amount of electric power required for cleaning wastewater treatment by the method of the present invention often occupies most of the processing cost. The amount of electric power is [electric power] = [voltage] ×
It is expressed as [current], and the amount of power is zero when no current flows and no gas is generated, but the amount of water to be treated is enormous when the current to the extent that gas is generated flows, and therefore the amount of power consumption is enormous. become. When the amount of water to be treated is small and the current flowing is also small, the increase or decrease in the voltage value does not affect the power consumption so much, but in the case of a large amount of treatment as in the present invention, a slight voltage drop causes a large power consumption. Reduce. Therefore, in the electrochemical removal step of the present invention, it is desirable to apply a potential at which substantially no gas is generated, and when it is necessary to confirm that the treatment is actually carried out efficiently. It is desirable to carry out the electrochemical treatment while applying the minimum potential necessary to generate a small amount of gas.

【0012】但し印加する陽極電位の値によって洗浄排
水中の有機物を陽極酸化により分解することができる。
従って吸着除去工程における有機物除去では不十分な場
合あるいはイオン交換樹脂の負荷を減少させたい場合に
は、電力消費量低減を犠牲にして+0.5 〜+1.5 V(vs.
SHE)の陽極電位を印加して該電気化学的除去工程で滅菌
と有機物分解を同時に行うことが可能である。前記固定
床型三次元電極電解槽における電極は一般に三次元電極
と給電用電極を含み、該三次元電極は前述の使用する電
解槽に応じた形状を有し、固定床型複極式電解槽を使用
する場合には、前記洗浄排水が透過可能な多孔質材料、
例えば粒状、球状、フェルト状、織布状、多孔質ブロッ
ク状等の形状を有する活性炭、グラファイト、炭素繊維
等の炭素系材料から、あるいは同形状を有するニッケ
ル、銅、ステンレス、鉄、チタン等の金属材料、更にそ
れら金属材料に貴金属のコーティングを施した材料から
形成された複数個の好ましくは粒状、球状、繊維状、フ
ェルト状、織布状、多孔質ブロック状、スポンジ状の誘
電体を電場内に置き、両端に設置した平板状又はエキス
パンドメッシュ状やパーフォレーティッドプレート状等
の多孔板体から成る給電用電極間に直流電圧あるいは交
流電圧を印加して前記誘電体を分極させ該誘電体の一端
及び他端にそれぞれ陽極及び陰極を形成させて成る三次
元電極を収容した固定床型複極式電解槽とすることが可
能であり、この他に単独で陽極としてあるいは陰極とし
て機能する三次元材料を交互に短絡しないように設置し
かつ電気的に接続して固定床型複極式電解槽とすること
ができる。
However, the organic matter in the cleaning wastewater can be decomposed by anodic oxidation depending on the value of the applied anode potential.
Therefore, if the removal of organic substances in the adsorption removal process is not sufficient or if the load on the ion exchange resin is to be reduced, +0.5 to +1.5 V (vs.
It is possible to apply anodic potential of (SHE) and simultaneously perform sterilization and organic matter decomposition in the electrochemical removal step. The electrodes in the fixed-bed type three-dimensional electrode electrolytic cell generally include a three-dimensional electrode and a feeding electrode, and the three-dimensional electrode has a shape according to the electrolytic cell used above, and the fixed-bed type bipolar electrode electrolytic cell. When using, a porous material permeable to the cleaning wastewater,
For example, carbonaceous materials such as granular, spherical, felt-like, woven cloth-like, porous block-like, etc., carbonaceous materials such as graphite, carbon fiber, etc., or nickel, copper, stainless steel, iron, titanium, etc. having the same shape. An electric field is applied to a plurality of preferably granular, spherical, fibrous, felt-like, woven cloth-like, porous block-like, sponge-like dielectrics formed of a metal material or a material obtained by coating a noble metal on the metal material. The dielectric is polarized by applying a DC voltage or an AC voltage between the power-supplying electrodes which are placed inside and are installed at both ends of a plate-shaped or expanded mesh-shaped or perforated plate-shaped porous plate. It is possible to provide a fixed-bed type bipolar electrode electrolytic cell containing a three-dimensional electrode formed by forming an anode and a cathode at one end and the other end, respectively. A three-dimensional material which functions as or cathode as the anode is placed so as not to short-circuit alternately and electrically connected may be a fixed bed multi-pole type electrolytic cell in Germany.

【0013】前記誘電体として活性炭、グラファイト、
炭素繊維等の炭素系材料を使用しかつ陽極から酸素ガス
を発生させながら洗浄排水を処理する場合には、前記誘
電体が酸素ガスにより酸化され炭酸ガスとして溶解し易
くなる。これを防止するためには前記誘電体の陽分極す
る側にチタン等の基材上に酸化イリジウム、酸化ルテニ
ウム等の白金族金属酸化物を被覆し通常不溶性金属電極
として使用される多孔質材料を接触状態で設置し、酸素
発生が主として該多孔質材料上で生ずるようにすればよ
い。又他のタイプの固定床型複極式電解槽として、例え
ば円筒状の電解槽本体内に給電用陽極及び陰極を設置
し、該給電用両極間に、三次元電極として機能する多数
の導電性固定床形成用粒子と該固定床形成用粒子より少
数の電気絶縁性の合成樹脂等から成る絶縁粒子とをほぼ
均一に混在させた電解槽がある。該電解槽では両給電用
電極間に通電して電位を印加すると、固定床形成用粒子
が前記誘電体と同様に分極しその一端が正に又他端が負
に帯電して各固定床形成用粒子に電位が生じ、各粒子に
洗浄排水中の微生物を滅菌する機能が付与される。なお
前記絶縁粒子は、前記両給電用電極が導電性の前記固定
床形成用粒子により電気的に接続されて短絡することを
防止する機能を有する。
As the dielectric, activated carbon, graphite,
When a carbon-based material such as carbon fiber is used and the cleaning wastewater is treated while generating oxygen gas from the anode, the dielectric is easily oxidized by oxygen gas and easily dissolved as carbon dioxide gas. In order to prevent this, a porous material which is usually used as an insoluble metal electrode is formed by coating a platinum group metal oxide such as iridium oxide or ruthenium oxide on a base material such as titanium on the side of the dielectric which is positively polarized. It may be installed in contact with each other so that oxygen generation mainly occurs on the porous material. Further, as another type of fixed bed type bipolar electrode electrolytic cell, for example, an anode and a cathode for power feeding are installed in a cylindrical electrolytic cell body, and a large number of conductive materials functioning as a three-dimensional electrode are provided between both electrodes for power feeding. There is an electrolytic cell in which fixed bed forming particles and a smaller number of insulating particles made of a synthetic resin or the like having an electrically insulating property than the fixed bed forming particles are mixed almost uniformly. When a potential is applied by energizing between both electrodes for supplying electricity in the electrolytic cell, the fixed bed forming particles are polarized in the same manner as the dielectric material, and one end thereof is positively charged and the other end is negatively charged to form each fixed bed. An electric potential is generated in the particles for use, and each particle is given a function of sterilizing microorganisms in the cleaning wastewater. The insulating particles have a function of preventing both of the power feeding electrodes from being electrically connected by the electrically conductive particles for forming the fixed bed to cause a short circuit.

【0014】又単極式固定床型電解槽を使用する場合に
は、前記した誘電体又は単独で陽極としてあるいは陰極
として機能する三次元材料各1個を隔膜を介してあるい
は介さずに電解槽内に設置するようにする。この電気化
学的除去工程によりイオン交換樹脂の汚染を招き易く更
に洗浄排水中に残留し易い微生物類が死滅する。従って
電気化学的除去工程を経た洗浄排水を吸着除去工程のイ
オン交換樹脂塔等に供給してもイオン交換樹脂の負荷が
増大することが少なく、常にイオン交換樹脂のイオン交
換能を最大限に維持することが可能になる。
When a monopolar fixed bed type electrolytic cell is used, the electrolytic cell described above or one of each of the three-dimensional materials each of which functions as an anode or a cathode by itself, with or without a diaphragm, is used. It should be installed inside. This electrochemical removal step kills microorganisms that are likely to cause contamination of the ion exchange resin and are more likely to remain in the cleaning wastewater. Therefore, even if the washing wastewater that has undergone the electrochemical removal process is supplied to the ion exchange resin tower in the adsorption removal process, the load on the ion exchange resin does not increase, and the ion exchange capacity of the ion exchange resin is always maximized. It becomes possible to do.

【0015】更に洗浄排水中には前述の鉛,銅、亜鉛、
錫、アルミニウム等の金属イオンが残留しているが、該
金属イオン中の錫及び銅は前記電解槽内の固定床型三次
元電極の陰極面上に電解析出し洗浄排水から除去され
る。従って電気化学的除去工程より下流側にイオン交換
樹脂による吸着除去工程を設置すると、該イオン交換樹
脂の負荷が低減されるため好都合である。いずれの形態
の電極を使用する場合でも、処理すべき洗浄排水が流れ
る電解槽内に液が電極や誘電体や微粒子に接触せずに流
通できる空隙があると洗浄排水の処理効率が低下するた
め、電極等は電解槽内の洗浄排水の流れがショートパス
しないように配置することが望ましい。
Further, in the cleaning drainage, the above-mentioned lead, copper, zinc,
Although metal ions such as tin and aluminum remain, tin and copper in the metal ions are electrolytically deposited on the cathode surface of the fixed bed type three-dimensional electrode in the electrolytic cell and removed from the cleaning drainage. Therefore, it is convenient to install the adsorption-removal step using the ion-exchange resin on the downstream side of the electrochemical removal step because the load on the ion-exchange resin is reduced. Regardless of which type of electrode is used, if there is a void that allows the liquid to flow without contacting the electrodes, dielectrics, and particles in the electrolytic tank through which the cleaning wastewater to be treated flows, the processing efficiency of the cleaning wastewater decreases. It is desirable that the electrodes, etc. be arranged so that the flow of the cleaning waste water in the electrolytic cell does not short pass.

【0016】前記電解槽内を隔膜で区画して陽極室と陰
極室を形成しても、隔膜を使用せずにそのまま通電を行
うこともできるが、隔膜を使用せずかつ電極の極間距離
あるいは誘電体と電極、又は誘電体相互の間隔を狭くす
る場合には短絡防止のため電気絶縁性のスペーサとして
例えば有機高分子材料で作製した網状スペーサ等を両極
間あるいは前記誘電体間等に挿入することができる。又
隔膜を使用する場合には流通する洗浄排水の移動を妨害
しないように多孔質例えばその開口率が10%以上95%以
下好ましくは20%以上80%以下のものを使用することが
望ましく、該隔膜は少なくとも前記洗浄排水が透過でき
る程度の孔径の微細孔を有していなければならない。前
記電解槽に供給される洗浄排水の流量は、該洗浄排水が
効率的に電極等の表面と接触できるように規定すればよ
く、完全な層流であると横方向の移動が少なく電極、誘
電体及び微粒子表面との接触が少なくなるため、乱流状
態を形成するようにすることが好ましく、500 以上のレ
イノルズ数を有する乱流とすることが特に好ましい。
Even if the inside of the electrolytic cell is divided by a diaphragm to form an anode chamber and a cathode chamber, it is possible to carry on electricity as it is without using the diaphragm, but without using the diaphragm and the distance between the electrodes. Alternatively, when the distance between the dielectric and the electrode or between the dielectrics is narrowed, an electrically insulating spacer such as a mesh spacer made of an organic polymer material is inserted between both electrodes or between the dielectrics to prevent short circuit. can do. Further, when a diaphragm is used, it is desirable to use a porous material such as having an opening ratio of 10% or more and 95% or less, preferably 20% or more and 80% or less so as not to interfere with the movement of circulating cleaning wastewater. The diaphragm must have micropores having a pore size that allows at least the cleaning waste water to permeate. The flow rate of the cleaning wastewater supplied to the electrolytic cell may be defined so that the cleaning wastewater can efficiently contact the surface of the electrode or the like, and if it is a complete laminar flow, the lateral movement is small and the electrode, the dielectric Since contact with the body and the surface of the fine particles is reduced, it is preferable to form a turbulent state, and it is particularly preferable to use a turbulent flow having a Reynolds number of 500 or more.

【0017】本発明ではプリント基板洗浄排水を電気化
学的除去工程と吸着除去工程を含む循環系を通して処理
し、再度プリント基板洗浄工程に供給するが、前記洗浄
排水中に含まれる微粒子や電気化学的除去工程で滅菌さ
れた微生物の死骸を除去するためにフィルターを設置す
ることが望ましい。なお本発明方法では電気化学的除去
工程と吸着除去工程の他に紫外線照射工程等の他の工程
を併設してもよい。
In the present invention, the printed board cleaning wastewater is processed through a circulation system including an electrochemical removal step and an adsorption removal step and supplied again to the printed board cleaning step. It is desirable to install a filter to remove the microbial carcasses that have been sterilized in the removal process. In the method of the present invention, in addition to the electrochemical removal step and the adsorption removal step, other steps such as an ultraviolet irradiation step may be installed together.

【0018】次に添付図面に基づいて本発明方法の概要
及び本発明に使用できる電解槽の好ましい例を説明する
が、本発明方法はこれらに限定されるものではない。図
1は、本発明方法の電解槽として使用可能な固定床型複
極式電解槽の一例を示す概略縦断面図、図2は、図1の
電解槽を電気化学的除去工程に使用した本発明方法のフ
ローシートである。
Next, the outline of the method of the present invention and a preferred example of the electrolytic cell which can be used in the present invention will be described with reference to the accompanying drawings, but the method of the present invention is not limited thereto. FIG. 1 is a schematic vertical cross-sectional view showing an example of a fixed-bed type bipolar electrode electrolytic cell that can be used as an electrolytic cell of the method of the present invention, and FIG. 2 is a book showing the electrolytic cell of FIG. 1 used in an electrochemical removal step. It is a flow sheet of an invention method.

【0019】上下にフランジ1を有する円筒形の電解槽
本体2の内部上端近傍及び下端近傍にはそれぞれメッシ
ュ状の給電用陽極3と給電用陰極4が設けられている。
電解槽本体2は、長期間の使用又は再度の使用にも耐え
得る電気絶縁材料で形成することが好ましく、特に合成
樹脂であるポリエピクロルヒドリン、ポリビニルメタク
リレート、ポリエチレン、ポリプロピレン、ポリ塩化ビ
ニル、ポリ塩化エチレン、フェノール−ホルムアルデヒ
ド樹脂等が好ましく使用できる。正の直流電圧を与える
前記給電用陽極3は、例えば炭素材(例えば活性炭、
炭、コークス、石炭等)、グラファイト材(例えば炭素
繊維、カーボンクロス、グラファイト等)、炭素複合材
(例えば炭素に金属を粉状で混ぜ焼結したもの等)、活
性炭素繊維不織布(例えばKE−1000フェルト、東洋紡
株式会社)、又はこれに白金、白金族金属、パラジウム
やニッケルを担持させた材料、更に寸法安定性電極 (白
金族酸化物被覆チタン材) 、白金被覆チタン材、ニッケ
ル材、ステンレス材、鉄材等から形成される。又給電用
陽極3に対向し負の直流電圧を与える給電用陰極4は、
例えば白金、ステンレス、チタン、ニッケル、銅、ハス
テロイ、グラファイト、炭素材、軟鋼あるいは白金族金
属をコーティングした金属材料等から形成される。
A mesh-shaped power feeding anode 3 and power feeding cathode 4 are provided in the vicinity of the upper end and the lower end of a cylindrical electrolytic cell body 2 having a flange 1 on the upper and lower sides, respectively.
The electrolytic cell body 2 is preferably formed of an electrically insulating material that can withstand long-term use or re-use, and in particular, synthetic resins such as polyepichlorohydrin, polyvinyl methacrylate, polyethylene, polypropylene, polyvinyl chloride, and polychloroethylene. , Phenol-formaldehyde resin and the like can be preferably used. The power supply anode 3 that gives a positive DC voltage is, for example, a carbon material (for example, activated carbon,
Charcoal, coke, coal, etc., graphite material (for example, carbon fiber, carbon cloth, graphite, etc.), carbon composite material (for example, carbon in which metal is mixed in powder form and sintered), activated carbon fiber nonwoven fabric (for example KE- 1000 felt, Toyobo Co., Ltd.), or a material in which platinum, a platinum group metal, palladium or nickel is supported, and a dimensionally stable electrode (platinum group oxide coated titanium material), platinum coated titanium material, nickel material, stainless steel Made of wood, iron, etc. In addition, the power feeding cathode 4 facing the power feeding anode 3 and applying a negative DC voltage is
For example, it is formed from platinum, stainless steel, titanium, nickel, copper, hastelloy, graphite, carbon material, mild steel or a metal material coated with a platinum group metal.

【0020】前記両給電用電極3、4間には複数個の図
示の例では3個のスポンジ状の固定床電極5が積層さ
れ、かつ該固定床電極5間及び該固定床電極5と前記両
給電用電極3、4間に4枚の多孔質の隔膜あるいはスペ
ーサー6が挟持されている。各固定床電極5は電解槽本
体2の内壁に密着し固定床電極5の内部を通過せず、固
定床電極5と電解槽本体2の側壁との間を流れる処理液
の漏洩流がなるべく少なくなるように配置されている。
隔膜を使用する場合には該隔膜として織布、素焼板、粒
子焼結ブラスチック、多孔板、イオン交換膜等が用いら
れ、スペーサーとして電気絶縁性材料で製作された織
布、多孔板、網、棒状材等が使用される。このような構
成から成る該電解槽本体2個が図2に符号2で示すよう
に、電気化学的除去工程として洗浄排水の不純物除去の
サイクル内に設置されている。
A plurality of sponge-like fixed bed electrodes 5 in the illustrated example are laminated between the power feeding electrodes 3 and 4, and between the fixed bed electrodes 5 and between the fixed bed electrodes 5 and the above. Four porous diaphragms or spacers 6 are sandwiched between the power feeding electrodes 3 and 4. Each fixed bed electrode 5 is in close contact with the inner wall of the electrolytic cell body 2 and does not pass through the inside of the fixed bed electrode 5, and the leakage flow of the treatment liquid flowing between the fixed bed electrode 5 and the side wall of the electrolytic cell body 2 is minimized. It is arranged to be.
When a diaphragm is used, a woven cloth, a biscuit plate, a particle-sintered plastic, a porous plate, an ion exchange membrane, etc. are used as the diaphragm, and a woven cloth, a porous plate, a net made of an electrically insulating material is used as a spacer. , Rod-shaped materials are used. As shown by reference numeral 2 in FIG. 2, the two electrolytic cell bodies having such a configuration are installed in the cycle of removing impurities of the cleaning waste water as an electrochemical removing step.

【0021】図2において、11はプリント基板洗浄シス
テムで、該システム11から排出される洗浄排水は金属イ
オンや有機物を含有し、該洗浄排水は一旦排水貯槽12に
貯留される。該貯槽12を含む系路内は約45℃に維持さ
れ、菌等の微生物が繁殖し易い環境になっている。該貯
槽12内の洗浄排水はポンプにより前述の構成を有する電
解槽本体2に下方から図1に矢印で示すように供給され
る。前記固定床電極5は図1の如く下面が正に上面が負
に分極して固定床電極5内及び固定床電極5間に電位が
生じ、該電解槽内を流通する洗浄排水はこの電位を有す
る固定床電極5に接触してその中に含有される黴や細菌
等の微生物の滅菌及び有機物の分解除去が陽分極側で、
又錫や鉛等の金属イオン等の還元析出が陰分極側で行わ
れて微生物類を殆ど含まず、金属イオン及び有機物の少
なくとも一部が除去された洗浄排水が該電解槽本体2の
上方から取り出される。
In FIG. 2, reference numeral 11 denotes a printed circuit board cleaning system. The cleaning wastewater discharged from the system 11 contains metal ions and organic substances, and the cleaning wastewater is temporarily stored in a waste water storage tank 12. The inside of the system including the storage tank 12 is maintained at about 45 ° C., which is an environment in which microorganisms such as fungi easily grow. The cleaning waste water in the storage tank 12 is supplied from below by the pump to the electrolytic cell main body 2 having the above-described structure as shown by the arrow in FIG. As shown in FIG. 1, the lower surface of the fixed bed electrode 5 is positively polarized and the upper surface thereof is negatively polarized, so that a potential is generated in the fixed bed electrode 5 and between the fixed bed electrodes 5, and the cleaning wastewater flowing in the electrolytic cell has this potential. On the anodic polarization side, sterilization of microorganisms such as mold and bacteria contained in the fixed-bed electrode 5 and decomposition and removal of organic matter are carried out on the anodic polarization side.
Further, reduction deposition of metal ions such as tin and lead is carried out on the negative polarization side, almost no microorganisms are contained, and cleaning drainage from which at least a part of metal ions and organic substances is removed is discharged from above the electrolytic cell main body 2. Taken out.

【0022】この洗浄排水は次いで第1フィルター13に
下方から供給され、該洗浄排水は該フィルター13を通過
する間に当初から含まれる微粒子や微生物の死骸等が除
去され清澄な洗浄排水(処理水)として上方から取り出
される。この処理水は次いで活性炭充填塔(吸着除去工
程)14内に下方から供給され、該充填塔14内の活性炭と
接触して残存する有機物等の吸着除去が行われ、該処理
水は該充填塔14の上方から取り出される。この処理水は
次いでイオン交換樹脂充填塔(吸着除去工程)15内に下
方から供給され、該充填塔15内のイオン交換樹脂と接触
して残存する金属イオン、有機酸の吸着除去が行われ、
該処理水は該充填塔15の上方から取り出される。この充
填塔15内にはアニオン交換樹脂とカチオン交換樹脂の両
者の混合樹脂を充填することが望ましい。取り出された
処理水は次いで洗浄排水貯槽12と第1フィルター13間に
設置された電解槽本体と同一の電解槽本体2に下方から
供給され、前記吸着除去工程(活性炭充填塔14及びイオ
ン交換樹脂充填塔15)で除去できなかった金属イオンや
有機物を吸着又は分解により除去して更に純度の高い処
理水として該電解槽本体2の上方から取り出される。こ
の処理水は第2フィルター16及び流量計17を通って前記
プリント基板洗浄システム11に循環され再使用される。
なお図2には電解槽本体を2個示したが1個又は3個以
上でもよく、又設置箇所も図示の位置には限定されな
い。
This cleaning wastewater is then supplied to the first filter 13 from below, and while the cleaning wastewater is passing through the filter 13, fine particles, dead bodies of microorganisms, etc. originally contained therein are removed, and the cleaning wastewater (treated water is treated). ) Is taken out from above. This treated water is then supplied into the activated carbon packed tower (adsorption removal step) 14 from below to adsorb and remove the organic matter and the like remaining in contact with the activated carbon in the packed tower 14, and the treated water is the packed tower. Taken out from above 14. This treated water is then supplied into the ion exchange resin packed tower (adsorption removal step) 15 from below, and metal ions and organic acids remaining in contact with the ion exchange resin in the packed tower 15 are adsorbed and removed.
The treated water is taken out from above the packed tower 15. It is desirable to fill the packed column 15 with a mixed resin of both an anion exchange resin and a cation exchange resin. The treated water taken out is then supplied from below to the same electrolytic cell body 2 as the electrolytic cell body installed between the cleaning waste water storage tank 12 and the first filter 13, and the adsorption removal step (activated carbon packed tower 14 and ion exchange resin) is carried out. Metal ions and organic substances that could not be removed in the packed column 15) are removed by adsorption or decomposition and taken out from above the electrolytic cell body 2 as treated water of higher purity. This treated water is circulated to the printed circuit board cleaning system 11 through the second filter 16 and the flow meter 17, and is reused.
Although two electrolytic cell bodies are shown in FIG. 2, the number of electrolytic cell bodies may be one or three or more, and the installation location is not limited to the illustrated position.

【0023】図3は、本発明方法に使用できる複極型固
定床式電解槽の他の例を示すものである。上下にフラン
ジ21を有する円筒形の電解槽本体22の内部上端近傍及び
下端近傍にはそれぞれメッシュ状の給電用陽極23と給電
用陰極24が設けられている。電解槽本体22は、長期間の
使用又は再度の使用にも耐え得る電気絶縁材料特に合成
樹脂で形成することが好ましい。
FIG. 3 shows another example of a bipolar electrode fixed bed type electrolytic cell which can be used in the method of the present invention. A mesh-shaped power feeding anode 23 and power feeding cathode 24 are provided in the vicinity of the upper end and the lower end inside a cylindrical electrolytic cell body 22 having upper and lower flanges 21, respectively. The electrolytic cell body 22 is preferably made of an electrically insulating material, especially a synthetic resin, which can withstand long-term use or reuse.

【0024】前記両給電用電極23、24間には、導電性材
料例えば炭素系材料で形成された多数の固定床形成用粒
子25と該固定床形成用粒子25より少数の例えば合成樹脂
製の絶縁粒子26とがほぼ均一に混在している。該絶縁粒
子26は、前記給電用陽極23及び給電用陰極24が完全に短
絡することを防止する機能を有している。このような構
成から成る電解槽本体に下方から矢印で示すように洗浄
排水を供給しながら通電を行うと、前記各固定床形成用
粒子25が給電用陽極23側が負に又給電用陰極24側が正に
分極して表面積が莫大な三次元電極として機能し、図1
の電解槽と同様にして前記洗浄排水の滅菌等が行われ
る。
A large number of fixed bed forming particles 25 made of a conductive material such as a carbonaceous material and a smaller number of fixed resin forming particles 25, for example, made of a synthetic resin, are provided between the two feeding electrodes 23, 24. The insulating particles 26 are mixed almost uniformly. The insulating particles 26 have a function of preventing the power supply anode 23 and the power supply cathode 24 from being completely short-circuited. When electricity is supplied to the electrolytic cell main body having such a configuration from the bottom while supplying cleaning wastewater as indicated by an arrow, the fixed bed forming particles 25 have a negative power supply anode 23 side and a negative power supply cathode 24 side. It functions as a three-dimensional electrode that is polarized positively and has a huge surface area.
The washing drainage is sterilized in the same manner as in the electrolytic bath.

【0025】図4は、本発明に使用できる単極型固定床
式電解槽を例示するものである。上下にフランジ31を有
する円筒形の電解槽本体32の内部上端近傍及び下端近傍
にはそれぞれメッシュ状の給電用陽極33と給電用陰極34
が設けられている。電解槽本体32は、長期間の使用又は
再度の使用にも耐え得る電気絶縁材料特に合成樹脂で形
成することが好ましい。前記両給電用電極33、34間に
は、隔膜36を挟んで導電性材料例えば炭素繊維をフェル
ト状に成形した1対の固定床35が陽極室内及び陰極室内
に充填され、前記陽極室内及び陰極室内のフェルト状炭
素繊維はそれぞれ前記給電用陽極33と給電用陰極34に電
気的に接続され、陽極室内の固定床は正に陰極室内の固
定床は負に帯電されている。この電解槽に下方から矢印
で示すように原水を供給しながら通電を行うと、図1及
び図3の場合と同様に固定床35が表面積が莫大な三次元
電極として機能して洗浄排水中の黴や細菌等の微生物の
滅菌等が行われる。
FIG. 4 exemplifies a single electrode type fixed bed type electrolytic cell which can be used in the present invention. A cylindrical electrolytic cell body 32 having upper and lower flanges 31 has a mesh-shaped power supply anode 33 and power supply cathode 34 near the upper end and the lower end, respectively.
Is provided. The electrolytic cell body 32 is preferably formed of an electrically insulating material, especially a synthetic resin, which can withstand long-term use or reuse. A pair of fixed beds 35 formed of a conductive material such as carbon fiber in a felt shape with a diaphragm 36 sandwiched between the power feeding electrodes 33 and 34 are filled in the anode chamber and the cathode chamber, respectively. The felt-like carbon fibers in the chamber are electrically connected to the power feeding anode 33 and the power feeding cathode 34, respectively, and the fixed bed in the anode chamber is positively charged and the fixed bed in the cathode chamber is negatively charged. When electricity is supplied to this electrolytic cell while supplying raw water from below as indicated by the arrow, the fixed bed 35 functions as a three-dimensional electrode having a huge surface area as in the case of FIGS. Sterilization of microorganisms such as mold and bacteria is performed.

【0026】[0026]

【実施例】以下に本発明方法によるプリント基板洗浄排
水からの不純物除去の実施例を記載するが、該実施例は
本発明方法を限定するものではない。
EXAMPLES Examples of removing impurities from printed circuit board cleaning waste water by the method of the present invention will be described below, but the examples do not limit the method of the present invention.

【実施例1】図1に示した電解槽本体2個を、フィルタ
ー、活性炭充填塔、イオン交換樹脂充填塔とともに図2
に示すように接続して洗浄排水中の不純物除去サイクル
を構成した。
Example 1 The two electrolytic cell main bodies shown in FIG. 1 are shown together with a filter, an activated carbon packed tower, and an ion exchange resin packed tower.
A cycle for removing impurities in the cleaning wastewater was constructed by connecting as shown in FIG.

【0027】前記電解槽本体は、塩化ビニル樹脂製の高
さ 100mm、内径50mmのフランジ付円筒形であり、該
円筒体の内部に開孔率60%の炭素繊維から成る直径50m
m、厚さ10mmの固定床3個を、開口率85%で直径50m
m及び厚さ 1.5mmのポリエチレン樹脂製隔膜4枚で挟
み込み、上下両端の隔膜にそれぞれ白金をその表面にメ
ッキしたチタン製である直径48mm厚さ 1.0mmのメッ
シュ状給電用陽極及び給電用陰極を接触させて設置し
た。固定床電極1個当たりの電圧を6.5 V、実効電流密
度(真の固定床電流の表面積値から算出)0.5 A/dm
2 となるよう通電を行った。2個のフィルターは通常の
市販されている10インチ型カートリッジフィルターを使
用し、その濾過エレメントの開孔径は10μmのものを使
用した。活性炭充填塔は、高さ1200mm、内径100 mm
の円筒形容器に武田薬品株式会社製の活性炭を充填して
構成した。
The main body of the electrolytic cell is a vinyl chloride resin-made cylinder with a height of 100 mm and an inner diameter of 50 mm, and has a diameter of 50 m, which is made of carbon fiber having an opening ratio of 60%.
m, 3 fixed beds with a thickness of 10 mm, diameter 50 m with an opening ratio of 85%
m and 1.5 mm thick polyethylene resin diaphragms sandwiched between the upper and lower diaphragms made of titanium with platinum plated on the surface, and a mesh-shaped power supply anode and power supply cathode with a diameter of 48 mm and a thickness of 1.0 mm. It was placed in contact. The voltage per fixed bed electrode is 6.5 V, effective current density (calculated from the surface area of the true fixed bed current) 0.5 A / dm
The electricity was applied so that it would be 2 . As the two filters, ordinary commercially available 10-inch cartridge filters were used, and the filter element had an opening diameter of 10 μm. The activated carbon packed tower has a height of 1200 mm and an inner diameter of 100 mm.
The cylindrical container was filled with activated carbon manufactured by Takeda Pharmaceutical Co., Ltd.

【0028】前記イオン交換塔は塩化ビニル製の高さ50
0 mm、内径50mmの円筒体とし、該イオン交換塔内に
粒径0.45〜0.60mmの水素型の陽イオン交換樹脂アンバ
ーライトIR−120 B(商品名)約400 gと水酸基型の
陰イオン交換樹脂アンバーライトIRA−410 (商品
名)約400 gを混合床として収容した。プリント基板洗
浄システムからの洗浄排水を貯留した貯槽内の該洗浄排
水中の不純物含有量は、微生物数20000 個/ミリリット
ル、全金属イオン濃度2.3 ppm及びTOC(全有機炭
素)24mg/リットルであった。前記貯槽内の洗浄排水
を1.2 リットル/分の速度で電解槽本体、フィルター及
び充填塔を通し循環させた。貯槽内の洗浄排水中の各不
純物量、貯槽の下流の電解槽本体(第1電解槽)通過後
の洗浄排水(処理水)中の各不純物量及びイオン交換樹
脂充填塔の下流の電解槽本体(第2電解槽)通過後の各
不純物量を表1に纏めた。
The ion exchange tower is made of vinyl chloride and has a height of 50.
Approximately 400 g of hydrogen-type cation exchange resin Amberlite IR-120 B (trade name) having a particle size of 0.45 to 0.60 mm and a hydroxyl group-type anion exchange was used as a cylindrical body having a diameter of 0 mm and an inner diameter of 50 mm. About 400 g of resin Amberlite IRA-410 (trade name) was contained as a mixed bed. The impurities content in the cleaning waste water in the storage tank storing the cleaning waste water from the printed circuit board cleaning system was 20,000 microorganisms / ml, total metal ion concentration 2.3 ppm and TOC (total organic carbon) 24 mg / l. . The cleaning waste water in the storage tank was circulated through the electrolytic cell body, the filter and the packed tower at a rate of 1.2 liters / minute. Amount of impurities in cleaning wastewater in the storage tank, amounts of impurities in cleaning wastewater (treated water) after passing the electrolytic cell body (first electrolytic cell) downstream of the storage tank, and electrolytic cell body downstream of the ion-exchange resin packed tower The amounts of impurities after passing through the (second electrolysis tank) are summarized in Table 1.

【0029】[0029]

【表1】 [Table 1]

【0030】表1から微生物は第1電解槽通過後にはほ
ぼ零になり、金属イオンはかなり減少しTOCは若干減
少することが判る。そして第2電解槽通過後の洗浄排水
(処理水)中の不純物含有量は実質的に零になっている
ことが判る。
It can be seen from Table 1 that the microorganisms become almost zero after passing through the first electrolytic cell, the metal ions are considerably reduced, and the TOC is slightly reduced. It can be seen that the content of impurities in the cleaning wastewater (treated water) after passing through the second electrolytic cell is substantially zero.

【0031】[0031]

【比較例1】実施例1の第1電解槽及び第2電解槽の代
わりに第2電解槽の位置に紫外線照射装置を設置し、約
250 〜260 nmの主波長を有する紫外線を25000 μW・
S/cm2 の強度で洗浄排水(処理水)に照射したこと
以外は実施例1と同一条件で洗浄排水中の不純物除去を
行った。貯槽内の洗浄排水中の各不純物量、紫外線照射
装置通過後の洗浄排水(処理水)中の各不純物量を表2
に纏めた。
Comparative Example 1 An ultraviolet irradiation device was installed at the position of the second electrolytic cell instead of the first electrolytic cell and the second electrolytic cell of Example 1, and
Ultraviolet rays with a main wavelength of 250 to 260 nm are 25000 μW
Impurities were removed from the cleaning drainage under the same conditions as in Example 1 except that the cleaning drainage (treated water) was irradiated with an intensity of S / cm 2 . Table 2 shows the amount of impurities in the cleaning wastewater in the storage tank and the amount of impurities in the cleaning wastewater (treated water) after passing through the ultraviolet irradiation device.
Summarized in.

【0032】[0032]

【表2】 [Table 2]

【0033】表2から紫外線照射工程と吸着除去工程と
の組み合わせでは微生物以外はあまり除去できず、金属
イオン濃度及びTOCも実施例1の場合より大きくなっ
ていることが判り、電気化学的除去工程と吸着除去工程
を併用すると紫外線照射と吸着除去工程の組み合わせよ
り、効率良く洗浄排水中の各種不純物を除去できること
が判る。
It can be seen from Table 2 that the combination of the ultraviolet irradiation step and the adsorption removal step was not able to remove much except microorganisms, and the metal ion concentration and TOC were also higher than in the case of Example 1, and the electrochemical removal step was performed. It can be seen that various impurities in the cleaning wastewater can be removed more efficiently by combining the ultraviolet irradiation and the adsorption removal step when used together with the adsorption removal step.

【0034】[0034]

【発明の効果】本発明方法は、プリント基板洗浄排水中
の不純物除去方法において、該不純物の活性炭及び/又
はイオン交換樹脂吸着除去工程と固定床型三次元電極を
使用する電気化学的除去工程を含んで成ることを特徴と
する不純物除去方法である(請求項1)。プリント基板
洗浄排水中には、金属イオンや有機物等が含有されかつ
菌や黴等の微生物が繁殖している。これらの不純物を含
む洗浄排水をそのままプリント基板洗浄用として再使用
すると、該不純物がプリント基板上に付着する等の不都
合が生ずる。従来の薬剤添加法や紫外線照射法と吸着除
去工程を併用する方法では薬剤の残留、不純物除去の不
完全性等の問題点があった。
According to the method of the present invention, in the method for removing impurities in the printed board cleaning wastewater, the steps of removing the impurities by adsorption of activated carbon and / or ion exchange resin and the electrochemical removal step using a fixed bed type three-dimensional electrode are performed. A method for removing impurities, which comprises: (claim 1). The printed circuit board cleaning waste water contains metal ions, organic substances, etc., and microorganisms such as fungi and mold propagate. If the cleaning waste water containing these impurities is reused as it is for cleaning the printed circuit board, the impurities may adhere to the printed circuit board. The conventional method of using a chemical addition method or an ultraviolet irradiation method in combination with an adsorption removal step has problems such as residual chemicals and incomplete removal of impurities.

【0035】本発明方法では電気化学的除去工程を従来
の吸着除去工程と組み合わせることにより、洗浄排水中
の前記不純物除去をほぼ完全に行い得るようにしてい
る。本発明の電気化学的除去工程では固定床型三次元電
極を使用し、該固定床型三次元電極は洗浄排水中の微生
物と広い表面積で接触して該微生物に電位を加えて滅菌
し、金属イオンをその表面に還元的に吸着させて除去
し、更にある種の有機物を酸化又は還元的に分解して除
去できる。従って該電気化学的除去工程は、洗浄排水中
の主要不純物である微生物、金属イオン及び有機物全て
に対して作用し、吸着除去工程と組み合わせることによ
り前記不純物含有量をほぼ零にして、清澄な処理水とし
て回収しプリント基板洗浄工程に循環し再使用すること
を可能にしている(請求項3)。
In the method of the present invention, the electrochemical removal process is combined with the conventional adsorption removal process so that the impurities in the cleaning waste water can be removed almost completely. In the electrochemical removal step of the present invention, a fixed-bed type three-dimensional electrode is used, and the fixed-bed type three-dimensional electrode is brought into contact with microorganisms in the washing wastewater over a large surface area to sterilize them by applying an electric potential to the microorganisms. Ions can be removed by reductively adsorbing them on the surface, and by oxidizing or reductively decomposing certain organic substances. Therefore, the electrochemical removal step acts on all of the main impurities such as microorganisms, metal ions and organic substances in the cleaning wastewater, and by combining with the adsorption removal step, the content of the impurities is reduced to almost zero, and a clear treatment is performed. It is possible to collect it as water and circulate it in the printed board cleaning process to reuse it (claim 3).

【0036】更に本発明では薬剤を使用しないため経済
的であり又薬剤の後処理の必要もなく、特に微生物滅菌
効率が紫外線照射の場合よりかなり高く、非常に有効な
洗浄排水中の不純物除去方法である。そして吸着除去工
程の上流側に電気化学的除去工程を設置すると(請求項
2)、該電気化学的除去工程で洗浄排水中の金属イオン
や有機物等の少なくとも一部が除去されるため、前記吸
着除去工程のイオン交換樹脂や活性炭の負荷が減少し、
これらの汚染を最小限に抑えることができる。
Furthermore, the present invention is economical because it does not use chemicals, does not require post-treatment of chemicals, and has a much higher microbial sterilization efficiency than ultraviolet irradiation, and is a very effective method for removing impurities in cleaning wastewater. Is. When an electrochemical removal step is installed on the upstream side of the adsorption removal step (claim 2), at least a part of metal ions, organic substances, etc. in the cleaning wastewater are removed in the electrochemical removal step, and thus the adsorption is performed. The load of ion exchange resin and activated carbon in the removal process is reduced,
These contaminations can be minimized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法の電解槽として使用可能な固定床型
複極式電解槽の一例を示す概略縦断面図。
FIG. 1 is a schematic vertical cross-sectional view showing an example of a fixed-bed type bipolar electrode electrolytic cell that can be used as an electrolytic cell in the method of the present invention.

【図2】図1の電解槽を、フィルター、活性炭充填塔及
びイオン交換樹脂充填塔と組み合わせて構成した不純物
除去サイクルのフローチャート。
FIG. 2 is a flow chart of an impurity removal cycle in which the electrolytic cell of FIG. 1 is combined with a filter, an activated carbon packed column and an ion exchange resin packed column.

【図3】本発明方法に使用できる複極型固定床式電解槽
の他の例を示す概略縦断面図。
FIG. 3 is a schematic vertical cross-sectional view showing another example of a bipolar electrode fixed bed type electrolytic cell that can be used in the method of the present invention.

【図4】本発明に使用できる単極型固定床式電解槽を例
示する概略縦断面図。
FIG. 4 is a schematic vertical cross-sectional view illustrating a single electrode fixed bed type electrolytic cell that can be used in the present invention.

【符号の説明】[Explanation of symbols]

1・・・フランジ 2・・・電解槽本体 3、4・・・
給電用電極ターミナル 5・・・固定床 6・・・スペーサー 11・・・プリン
ト基板洗浄システム 12・・・貯槽 13・・・第1フィルター 14・・・活性
炭充填塔 15・・・イオン交換樹脂充填塔 16・・・第
2フィルター 17・・・流量計
1 ... Flange 2 ... Electrolyzer body 3, 4 ...
Power supply electrode terminal 5 ・ ・ ・ Fixed bed 6 ・ ・ ・ Spacer 11 ・ ・ ・ Printed board cleaning system 12 ・ ・ ・ Storage tank 13 ・ ・ ・ First filter 14 ・ ・ ・ Activated carbon packing tower 15 ・ ・ ・ Ion exchange resin packing Tower 16 ・ ・ ・ Second filter 17 ・ ・ ・ Flowmeter

【手続補正書】[Procedure amendment]

【提出日】平成5年10月7日[Submission date] October 7, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】全図[Correction target item name] All drawings

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】 [Figure 1]

【図2】 [Fig. 2]

【図3】 [Figure 3]

【図4】 [Figure 4]

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C02F 9/00 Z 7446−4D H05K 3/26 7511−4E (72)発明者 橋本 浩幸 東京都日野市さくら町1番地コニカ株式会 社内 (72)発明者 高橋 剛 東京都日野市さくら町1番地コニカ株式会 社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Internal reference number FI Technical indication location C02F 9/00 Z 7446-4D H05K 3/26 7511-4E (72) Inventor Hiroyuki Hashimoto Tokyo Hino Konica Stock Company, 1st Sakura-cho, Yokohama (72) Inventor Go Takahashi Konica Stock Company, 1st Sakura-cho, Hino-shi, Tokyo In-house

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 プリント基板洗浄排水中の不純物除去方
法において、該不純物の活性炭及び/又はイオン交換樹
脂吸着除去工程と固定床型三次元電極を使用する電気化
学的除去工程を含んで成ることを特徴とする不純物除去
方法。
1. A method for removing impurities in a printed circuit board cleaning wastewater, which comprises a step of removing the impurities by adsorption of activated carbon and / or an ion exchange resin and an electrochemical removal step using a fixed bed type three-dimensional electrode. Characteristic impurity removal method.
【請求項2】 吸着除去工程の上流側に電気化学的除去
工程を設置した請求項1に記載の方法。
2. The method according to claim 1, wherein an electrochemical removal step is installed upstream of the adsorption removal step.
【請求項3】 プリント基板洗浄排水を、活性炭及び/
又はイオン交換樹脂吸着除去工程と固定床型三次元電極
を使用する電気化学的除去工程を通して処理して前記プ
リント基板洗浄排水中の不純物を除去して回収し、該回
収水をプリント基板洗浄水として循環使用することを特
徴とするプリント基板洗浄排水の回収方法。
3. The printed circuit board cleaning drainage is activated carbon and / or
Alternatively, the ion-exchange resin adsorption removal process and the electrochemical removal process using a fixed bed type three-dimensional electrode are performed to remove impurities in the printed circuit board cleaning wastewater and collect them, and the recovered water is used as printed circuit board cleaning water. A method for collecting wastewater for cleaning printed circuit boards, which is characterized by being recycled.
JP3357045A 1991-12-25 1991-12-25 Method for removing impurities from printed circuit board washing wastewater Expired - Lifetime JP2923108B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3357045A JP2923108B2 (en) 1991-12-25 1991-12-25 Method for removing impurities from printed circuit board washing wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3357045A JP2923108B2 (en) 1991-12-25 1991-12-25 Method for removing impurities from printed circuit board washing wastewater

Publications (2)

Publication Number Publication Date
JPH06121978A true JPH06121978A (en) 1994-05-06
JP2923108B2 JP2923108B2 (en) 1999-07-26

Family

ID=18452102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3357045A Expired - Lifetime JP2923108B2 (en) 1991-12-25 1991-12-25 Method for removing impurities from printed circuit board washing wastewater

Country Status (1)

Country Link
JP (1) JP2923108B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5124284A (en) * 1989-06-07 1992-06-23 Kyocera Corporation Aluminum nitride sintered body
WO2000002819A1 (en) * 1998-07-10 2000-01-20 United States Filter Corporation Ion exchange removal of metal ions from wastewater
JP2007117965A (en) * 2005-10-31 2007-05-17 Sumitomo Osaka Cement Co Ltd Method and apparatus for removing metal from drainage
US7488423B2 (en) 2005-08-02 2009-02-10 Siemens Water Technologies Holding Corp. System and method of slurry treatment
CN107487908A (en) * 2017-08-15 2017-12-19 广东博地环境工程有限公司 One kind fluidisation pole plate electric flocculation reactor and its method of work
CN107857343A (en) * 2017-11-16 2018-03-30 辽宁大学 A kind of method based on compound particle electrode degrading high salt waste water from dyestuff
CN108585079A (en) * 2018-05-23 2018-09-28 安徽新华印刷股份有限公司 A kind of printing house's sewage treating material
CN111408527A (en) * 2020-03-27 2020-07-14 杭州喜马拉雅信息科技有限公司 3D prints environmental protection processing apparatus that sprays paint

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5124284A (en) * 1989-06-07 1992-06-23 Kyocera Corporation Aluminum nitride sintered body
WO2000002819A1 (en) * 1998-07-10 2000-01-20 United States Filter Corporation Ion exchange removal of metal ions from wastewater
US6818129B2 (en) 1998-07-10 2004-11-16 Usfilter Corporation Ion exchange removal of metal ions from wastewater
US7488423B2 (en) 2005-08-02 2009-02-10 Siemens Water Technologies Holding Corp. System and method of slurry treatment
JP2007117965A (en) * 2005-10-31 2007-05-17 Sumitomo Osaka Cement Co Ltd Method and apparatus for removing metal from drainage
US8603344B2 (en) 2005-10-31 2013-12-10 Sumitomo Osaka Cement Co., Ltd. Method and apparatus for removing metal from waste water
CN107487908A (en) * 2017-08-15 2017-12-19 广东博地环境工程有限公司 One kind fluidisation pole plate electric flocculation reactor and its method of work
CN107857343A (en) * 2017-11-16 2018-03-30 辽宁大学 A kind of method based on compound particle electrode degrading high salt waste water from dyestuff
CN108585079A (en) * 2018-05-23 2018-09-28 安徽新华印刷股份有限公司 A kind of printing house's sewage treating material
CN111408527A (en) * 2020-03-27 2020-07-14 杭州喜马拉雅信息科技有限公司 3D prints environmental protection processing apparatus that sprays paint

Also Published As

Publication number Publication date
JP2923108B2 (en) 1999-07-26

Similar Documents

Publication Publication Date Title
US6773575B2 (en) Electrolytic cell and process for the production of hydrogen peroxide solution and hypochlorous acid
Grimm et al. Review of electro-assisted methods for water purification
US6328875B1 (en) Electrolytic apparatus, methods for purification of aqueous solutions and synthesis of chemicals
AU767548B2 (en) Electrolytic apparatus, methods for purification of aqueous solutions and synthesis of chemicals
CN102145967A (en) Device and method for processing restaurant wastewater
JPH10151463A (en) Water treatment method
JP2923108B2 (en) Method for removing impurities from printed circuit board washing wastewater
JPS6097089A (en) Method of electrochemically removing contamination of water
JP3227921B2 (en) Apparatus and method for treating wastewater containing oil composed of ester
CN111252963A (en) Treatment method of high-concentration COD wastewater
CN106673285B (en) A kind of recycling recoverying and utilizing method containing golden electroplating wastewater
CN111634979B (en) Device for removing chloride ions in desulfurization wastewater by constructing three-dimensional electrode system through hydrotalcite-based particle electrode
JP3040549B2 (en) High purity water production method
KR102492246B1 (en) Hybrid water treatment system for red tide removal and perchlorate control and water treatment method using the same
JPS59127691A (en) Advanced treatment of secondary treated water of night soil
JPH0788474A (en) Production of high purity water
JP2971511B2 (en) Electrochemical treatment method for water to be treated
JP2000005755A (en) Treatment of water and device therefor
JPH05309362A (en) Treatment of object water for treatment and multiple-electrodes-type electrolytic bath for treatment of object water for treatment
WO2003027029A1 (en) Method and apparatus for the destruction of dyes and other organic molecules
JP2864463B2 (en) Air treatment method
TW201113224A (en) Power type waste water treatment system
JPH05185072A (en) Energizing regeneration type waste liquid treatment and equipment therefor
JP3020551B2 (en) Electrochemical treatment of treated water containing microorganisms
JPH0416286A (en) Electrochemical treatment of water to be treated

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080430

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100430

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110430

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120430

Year of fee payment: 13