JPH06119942A - Lead-acid battery - Google Patents

Lead-acid battery

Info

Publication number
JPH06119942A
JPH06119942A JP4289235A JP28923592A JPH06119942A JP H06119942 A JPH06119942 A JP H06119942A JP 4289235 A JP4289235 A JP 4289235A JP 28923592 A JP28923592 A JP 28923592A JP H06119942 A JPH06119942 A JP H06119942A
Authority
JP
Japan
Prior art keywords
ion
concentration
film
sulfuric acid
fluorescence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4289235A
Other languages
Japanese (ja)
Inventor
Eiji Nitta
英次 新田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP4289235A priority Critical patent/JPH06119942A/en
Publication of JPH06119942A publication Critical patent/JPH06119942A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PURPOSE:To lessen elusion of impurities from a battery, give it small size, high accuracy, and long life, and facilitate storage and management by including Ca ions in the electrolyte, and sensing the specific gravity of sulfuric acid from the Ca ion concentration using an optical ion sensor. CONSTITUTION:When the concentration of sulfuric acid varies, the Ca ion concentration in the electrolytic solution changes in accordance with the solubility product. With change of the Ca ion concentration, a fluorescent pigment consisting of acrydineorange derivative attached to an ion responsive film moves into and out of the interface of the film. With increasing sulfuric acid concentration, it moves apart from the film, and attaches to the film with decreasing. When coupled with ion exchanger of the film, the fluorescent pigment presents a greater intensity of fluorescence and slips off from the film. That is, the intensity of fluorescence lessens as going apart from the ion exchanger. The pigment is irradiated with Ar ion laser and excited, and the intensity of fluorescence is measured by a photo-electron multiplier tube through a diffraction lattice spectrograph, and the Ca ion concentration is determined from the intensity of fluorescence.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は充放電状態を検出する電
解液濃度センサを備えた鉛蓄電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lead storage battery equipped with an electrolyte concentration sensor for detecting a charge / discharge state.

【0002】[0002]

【従来の技術とその課題】周知のように鉛蓄電池は電解
液の比重あるいは硫酸濃度を測定することにより充放電
状態を正確に知ることができる。それは充放電反応に硫
酸が関与するためで、充放電量に比例して硫酸濃度が変
化するからである。したがって、電解液の濃度が分かれ
ば、電池の充放電状態あるいは残存容量、即ち現在その
電池がどの程度放電しているか、あるいはあとどの程度
放電できるかを正確に知ることができる。さらに一歩進
めて、硫酸濃度を電気信号として取り出すセンサを開発
できれば、この電気信号を充電器にフィードバックして
電池の充放電状態を自動的にコントロールできるので予
備電源機器の無保守化に貢献できる。
2. Description of the Related Art As is well known, in a lead storage battery, the charge / discharge state can be accurately known by measuring the specific gravity or sulfuric acid concentration of the electrolytic solution. This is because sulfuric acid participates in the charge / discharge reaction, and the sulfuric acid concentration changes in proportion to the charge / discharge amount. Therefore, if the concentration of the electrolytic solution is known, it is possible to accurately know the charge / discharge state or the remaining capacity of the battery, that is, how much the battery is currently discharged, or how much can be discharged. If we could take a step further and develop a sensor that takes out the sulfuric acid concentration as an electric signal, this electric signal can be fed back to the charger to automatically control the charge / discharge state of the battery, which can contribute to maintenance-free maintenance of standby power supply equipment.

【0003】このような背景の中で、図1に示すCa2+
濃度が硫酸濃度に反比例するという、溶解度積の法則を
応用して電解液中に含有させたCa2+濃度をカルシウム
イオン電極を用いて硫酸濃度として検出するという方法
が提案されている(特願平3-270326)。しかしこの方法
には、(1) 参照電極と電極式イオンセンサの間の電位差
を検出するため電池を充放電した時の電流分布を電位差
の形でノイズとして拾うので誤差が大きい、(2) 硫酸第
一水銀電極あるいは塩化第一水銀電極などの参照電極を
用いるので有害重金属である水銀や塩素イオンなどの電
池に対する有害な不純物が溶出する、(3) 小型化するの
が難しい、などの問題があった。
Against this background, Ca 2+ shown in FIG.
A method has been proposed in which the concentration of Ca 2+ contained in an electrolytic solution is detected as a sulfuric acid concentration using a calcium ion electrode by applying the law of solubility product that the concentration is inversely proportional to the sulfuric acid concentration (Patent application Flat 3-270326). However, this method has a large error because (1) the current distribution when the battery is charged and discharged is detected as noise in the form of a potential difference in order to detect the potential difference between the reference electrode and the electrode-type ion sensor, (2) sulfuric acid. Since a reference electrode such as a mercurial mercury electrode or mercuric chloride electrode is used, harmful impurities such as mercury and chlorine ions, which are harmful heavy metals, elute in the battery, and (3) it is difficult to miniaturize. there were.

【0004】[0004]

【課題を解決するための手段】本発明は硫酸濃度センサ
として光ファイバーイオンセンサを用いることを特徴と
し、(1) 光ファイバーイオンセンサは光信号で検出する
ので電池の充放電時の電流分布からくる電位差の影響を
受けない、(2) 電気化学的な電極でないので短絡した場
合にも電池に損傷を与えない、(3) 参照電極が不要であ
る、(4) 光半導体素子を用いることにより小型化でき
る、など従来のイオン電極式がかかえていた問題点を除
去できる。
The present invention is characterized in that an optical fiber ion sensor is used as a sulfuric acid concentration sensor. (1) Since the optical fiber ion sensor detects with an optical signal, the potential difference due to the current distribution at the time of charging and discharging the battery (2) It is not an electrochemical electrode, so it does not damage the battery even if it is short-circuited. (3) No reference electrode is required. (4) Miniaturization by using optical semiconductor element. It is possible to eliminate the problems of the conventional ion electrode system.

【0005】光ファイバイオンセンサによる硫酸濃度検
出の原理を図2により説明する。まず硫酸濃度が変化す
ると溶解度積にしたがって電解液中のカルシウムイオン
濃度が変化する。カルシウムイオン濃度の変化はイオン
感応膜に付着させたアクリジンオレンジ誘導体からなる
蛍光色素が膜の界面を出入りする。硫酸濃度が増加する
と膜から離れ、反対に硫酸濃度が減少すると膜に付着す
る。蛍光色素は膜のイオン交換体と結合すると蛍光強度
が大きくなり、膜から抜け出す、即ちイオン交換体と離
れると蛍光強度は小さくなる。
The principle of sulfuric acid concentration detection by the optical fiber ion sensor will be described with reference to FIG. First, when the sulfuric acid concentration changes, the calcium ion concentration in the electrolytic solution changes according to the solubility product. When the calcium ion concentration changes, a fluorescent dye composed of an acridine orange derivative attached to the ion-sensitive membrane enters and leaves the interface of the membrane. When the concentration of sulfuric acid increases, it separates from the film, and when the concentration of sulfuric acid decreases, it adheres to the film. When the fluorescent dye binds to the ion exchanger of the membrane, the fluorescence intensity increases, and when it escapes from the membrane, that is, when it separates from the ion exchanger, the fluorescence intensity decreases.

【0006】この蛍光色素にアルゴンイオンレーザを用
いて光を当てて励起させる。イオン感応膜にある励起さ
れた蛍光色素が発する蛍光強度を回折格子により分光
し、光電子増倍管およびロックインアンプにより測定す
る。カルシウムイオン濃度の対数と蛍光強度との間には
図3に示す直線関係があり、蛍光強度からカルシウムイ
オン濃度が知ることができる。カルシウムイオン濃度が
わかれば、図1に示す硫酸カルシウムの溶解度積の関係
から硫酸濃度を知ることが出来る。
The fluorescent dye is excited by irradiating it with light using an argon ion laser. The fluorescence intensity emitted by the excited fluorescent dye in the ion-sensitive film is dispersed by a diffraction grating and measured by a photomultiplier tube and a lock-in amplifier. There is a linear relationship shown in FIG. 3 between the logarithm of the calcium ion concentration and the fluorescence intensity, and the calcium ion concentration can be known from the fluorescence intensity. If the calcium ion concentration is known, the sulfuric acid concentration can be known from the relationship of the solubility products of calcium sulfate shown in FIG.

【0007】[0007]

【実施例】以下、電解液濃度センサを備えた本発明鉛蓄
電池の実施例を図によって説明する。
EXAMPLE An example of the lead-acid battery of the present invention equipped with an electrolyte concentration sensor will be described below with reference to the drawings.

【0008】図4は、鉛蓄電池に光ファイバーイオンセ
ンサを装着した状態を示す断面模式図である。1は電池
の電槽、2は電槽の蓋、3は負極板、4は負極端子、5
はセパレータ、6は正極端子、7は螺着構造など電槽蓋
に容易に装脱着できる構造を持つ本体9からなる光ファ
イバーイオンセンサ、8は希硫酸からなる電解液、10
はセンサ出力引出し線、11はレーザ、光電子増倍管、
ロックインアンプなどを内蔵し、マイコンにより入力情
報を処理して電解液濃度あるいは電解液比重あるいは電
池残存容量がデジタル、あるいはアナログ表示で直視、
直読できるようにした容量表示変換器である。
FIG. 4 is a schematic sectional view showing a state in which the optical fiber ion sensor is mounted on the lead storage battery. 1 is a battery case, 2 is a battery cover, 3 is a negative plate, 4 is a negative terminal, 5
Is a separator, 6 is a positive electrode terminal, 7 is an optical fiber ion sensor consisting of a main body 9 having a structure such as a screwing structure that can be easily attached to and detached from a battery case lid, 8 is an electrolytic solution made of dilute sulfuric acid, 10
Is a sensor output lead wire, 11 is a laser, a photomultiplier tube,
With a built-in lock-in amplifier, etc., the input information is processed by a microcomputer and the electrolytic solution concentration, electrolytic solution specific gravity, or battery remaining capacity is directly viewed in digital or analog display.
It is a capacity display converter that can be read directly.

【0009】本装置により電池を各種放電率で充放電さ
せて電解液濃度の検出をおこなったところ、応答速度も
満足できるもので、測定精度も電解液比重値で±0.005
の範囲に入る優れたものであった。
When the concentration of the electrolytic solution was detected by charging and discharging the battery at various discharge rates with this device, the response speed was satisfactory and the measurement accuracy was ± 0.005 in the specific gravity of the electrolytic solution.
It was an excellent product within the range of.

【0010】[0010]

【発明の効果】本発明鉛蓄電池に用いる電解液濃度セン
サは、電池の充放電電流の影響を受けず、不純物の溶出
がなく、小形で精度が高くかつ長寿命であり、鉛蓄電池
の保守管理が容易となり、その工業的価値ははなはだ大
きい。
INDUSTRIAL APPLICABILITY The electrolyte concentration sensor used in the lead acid battery of the present invention is not affected by the charge / discharge current of the battery, does not elute impurities, is small in size, has high accuracy, and has a long life. Is easy, and its industrial value is extremely high.

【図面の簡単な説明】[Brief description of drawings]

【図1】酸濃度とカルシウムイオン濃度の関係を示す図FIG. 1 is a graph showing the relationship between acid concentration and calcium ion concentration.

【図2】光ファイバーイオンセンサによる電解液濃度検
出システムを示す模式図
FIG. 2 is a schematic diagram showing an electrolyte concentration detection system using an optical fiber ion sensor.

【図3】光ファイバーイオンセンサが持つ蛍光強度−カ
ルシウムイオン濃度検量線図
FIG. 3 Fluorescence intensity-calcium ion concentration calibration curve diagram of the optical fiber ion sensor

【図4】本発明鉛蓄電池を示す断面模式図FIG. 4 is a schematic sectional view showing the lead-acid battery of the present invention.

【符号の説明】[Explanation of symbols]

1 電槽 2 蓋 3 負極板 5 セパレータ 7 光ファイバーイオンセンサ 8 電解液 11 容量表示変換器 1 Battery Case 2 Lid 3 Negative Plate 5 Separator 7 Optical Fiber Ion Sensor 8 Electrolyte 11 Capacity Display Converter

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 電解液中にカルシウムイオンを含有させ
るとともに、該カルシウムイオン濃度を介して硫酸比重
を検出する光ファイバーイオンセンサを備えたことを特
徴とする鉛蓄電池。
1. A lead-acid battery comprising an optical fiber ion sensor which contains calcium ions in an electrolytic solution and detects a specific gravity of sulfuric acid based on the calcium ion concentration.
JP4289235A 1992-10-02 1992-10-02 Lead-acid battery Pending JPH06119942A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4289235A JPH06119942A (en) 1992-10-02 1992-10-02 Lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4289235A JPH06119942A (en) 1992-10-02 1992-10-02 Lead-acid battery

Publications (1)

Publication Number Publication Date
JPH06119942A true JPH06119942A (en) 1994-04-28

Family

ID=17740538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4289235A Pending JPH06119942A (en) 1992-10-02 1992-10-02 Lead-acid battery

Country Status (1)

Country Link
JP (1) JPH06119942A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009038035A1 (en) * 2007-09-18 2009-03-26 Toyota Jidosha Kabushiki Kaisha Secondary battery state detecting device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009038035A1 (en) * 2007-09-18 2009-03-26 Toyota Jidosha Kabushiki Kaisha Secondary battery state detecting device
US8674702B2 (en) 2007-09-18 2014-03-18 Toyota Jidosha Kabushiki Kaisha Apparatus for detecting a state of secondary battery

Similar Documents

Publication Publication Date Title
Rudolph et al. High resolution state of charge monitoring of vanadium electrolytes with IR optical sensor
CN100437104C (en) Gas sensor, gas detector, and self-testing and self-correcting method therefor
JPS6325300B2 (en)
JPH06119942A (en) Lead-acid battery
US4687996A (en) Method and apparatus for measuring remaining charge of galvanic cell
JPS6129079A (en) Secondary battery made into ic
Coetzee et al. Potentiometric stripping analysis at microelectrodes in various solvents and some comparisons with voltammetric stripping analysis
JPH06341954A (en) Battery electric capacity measuring method and its device
JPS60112266A (en) Specific gravity sensor for lead storage battery
CN100437106C (en) An electrochemical current measurement device applicable to capillary electrophoresis
JPS6024436A (en) Specific gravity sensor for lead battery
JPS58117470A (en) Battery monitor
JPH01288784A (en) Detecting device of residual capacity of accumulator
JPH07272747A (en) Lead storage battery with capacitance indicator
JPS61294770A (en) Sealed lead-acid battery with specific gravity sensor
JPS5919342Y2 (en) Electrolyte specific gravity detector for storage batteries
JPH06342674A (en) Method and device for measuring capacity of storage battery
WO2014045837A1 (en) Battery pack and battery pack capacity calculation method
JPH0547949B2 (en)
JPH03145072A (en) Monitoring method for condition of sealed lead-acid battery
JPS57133370A (en) Detecting device for specific gravity of electrolytic solution of accumulator or capacity thereof
KR100240403B1 (en) Control method & car audio for battery charge state display/ signal apparatus
JPS5923268A (en) Monitoring apparatus of battery
JPH051902Y2 (en)
JPS5812379Y2 (en) Electrolyte level detector for storage batteries