JPH06120347A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH06120347A
JPH06120347A JP4267290A JP26729092A JPH06120347A JP H06120347 A JPH06120347 A JP H06120347A JP 4267290 A JP4267290 A JP 4267290A JP 26729092 A JP26729092 A JP 26729092A JP H06120347 A JPH06120347 A JP H06120347A
Authority
JP
Japan
Prior art keywords
guard ring
region
type
opening
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4267290A
Other languages
Japanese (ja)
Inventor
Masakatsu Hoshi
星  正勝
Teruyoshi Mihara
輝儀 三原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP4267290A priority Critical patent/JPH06120347A/en
Publication of JPH06120347A publication Critical patent/JPH06120347A/en
Pending legal-status Critical Current

Links

Landscapes

  • Design And Manufacture Of Integrated Circuits (AREA)
  • Local Oxidation Of Silicon (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain a guard ring type transistor which is high in breakdown strength against surges by making an opening to form a guard ring larger than an opening to form a diffused region. CONSTITUTION:A p-type base region 3 is formed within a layer 2 of n-type epitaxial growth in the surface of an n<+>-type silicon substrate 1, and further a region 4 of p-type body of a diameter (b) which passes through the layer 2 of epitaxial growth and the bottom of which reaches the substrate 1. A guard ring 4g, the diameter (a) of which becomes twice the depth of it within the layer 2 of epitaxial growth and the bottom of which reaches the substrate 1, is formed. For a guard ring 4f connected with a source electrode 9, it is unnecessary to make larger an opening in it than an opening in the region 4 of body since impurities are not aspirated into an LOCOS oxide film 8S. Since an amount by which impurity concentration decreases can be compensated for, the withstand voltage of the region 4 of p-type body accords with that of the guard ring 4g under the LOCOS oxide film, a surge current uniformly flows, so that the breakdown strength against surges may be increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体装置に係り、特
にガードリング構造を有するパワートランジスタのサー
ジ耐圧の改善に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device, and more particularly to improvement of surge withstand voltage of a power transistor having a guard ring structure.

【0002】[0002]

【従来の技術】近年、パワーMOSデバイスにおいて
は、素子を微細化して集積度を向上させることによりオ
ン抵抗の低減をはかる傾向にある。
2. Description of the Related Art In recent years, in power MOS devices, there is a tendency to reduce the on-resistance by miniaturizing the elements to improve the degree of integration.

【0003】ところで、パワートランジスタを含む半導
体集積回路としては、図4にその一例を示すように、n
+ 型シリコン基板1表面に形成されたn型エピタキシャ
ル成長層2内に、p型ベース領域3が形成され、さらに
このp型ベース領域3に深いp型ボディ領域4が形成さ
れ、このp型ボディ領域4はエピタキシャル成長層2を
貫通し底部はn+ 型シリコン基板1に到達するように形
成されている。5はソース領域としてのn+ 拡散層,6
はゲート絶縁膜,7はゲート電極、8は層間絶縁膜であ
る。
By the way, as a semiconductor integrated circuit including a power transistor, as shown in FIG.
A p-type base region 3 is formed in the n-type epitaxial growth layer 2 formed on the surface of the + -type silicon substrate 1, and a deep p-type body region 4 is further formed in the p-type base region 3. Reference numeral 4 is formed so as to penetrate the epitaxial growth layer 2 and reach the bottom of the n + type silicon substrate 1. 5 is an n + diffusion layer as a source region, 6
Is a gate insulating film, 7 is a gate electrode, and 8 is an interlayer insulating film.

【0004】そしてさらにこのp型ボディ領域4形成の
ための拡散と同一の拡散工程で、この周辺に周辺ガード
リング4gとしてのp型拡散層が形成されている。
Further, in the same diffusion step as the diffusion for forming the p-type body region 4, a p-type diffusion layer as a peripheral guard ring 4g is formed around this.

【0005】このときp型ボディ領域とn+ 基板とによ
って形成されるツェナーダイオードの耐圧はベース耐圧
よりも低くなっている。この周辺ガードリング4gの存
在により、サージ電圧が加わった場合、このツェナーダ
イオードを通って電流が流れるので、ソース領域5,ベ
ース領域3,n型エピタキシャル層2によって形成され
る寄生npnバイポーラトランジスタがオンするのを防
止することができる。ところで、パワーデバイスと制御
用のICとを同一チップ上に形成したインテリジェント
パワーデバイスにおいては、アルミニウム配線の段切れ
を防止するためにアルミニウム配線下の段差を緩和すべ
くLOCOS酸化プロセスが用いられる。すなわち周辺
ガードリング4gの上はLOCOS酸化膜8sで覆われ
る。従ってLOCOS酸化膜下のガードリング4gのp
型不純物がこのLOCOS酸化膜8s中に拡散して表面
濃度が低下する。よってLOCOS酸化膜下のp型ガー
ドリング領域の耐圧がp型ボディ領域の耐圧よりも高く
なるという現象が生じる。このp型ガードリング領域の
耐圧はp型ボディ領域の耐圧よりも5V程度も高くなる
ことがある。この結果、サージ電流がセル部主体に流れ
て、ガードリング部のツェナーダイオードが有効に働か
ずチップ全体としてのサージ耐量が低下するという問題
があった。この問題は素子の微細化に伴う拡散窓の微細
化に伴い特に顕著になってきている。
At this time, the breakdown voltage of the Zener diode formed by the p type body region and the n + substrate is lower than the breakdown voltage of the base. Due to the presence of the peripheral guard ring 4g, when a surge voltage is applied, a current flows through the Zener diode, so that the parasitic npn bipolar transistor formed by the source region 5, the base region 3 and the n-type epitaxial layer 2 is turned on. Can be prevented. By the way, in an intelligent power device in which a power device and an IC for control are formed on the same chip, a LOCOS oxidation process is used in order to mitigate the step under the aluminum wiring in order to prevent disconnection of the aluminum wiring. That is, the peripheral guard ring 4g is covered with the LOCOS oxide film 8s. Therefore, p of guard ring 4g under the LOCOS oxide film
The type impurities diffuse into the LOCOS oxide film 8s to reduce the surface concentration. Therefore, the breakdown voltage of the p-type guard ring region under the LOCOS oxide film becomes higher than the breakdown voltage of the p-type body region. The breakdown voltage of the p-type guard ring region may be higher than that of the p-type body region by about 5V. As a result, a surge current flows mainly in the cell portion, the Zener diode in the guard ring portion does not work effectively, and there is a problem that the surge resistance of the entire chip decreases. This problem has become particularly prominent with the miniaturization of the diffusion window accompanying the miniaturization of the device.

【0006】[0006]

【発明が解決しようとする課題】このように、従来のガ
ードリング型トランジスタでは、集積回路として用いる
場合にはガードリング上をLOCOS酸化膜で覆うこと
になり、不純物がLOCOS酸化膜に拡散することによ
りガードリング部のツェナーダイオードが有効に働かず
チップ全体としてのサージ耐量が低下するという問題が
あった。
As described above, in the conventional guard ring type transistor, when it is used as an integrated circuit, the guard ring is covered with the LOCOS oxide film, and the impurities diffuse into the LOCOS oxide film. Due to this, there is a problem that the Zener diode in the guard ring portion does not work effectively and the surge resistance of the entire chip decreases.

【0007】本発明は、前記実情に鑑みてなされたもの
で、ガードリング部のツェナーダイオードを有効に作動
させることができ、サージ耐圧の高いガードリング型ト
ランジスタを提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a guard ring type transistor capable of effectively operating the Zener diode of the guard ring section and having a high surge withstand voltage.

【0008】[0008]

【課題を解決するための手段】そこで本発明では、ガー
ドリング上をLOCOS酸化膜などの絶縁膜で覆うよう
にしたガードリング型トランジスタにおいて、絶縁膜下
のガードリングを形成するための開口部を拡散領域を形
成するための開口部よりも大きくするようにしている。
Therefore, in the present invention, in a guard ring type transistor in which a guard ring is covered with an insulating film such as a LOCOS oxide film, an opening for forming a guard ring under the insulating film is formed. The size is made larger than the opening for forming the diffusion region.

【0009】[0009]

【作用】拡散窓すなわちガードリングの径が大きいと実
質の不純物量が増加し、これが絶縁膜への不純物の拡散
に伴うガードリング部の耐圧の増大効果を打ち消す。そ
こで上記構成に因れば、ガードリングの径を大きくする
ことによる実質不純物量の増大に伴う耐圧の低下と、絶
縁膜への不純物の拡散に伴うガードリング部の耐圧の増
大とが互いに補償し、p型ボディ領域の耐圧とガードリ
ング部の耐圧とが等しくなるようにすることができ、サ
ージ電圧がチップ全体に流れるため、サージ耐量を向上
することができる。
When the diameter of the diffusion window, that is, the guard ring is large, the substantial amount of impurities increases, which cancels out the effect of increasing the breakdown voltage of the guard ring portion due to the diffusion of impurities into the insulating film. Therefore, according to the above configuration, a decrease in breakdown voltage due to an increase in the substantial amount of impurities by increasing the diameter of the guard ring and an increase in breakdown voltage of the guard ring portion due to the diffusion of impurities into the insulating film compensate for each other. The withstand voltage of the p-type body region and the withstand voltage of the guard ring portion can be made equal to each other, and the surge voltage flows through the entire chip, so that the surge withstand capability can be improved.

【0010】すなわち素子の微細化に伴い、拡散窓が小
さくなってきて拡散窓の直径が拡散深さの2倍以下にな
ってくると、同一不純物インプラ量、同一拡散時間にお
いてもLOCOS酸化膜下ではLOCOS酸化膜中への
不純物の流入により、実質不純物量が異なるため、拡散
窓の径の大きさにより耐圧が異なってくる。
That is, when the diffusion window becomes smaller and the diameter of the diffusion window becomes less than twice the diffusion depth due to the miniaturization of the element, the LOCOS oxide film is formed under the LOCOS oxide film even at the same impurity implantation amount and the same diffusion time. However, since the substantial amount of impurities differs due to the inflow of impurities into the LOCOS oxide film, the breakdown voltage differs depending on the diameter of the diffusion window.

【0011】そこで本発明では、上部をLOCOS酸化
膜などの絶縁膜で覆われるガードリング部では、開口部
の大きさを拡散領域形成のための開口部よりも大きくす
るようにし、絶縁膜中への不純物の流入による不純物濃
度の低下を、開口部の増大による実質的不純物濃度の増
大によって補償し、ガードリング領域の不純物濃度が拡
散領域の不純物濃度よりも低くならないようにし、耐圧
低下に大きな影響を与えないようにするものである。
Therefore, in the present invention, in the guard ring portion whose upper portion is covered with an insulating film such as a LOCOS oxide film, the size of the opening is made larger than the opening for forming the diffusion region, and the inside of the insulating film is filled. The decrease of the impurity concentration due to the inflow of impurities is compensated by the increase of the substantial impurity concentration due to the increase of the opening to prevent the impurity concentration of the guard ring region from becoming lower than the impurity concentration of the diffusion region, which greatly affects the breakdown voltage reduction. Is not to give.

【0012】[0012]

【実施例】以下、本発明の実施例について図面を参照し
つつ詳細に説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0013】この半導体装置は、図1および図2に(図
2は平面図)を示すように、LOCOS酸化膜8Sの下
部に形成された第2のガードリング領域4gの直径を、
P型ボディ領域4の直径よりも大きくかつ深さの2倍以
上となるように大きくするとともに、したことを特徴と
するもので、他の部分については従来例のものと同様に
形成されている。ここでソース電極9に接続され、LO
COS酸化膜によって表面を覆われていない第1のガー
ドリング領域4fは、LOCOS酸化膜8Sに不純物が
吸い出されることがないため、その開口部をp型ボディ
領域の開口部より大きくする必要はない。
In this semiconductor device, as shown in FIGS. 1 and 2 (FIG. 2 is a plan view), the diameter of the second guard ring region 4g formed under the LOCOS oxide film 8S is
It is characterized in that it is made larger than the diameter of the P-type body region 4 and at least twice as large as the depth, and the other parts are formed in the same manner as in the conventional example. . Here, it is connected to the source electrode 9 and the LO
In the first guard ring region 4f whose surface is not covered with the COS oxide film, impurities are not sucked into the LOCOS oxide film 8S, so that it is not necessary to make the opening larger than the opening of the p-type body region. Absent.

【0014】すなわち、このガードリング型トランジス
タは図1および図2に示すように、n+ 型シリコン基板
1表面に形成されたn型エピタキシャル成長層2内に、
p型ベース領域3が形成され、さらにこのp型ベース領
域3に深いp型ボディ領域4が形成され、このp型ボデ
ィ領域4はエピタキシャル成長層2を貫通し底部はn+
型シリコン基板1に到達するように形成されている。ま
たこのp型ボディ領域4は直径bであるのに対しこのp
型ボディ領域4のまわりのエピタキシャル成長層2内に
は、直径aが深さの2倍となりかつ底部はn+ 型シリコ
ン基板1に到達するように第2のガードリング4gが形
成されている。また、ソース電極9に接続され、LOC
OS酸化膜によって表面を覆われていない第1のガード
リング領域4fは、LOCOS酸化膜8Sに不純物が吸
い出されることがないため、その開口部を第2のガード
リング4gのように、p型ボディ領域4の開口部より大
きくすることなく同程度に形成されている。
That is, as shown in FIGS. 1 and 2, this guard ring type transistor has an n type epitaxial growth layer 2 formed on the surface of an n + type silicon substrate 1,
A p-type base region 3 is formed, and a deep p-type body region 4 is further formed in the p-type base region 3. The p-type body region 4 penetrates the epitaxial growth layer 2 and the bottom is n +.
It is formed so as to reach the mold silicon substrate 1. Further, while the p-type body region 4 has a diameter b,
In the epitaxial growth layer 2 around the type body region 4, a second guard ring 4g is formed so that the diameter a is twice the depth and the bottom reaches the n + type silicon substrate 1. Also, it is connected to the source electrode 9 and
In the first guard ring region 4f not covered with the OS oxide film, impurities are not sucked out to the LOCOS oxide film 8S, so that the opening portion thereof has a p-type structure like the second guard ring 4g. It is formed to the same extent as the opening of the body region 4 without being made larger.

【0015】5はソース領域としてのn+ 拡散層,6は
ゲート絶縁膜,7は多結晶シリコン層からなるゲート電
極、8は層間絶縁膜、9はソース電極,10はドレイン
電極である。
Reference numeral 5 is an n + diffusion layer as a source region, 6 is a gate insulating film, 7 is a gate electrode made of a polycrystalline silicon layer, 8 is an interlayer insulating film, 9 is a source electrode, and 10 is a drain electrode.

【0016】ここで第2のガードリング4gは直径aが
p型ボディ領域4の直径bよりも大きく、深さの2倍と
なりかつ底部はn+ 型シリコン基板1に到達するように
形成されているため、十分な実質不純物量を確保し得、
LOCOS酸化膜8Sに拡散して表面濃度が低下しても
この低下分を実質不純物量の確保で補償することがで
き、p型ボディ領域の耐圧とLOCOS酸化膜下の第2
のガードリング領域4gの耐圧が一致しサージ電流が均
一に流れ、サージ耐量を向上することができる。これは
素子の微細化に伴い、拡散窓が小さくなってきて拡散窓
の直径が拡散深さの2倍以下になってくると、同一不純
物インプラ量、同一拡散時間においても実質不純物量が
異なるため、拡散窓の径の大きさにより耐圧が異なって
くる。これを利用し、LOCOS酸化膜への不純物の流
入による耐圧の上昇を、開口部直径を大きくすることに
より補償する。
Here, the second guard ring 4g is formed so that the diameter a is larger than the diameter b of the p-type body region 4, double the depth, and the bottom reaches the n + -type silicon substrate 1. Therefore, a sufficient amount of substantial impurities can be secured,
Even if the surface concentration is reduced by diffusing into the LOCOS oxide film 8S, this reduction can be compensated by securing a substantial amount of impurities, and the breakdown voltage of the p-type body region and the second underlayer of the LOCOS oxide film can be compensated.
The withstand voltage of the guard ring region 4g is the same, the surge current flows uniformly, and the surge withstand capability can be improved. This is because when the diffusion window becomes smaller and the diameter of the diffusion window becomes less than twice the diffusion depth due to the miniaturization of the element, the actual impurity amount differs even with the same impurity implantation amount and the same diffusion time. The withstand voltage varies depending on the diameter of the diffusion window. By utilizing this, the increase in breakdown voltage due to the inflow of impurities into the LOCOS oxide film is compensated by increasing the diameter of the opening.

【0017】なお、前記実施例ではガードリングの形状
は円形としたが、正六角形や正方形などの多角形でもよ
い。但し、セルの形状を多角形とした場合、セルの角部
に電界が集中して耐圧が低くなる傾向があるため、なる
べく角の数が大きく円に近い方が耐圧を高くすることが
できる。
Although the guard ring has a circular shape in the above embodiment, it may have a polygonal shape such as a regular hexagon or a square. However, when the cell has a polygonal shape, the electric field tends to be concentrated at the corners of the cell and the breakdown voltage tends to be low. Therefore, the breakdown voltage can be increased when the number of corners is large and the circle is as close as possible.

【0018】図3に開口部直径と耐圧との関係を示す。
ここで横軸は拡散層領域の開口部直径の拡散深さに対す
る比(0.3〜1.2)を示し、縦軸はサージ耐圧を示
す。この図からあきらかなようにこの図から開口部直径
の拡散深さに対する割合を変化することにより耐圧を1
5V程度制御することができることが分かる。例えばp
型ボディ領域4の直径bと第2のガードリング4gの拡
散開口部直径aとを同一の値(a/h,b/h=0.4
5)としたとき、ガードリングトランジスタの耐圧が不
純物の流出により5V高くなったとすると、この図から
b/h=0.68とすることにより、5V耐圧を低くす
ることができることがわかる。
FIG. 3 shows the relationship between the opening diameter and the pressure resistance.
Here, the horizontal axis represents the ratio (0.3 to 1.2) of the opening diameter of the diffusion layer region to the diffusion depth, and the vertical axis represents the surge withstand voltage. As is clear from this figure, the withstand voltage is set to 1 by changing the ratio of the opening diameter to the diffusion depth from this figure.
It can be seen that it is possible to control about 5V. For example p
The diameter b of the mold body region 4 and the diffusion opening diameter a of the second guard ring 4g have the same value (a / h, b / h = 0.4).
5), if the breakdown voltage of the guard ring transistor is increased by 5V due to the outflow of impurities, it can be seen from this figure that the breakdown voltage of 5V can be reduced by setting b / h = 0.68.

【0019】[0019]

【発明の効果】以上説明してきたように、本発明によれ
ば、サージ耐圧の高いガードリング型トランジスタを含
む半導体集積回路装置を得ることができる。
As described above, according to the present invention, a semiconductor integrated circuit device including a guard ring type transistor having a high surge withstand voltage can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のガードリング型トランジスタを示す断
面図
FIG. 1 is a cross-sectional view showing a guard ring transistor of the present invention.

【図2】同ガードリング型トランジスタの平面図FIG. 2 is a plan view of the same guard ring transistor.

【図3】同トランジスタの耐圧とガードリングの直径/
深さとの関係を示す図
[Fig. 3] Withstand voltage of the transistor and diameter of guard ring /
Diagram showing the relationship with depth

【図4】従来例のガードリング型トランジスタを示す断
面図
FIG. 4 is a cross-sectional view showing a conventional guard ring type transistor.

【符号の説明】[Explanation of symbols]

1 シリコン基板 2 n型エピタキシャル成長層 3 p型べース領域 4 p型ボディ領域 4f 第1のp型ガードリング領域 4g 第2のp型ガードリング領域 5 ソース領域 6 ゲート絶縁膜 7 ゲート電極 8 層間絶縁膜 8s LOCOS絶縁膜 9 ソース電極 10 ドレイン電極 1 silicon substrate 2 n-type epitaxial growth layer 3 p-type base region 4 p-type body region 4f first p-type guard ring region 4g second p-type guard ring region 5 source region 6 gate insulating film 7 gate electrode 8 interlayer Insulating film 8s LOCOS insulating film 9 Source electrode 10 Drain electrode

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 9170−4M H01L 27/08 102 F ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 5 Identification number Office reference number FI technical display location 9170-4M H01L 27/08 102 F

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 第1導電型の半導体基板と、前記半導体
基板内に形成した第2導電型の拡散領域と、 前記第2導電型の拡散領域を囲むように形成した絶縁膜
と、前記半導体基板内に形成した第2導電型の拡散領域
からなるガードリングとを含む半導体装置において前記
ガードリング領域が正多角形または円形のセル領域に分
割され、前記絶縁膜の下側に形成したガードリング領域
の開口部の面積が前記拡散領域の面積よりも大きく形成
されていることを特徴とする半導体装置。
1. A semiconductor substrate of a first conductivity type, a diffusion region of a second conductivity type formed in the semiconductor substrate, an insulating film surrounding the diffusion region of the second conductivity type, and the semiconductor. In a semiconductor device including a guard ring formed of a diffusion region of the second conductivity type formed in a substrate, the guard ring region is divided into regular polygonal or circular cell regions, and the guard ring is formed below the insulating film. A semiconductor device, wherein the area of the opening of the region is formed larger than the area of the diffusion region.
JP4267290A 1992-10-06 1992-10-06 Semiconductor device Pending JPH06120347A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4267290A JPH06120347A (en) 1992-10-06 1992-10-06 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4267290A JPH06120347A (en) 1992-10-06 1992-10-06 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH06120347A true JPH06120347A (en) 1994-04-28

Family

ID=17442778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4267290A Pending JPH06120347A (en) 1992-10-06 1992-10-06 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH06120347A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7751215B2 (en) 2005-07-08 2010-07-06 Panasonic Corporation Semiconductor device and electric apparatus having a semiconductor layer divided into a plurality of square subregions
US7791308B2 (en) 2005-07-25 2010-09-07 Panasonic Corporation Semiconductor element and electrical apparatus
US7964911B2 (en) 2005-07-26 2011-06-21 Panasonic Corporation Semiconductor element and electrical apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7751215B2 (en) 2005-07-08 2010-07-06 Panasonic Corporation Semiconductor device and electric apparatus having a semiconductor layer divided into a plurality of square subregions
US7791308B2 (en) 2005-07-25 2010-09-07 Panasonic Corporation Semiconductor element and electrical apparatus
US7964911B2 (en) 2005-07-26 2011-06-21 Panasonic Corporation Semiconductor element and electrical apparatus

Similar Documents

Publication Publication Date Title
CA1037160A (en) Semiconductor device having at least one pn junction and channel stopper surrounded by a protective conducting layer
US4931846A (en) Vertical MOSFET having voltage regulator diode at shallower subsurface position
US5561313A (en) Protective diode for transistor
US4652895A (en) Zener structures with connections to buried layer
US4127859A (en) Integrated circuit subsurface zener diode
US5569612A (en) Process for manufacturing a bipolar power transistor having a high breakdown voltage
US4177095A (en) Process for fabricating an integrated circuit subsurface zener diode utilizing conventional processing steps
US5923065A (en) Power MOSFET device manufactured with simplified fabrication processes to achieve improved ruggedness and product cost savings
JPH06120347A (en) Semiconductor device
JP2808871B2 (en) Method for manufacturing MOS type semiconductor device
JPH0286171A (en) Semiconductor element and its manufacture
JP3180672B2 (en) Semiconductor device
JPH0817935A (en) Semiconductor device
JPH09283646A (en) Semiconductor integrated circuit
US4460913A (en) Fast switching transistor
US5479046A (en) Monolithically integrated semiconductor arrangement with a cover electrode
JPH07235668A (en) Mos type transistor
JPH04234173A (en) Protective diode of vertical type field effect transistor
JP2816985B2 (en) Vertical MOS field-effect transistor
JP2003179153A (en) Semiconductor device
JP4681090B2 (en) Manufacturing method of semiconductor device
JPH05121746A (en) Insulated-gate type field effect transistor
JPH04215468A (en) Static protective device
JPS60113961A (en) Semiconductor integrated circuit device
RU2024995C1 (en) Integrated transistor resistant to back secondary puncture