JPH06341954A - Battery electric capacity measuring method and its device - Google Patents

Battery electric capacity measuring method and its device

Info

Publication number
JPH06341954A
JPH06341954A JP2359294A JP2359294A JPH06341954A JP H06341954 A JPH06341954 A JP H06341954A JP 2359294 A JP2359294 A JP 2359294A JP 2359294 A JP2359294 A JP 2359294A JP H06341954 A JPH06341954 A JP H06341954A
Authority
JP
Japan
Prior art keywords
storage battery
light
electrolyte
specific gravity
electric capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2359294A
Other languages
Japanese (ja)
Inventor
Tomihiko Okayama
富彦 岡山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2359294A priority Critical patent/JPH06341954A/en
Publication of JPH06341954A publication Critical patent/JPH06341954A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To enable the accurate and continuous measurement of specific gravity of electrolyte or electric capacity of a battery without being influenced by outside environment by irradiating battery electrolyte with infrared light to make it absorb infrared light and measuring intensity of its transmission light. CONSTITUTION:With light which contains infrared region component of wavelength of 690 to 2000nm, battery electrolyte (including battery electrolyte) is irradiated, and intensity of the light after it passes the battery electrolyte is received and measured. Specific gravity of electrolyte and electric capacity are in comparatively accurate correspondence relation, and there is also correlation between intensity of infrared transmission light and specific gravity of electrolyte. Therefore, if correlation between transmission intensity of infrared light and specific gravity or electric capacity of electrolyte is obtained in advance, it is possible to convert intensity of transmission light into specific gravity of electrolyte or electric capacity of battery.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、蓄電池の電気容量を光
学的、かつ電気的に連続して計測する方法及びその装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for continuously and optically measuring the electric capacity of a storage battery.

【0002】[0002]

【従来の技術】蓄電池(例えば、鉛−硫酸電池)の電気
容量を知るための方法として、蓄電池の端子電圧を計測
する電気的な手法や、電解液の比重を計測する手法や、
光学屈折率方式などが知られている。これらのうち、電
解液の比重を計測する手法では、目盛り付きフロートの
入ったガラス製のスポイトに電解液を吸い上げて、フロ
ートの位置を読み取るフロート形式が主流である。光学
屈折率方式は、光ファイバやプリズムなどの光学素子の
表面に蓄電池電解液が接するようにしておき、光学素子
を透過する光の強度や、位置を計測する方法であり、比
重が変化すると電解液の屈折率が変化し、電解液と接し
ている光学素子を透過する光強度や、位置も、同時に変
化する現象を利用したものである。
2. Description of the Related Art As a method for knowing the electric capacity of a storage battery (for example, a lead-sulfuric acid battery), an electric method for measuring the terminal voltage of the storage battery, a method for measuring the specific gravity of an electrolytic solution,
An optical refractive index method and the like are known. Among these, in the method of measuring the specific gravity of the electrolytic solution, a float type method in which the electrolytic solution is sucked up into a glass dropper containing a graduated float and the position of the float is read is the mainstream. The optical refractive index method is a method in which the storage battery electrolyte is placed in contact with the surface of optical elements such as optical fibers and prisms, and the intensity and position of light that passes through the optical elements is measured. This utilizes a phenomenon in which the refractive index of the liquid changes and the intensity and position of the light transmitted through the optical element in contact with the electrolytic solution also change at the same time.

【0003】[0003]

【発明が解決しようとする課題】ところが、上記の端子
電圧を計測する電気的な手法では、蓄電池が老朽化して
いたり気温が低いときなどは、蓄電池の老朽の程度で大
きく誤差が出て蓄電池の電気容量を正確に知ることは困
難であった。しかも、この電気的な手法では、蓄電池が
老朽化すると、その蓄電池は短時間に消耗して使用でき
なくなり、この時に、その蓄電池を再充電して蓄電池の
全てを点検すると、端子電圧は充電完了時の電圧を示し
電解液の比重は満充電時の規定値を満たすため、電気的
な手法で蓄電池の老朽の度合いを判定することは容易で
なく、特に、早期での寿命検知は困難である。
However, in the electric method for measuring the terminal voltage described above, when the storage battery is aged or the temperature is low, a large error occurs due to the degree of deterioration of the storage battery. It was difficult to know the electric capacity accurately. Moreover, with this electrical method, when a storage battery ages, it becomes exhausted in a short time and cannot be used.At this time, if the storage battery is recharged and all storage batteries are inspected, the terminal voltage will be fully charged. Since it shows the voltage at the time and the specific gravity of the electrolyte satisfies the specified value at the time of full charge, it is not easy to judge the degree of deterioration of the storage battery by an electrical method, and it is particularly difficult to detect the life at an early stage. .

【0004】また、電解液の比重を計測する方法は、蓄
電池の電気容量を比較的正確に知ることができるが、蓄
電池電解液の液温が室温から変化すると、正確に蓄電池
の電気容量が予想できない欠点があった。また、液温を
一定に保って比重を計測したとしても、比重の重い液が
電池の底に沈み、比重の軽い液が電池の液面に浮き上が
るため、容積の大きな蓄電池では、比重の違う液が充分
に均一に混ざりあうまで待たねばならず、計測される電
解液の比重と蓄電池の電気容量との関係に時間的なずれ
が有るため、時間的に連続して計測を行うことすなわ
ち、連続的に蓄電池の電気容量を知ることは困難であっ
た。また、フロート式での比重計測は、液面の振動や上
下動に弱く、電気自動車に搭載した蓄電池の容量計測に
は不向きである。
Further, the method of measuring the specific gravity of the electrolytic solution allows the electric capacity of the storage battery to be known relatively accurately, but when the liquid temperature of the storage battery electrolyte changes from room temperature, the electric capacity of the storage battery can be accurately predicted. There was a flaw that I could not do. Even if the specific gravity is measured with the liquid temperature kept constant, the liquid with a high specific gravity sinks to the bottom of the battery, and the liquid with a low specific gravity floats on the liquid surface of the battery. Have to wait until they are sufficiently evenly mixed, and there is a time lag in the relationship between the specific gravity of the electrolyte to be measured and the electrical capacity of the storage battery. It was difficult to know the electric capacity of the storage battery. The float-type specific gravity measurement is weak against vibration and vertical movement of the liquid surface, and is not suitable for measuring the capacity of a storage battery installed in an electric vehicle.

【0005】光学屈折率方式では、光学素子と接触して
いる電解液の屈折率しか計測できないため、蓄電池の内
部で電解液の比重に分布があったり、光学素子と電解液
との接触面や液面が乱れ、若しくは汚れると、測定値と
実際の値との誤差が大きくなる傾向にあった。また、接
触面の精度が厳しく要求され、さらには、入射光の位置
情報が必要なことから、CCD等のセンサが必要とな
り、構成が複雑になる。
In the optical refractive index method, since only the refractive index of the electrolytic solution in contact with the optical element can be measured, the specific gravity of the electrolytic solution is distributed inside the storage battery, the contact surface between the optical element and the electrolytic solution, and the like. When the liquid surface is disturbed or dirty, the error between the measured value and the actual value tends to increase. Further, since the accuracy of the contact surface is strictly required and the positional information of the incident light is also required, a sensor such as CCD is required, which complicates the configuration.

【0006】[0006]

【課題を解決するための手段】これらの問題を解決する
には、前述の手法によらない方法で蓄電池電解液の変化
を観測することができれば、解決できると考えた。考察
の結果、蓄電池電解液は、常に電極物質と接触してお
り、電気化学反応によって電極物質と蓄電池電解液とが
反応し、電気エネルギーを放出していることから、蓄電
池電解液には、幾種類かの物質がイオン化して溶けてい
る。通常、このような溶出イオンを知るには、吸光光度
分析を行なうことが多いことに着目した。
In order to solve these problems, it was thought that the problem could be solved if the change in the storage battery electrolyte could be observed by a method other than the method described above. As a result of consideration, since the storage battery electrolyte is always in contact with the electrode substance and the electrode substance and the storage battery electrolyte react by an electrochemical reaction to release electric energy, the storage battery electrolyte contains no Some substances are ionized and melted. Usually, in order to know such eluted ions, it was noted that absorptiometric analysis is often performed.

【0007】そこで、蓄電池の放電前と放電後の電解液
に光を照射して吸収させ、その透過光の分光スペクトル
を測定したところ、図3に示すような特性が得られた。
すなわち、図3において、実線は蓄電池放電前の電解液
の吸収スペクトルであり、点線は蓄電池放電後の吸収ス
ペクトルである。実線と点線とを比較すると、赤外領域
の波長である約1400nm〜約1900nmの間の吸
収スペクトルが変化していることが判る。そして、図3
は電解液の透過率を示しているので、蓄電池を放電すれ
ば、約1500nm〜約1900nmまでの透過率は増
加し、逆に、約1400nm〜約1500nmの赤外線
の透過率は減少するようになることが判る。また、放電
した蓄電池を充電すると、図3の点線部分の吸収スペク
トルは、実線部分の吸収スペクトルまで復帰する。すな
わち、前述した波長での赤外領域の透過光強度の変化は
可逆な現象である。従って、この現象を利用すれば、比
較的容易に蓄電池の電気容量を正確に知ることができる
と考えられた。
Therefore, when the electrolyte solution before and after discharge of the storage battery was irradiated with light to be absorbed and the spectral spectrum of the transmitted light was measured, the characteristics as shown in FIG. 3 were obtained.
That is, in FIG. 3, the solid line is the absorption spectrum of the electrolytic solution before discharging the storage battery, and the dotted line is the absorption spectrum after discharging the storage battery. Comparing the solid line and the dotted line, it can be seen that the absorption spectrum in the wavelength range of about 1400 nm to about 1900 nm in the infrared region changes. And FIG.
Indicates the transmittance of the electrolytic solution, so that when the storage battery is discharged, the transmittance of about 1500 nm to about 1900 nm increases, and conversely, the transmittance of infrared rays of about 1400 nm to about 1500 nm decreases. I understand. Moreover, when the discharged storage battery is charged, the absorption spectrum of the dotted line portion of FIG. 3 returns to the absorption spectrum of the solid line portion. That is, the change in the transmitted light intensity in the infrared region at the above-mentioned wavelength is a reversible phenomenon. Therefore, it was considered that the electric capacity of the storage battery can be accurately known relatively easily by utilizing this phenomenon.

【0008】この発明に係わる蓄電池の電気容量計測法
及びその装置は、蓄電池電解液(蓄電池電解質も含む)
に、赤外領域成分(波長690nm〜2000nm)を
含んだ光を照射し、蓄電池電解液を構成している物質に
光を吸収させ、蓄電池電解液を透過した後の光を受光計
測し、その光強度を電気信号強度に変換し、蓄電池容量
に換算するものである。
A method for measuring the electric capacity of a storage battery and a device therefor according to the present invention include a storage battery electrolytic solution (including a storage battery electrolyte).
Is irradiated with light containing an infrared region component (wavelength 690 nm to 2000 nm) to cause the substance constituting the storage battery electrolyte solution to absorb the light, and the light after passing through the storage battery electrolyte solution is measured and received. The light intensity is converted into an electric signal intensity and converted into a storage battery capacity.

【0009】そして、このような計測値から蓄電池容量
へ換算する手法としては、電解液の比重が電気容量と比
較的正確な対応関係にあり(蓄電池が老朽化していない
限り)、蓄電池電解液の赤外線透過光強度と同電解液の
比重との間に相関関係があることから、予め蓄電池電解
液の赤外光透過強度と比重又は電気容量との相関関係を
求めておき、この関係を用いて換算する方法が挙げられ
る。蓄電池電解液を透過した赤外光透過強度と比重又は
電気容量との関係は、例えば、図4又は図5に示すよう
なものとなる。このような相関関係を用いて、上記の計
測で求めた光強度を、蓄電池電解液の比重又は電気容量
に換算することで、蓄電池の電気容量が判明する。
As a method of converting the measured value into the storage battery capacity, the specific gravity of the electrolytic solution has a relatively accurate correspondence with the electric capacity (unless the storage battery is deteriorated), and Since there is a correlation between the infrared transmitted light intensity and the specific gravity of the same electrolytic solution, the correlation between the infrared light transmission intensity of the storage battery electrolytic solution and the specific gravity or the electric capacity is obtained in advance, and this relationship is used. There is a method of conversion. The relationship between the infrared light transmission intensity transmitted through the storage battery electrolyte and the specific gravity or the electric capacity is as shown in FIG. 4 or FIG. 5, for example. The electric capacity of the storage battery is determined by converting the light intensity obtained by the above measurement into the specific gravity or the electric capacity of the storage battery electrolyte using such a correlation.

【0010】この方法及び装置においては、蓄電池の個
々の特性を予め実験的に測定して、図4や図5に示した
ような相関関係を一度求めておけば、以降は、その相関
関係情報を用いて蓄電池の電気容量を計測可能である。
また、赤外光透過強度と比重又は電気容量との関係は、
必ずしも図4や図5のように直線になるとは限られな
い。さらに、上記とは別に、赤外光透過強度の計測値か
ら蓄電池容量へ換算する手法として、計測される蓄電池
電解液の赤外光透過強度と、同蓄電池電解液の初期値に
相当する光学特性を持った標準サンプルを透過した光強
度又はそれに相当する電気信号値若しくはその情報とを
比較する方法が挙げられる。
In this method and apparatus, individual characteristics of the storage battery are experimentally measured in advance and once the correlation as shown in FIGS. 4 and 5 is obtained, thereafter, the correlation information will be obtained. Can be used to measure the electric capacity of the storage battery.
In addition, the relationship between infrared light transmission intensity and specific gravity or electric capacity is
It does not always have to be a straight line as shown in FIGS. 4 and 5. Furthermore, apart from the above, as a method of converting the measured value of the infrared light transmission intensity into the storage battery capacity, the infrared light transmission intensity of the storage battery electrolyte to be measured and the optical characteristics corresponding to the initial value of the storage battery electrolyte solution. There is a method of comparing the intensity of light transmitted through a standard sample having a value of or an electric signal value corresponding to the light intensity or its information.

【0011】さらに、また、後に示す各実施例は、本発
明における蓄電池の電気容量計測法及び装置の望ましい
例であるが、蓄電池電解液や計測器の光学部品に蛍光物
質を含ませて、前記波長領域の赤外光を波長変換して計
測することや、充電状態や放電状態の管理に電気的な数
値を併用することや、一部の手法の自動化による手順の
省略といったような、計測法に部分的な改略や変更を加
えて実施することが可能である。また、蓄電池電解液な
どの電池を構成する電解質は、赤外線領域の光を透過す
る物質であれば、液体、固体、気体などいずれの状態の
物質でもよく、電解質をゲル状や固体状にした電池の電
気容量を計測することも可能である。なお、赤外線領域
の光には近赤外線や遠赤外線をも含み、図3には、波長
の小さい赤外領域で放電前と放電後とで吸収スペクトル
が変化する状況を示していないが、その詳細は後述す
る。
Furthermore, each of the following embodiments is a desirable example of the method and apparatus for measuring the electric capacity of a storage battery according to the present invention. Measurement methods, such as wavelength-converting infrared light in the wavelength range for measurement, using electrical numerical values to control the charging and discharging states, and omitting procedures by automating some methods It is possible to implement with partial amendments and changes. In addition, the electrolyte constituting the battery such as the storage battery electrolyte may be a substance in any state such as liquid, solid, or gas as long as it is a substance that transmits light in the infrared region, and the electrolyte is a gel or solid battery. It is also possible to measure the electric capacity of. It should be noted that the light in the infrared region includes near-infrared light and far-infrared light, and FIG. 3 does not show the situation in which the absorption spectrum changes before and after discharge in the infrared region having a small wavelength. Will be described later.

【0012】[0012]

【作用】図6に蓄電池内部における充放電反応の状況を
示す。この反応は、鉛−硫酸電池の反応の最も代表的な
ものである。図6より、放電の際には反応経路aの反応
が起き、蓄電池電解液の硫酸を消費して、+極1の酸化
鉛は硫酸鉛になり、−極2の鉛も硫酸鉛となる。これに
伴って蓄電池電解液中の硫酸濃度が下がり、液の比重
は、水の比重に近づく。硫酸は、赤外領域の約1400
nm〜約1900nmに吸収ピークを持ち、水の吸収率
と比較すると、硫酸の吸収率のほうが水の吸収率よりも
大きいため、約1500nm〜約1900nmでの赤外
線領域における光の透過光強度は、蓄電池の放電すなわ
ち蓄電池電解液の比重の減少とともに増加する。この関
係を図4に示す。
OPERATION FIG. 6 shows the state of charge / discharge reaction inside the storage battery. This reaction is the most typical reaction of a lead-sulfuric acid battery. From FIG. 6, the reaction in the reaction path a occurs during discharge, and the sulfuric acid of the storage battery electrolyte is consumed, and the lead oxide of the positive electrode 1 becomes lead sulfate, and the lead of the negative electrode 2 also becomes lead sulfate. Along with this, the concentration of sulfuric acid in the storage battery electrolyte decreases, and the specific gravity of the solution approaches that of water. Sulfuric acid is about 1400 in the infrared region
nm has an absorption peak at about 1900 nm, and compared with the absorption rate of water, the absorption rate of sulfuric acid is higher than that of water, so the transmitted light intensity of light in the infrared region at about 1500 nm to about 1900 nm is It increases as the battery discharges, that is, the specific gravity of the battery electrolyte decreases. This relationship is shown in FIG.

【0013】図4は、前記赤外領域の波長における蓄電
池電解液を透過した光強度と蓄電池電解液の比重との関
係を示している。すなわち、蓄電池電解液の比重が下が
ると透過光強度が増加することを示している。蓄電池電
解液の比重を蓄電池の電気容量と考えれば、透過光強度
と電気容量の間には図5のような関係が成立する。すな
わち、透過光強度は、放電により蓄電池電解液の比重が
下がり、蓄電池の電気量が減少すると、増加する。充電
の際には、外部から入力された電気エネルギーにより図
6の反応経路bの反応が起きる。すなわち、+極1の硫
酸鉛は、酸化鉛になり、−極2の硫酸鉛は、鉛になる。
その結果、電極物質と化合していた硫酸は、蓄電池電解
液に硫酸イオンとして溶出し、ほぼ同時に硫酸となる。
その結果、蓄電池電解液の硫酸の濃度は増加し、逆に水
の濃度が減少するため、赤外領域の光の透過光強度は減
少し、充電完了時には放電前の透過光強度に復帰する。
FIG. 4 shows the relationship between the light intensity transmitted through the storage battery electrolyte solution and the specific gravity of the storage battery electrolyte solution in the wavelength range of the infrared region. That is, it is shown that the transmitted light intensity increases as the specific gravity of the storage battery electrolyte decreases. Considering the specific gravity of the storage battery electrolyte as the electric capacity of the storage battery, the relationship as shown in FIG. 5 is established between the transmitted light intensity and the electric capacity. That is, the transmitted light intensity increases when the specific gravity of the storage battery electrolyte decreases due to discharge and the electricity amount of the storage battery decreases. At the time of charging, the reaction on the reaction path b in FIG. 6 occurs due to the electric energy input from the outside. That is, the lead sulfate of + electrode 1 becomes lead oxide, and the lead sulfate of − electrode 2 becomes lead.
As a result, the sulfuric acid that has been combined with the electrode substance is eluted as sulfuric acid ions in the storage battery electrolyte, and becomes sulfuric acid almost at the same time.
As a result, the concentration of sulfuric acid in the storage battery electrolyte solution increases, and conversely, the concentration of water decreases, so the transmitted light intensity of light in the infrared region decreases, and upon completion of charging, the transmitted light intensity before discharge is restored.

【0014】ただし、上記現象も蓄電池の使用頻度や老
朽化の度合いによっては、放電前の透過光強度に復帰し
ない場合もある。この場合は、蓄電池の老朽化が進み寿
命がきている場合か、補水が必要な場合かのどちらかで
あり、赤外線の透過光強度でそのいずれであるかを判定
することができる。多くの場合、充電後の蓄電池電解液
の赤外光透過強度が初期値よりも大きい場合は、蓄電池
自身の老朽化が進んでいる状態であり、逆に赤外光透過
強度が、初期値より小さい場合は、補水が必要である場
合が多い。電解質の状態によっては、この逆の場合もあ
り、その場合は、実際に調べようとする蓄電池の充放電
特性を電気的な手法と本発明による方法で、予め調べて
おかなければならない。従来の手法では、蓄電池の寿命
や補水のタイミングを知ろうとしても、蓄電池が老朽化
してきた時点では、電解液の比重が顕著に変化しないた
め困難であったが、本発明による計測法では的確に蓄電
池の状態の変化を読み取ることができるため、容易に蓄
電池の交換時期や補水の必要性などを判定することがで
きる。
However, the above phenomenon may not return to the transmitted light intensity before discharge depending on the frequency of use of the storage battery and the degree of deterioration. In this case, it is either the case where the storage battery has deteriorated and has reached the end of its life, or the case where replenishment of water is necessary, and it can be determined by the intensity of the transmitted light of the infrared ray. In many cases, when the infrared light transmission intensity of the storage battery electrolyte after charging is higher than the initial value, the storage battery itself is in a state of deterioration, and conversely, the infrared light transmission intensity is higher than the initial value. If it is small, it is often necessary to replenish water. The opposite may occur depending on the state of the electrolyte, and in that case, the charge / discharge characteristics of the storage battery to be actually investigated must be investigated in advance by an electrical method and the method according to the present invention. In the conventional method, even when trying to know the life of the storage battery and the timing of replenishment of water, it was difficult because the specific gravity of the electrolytic solution did not change significantly when the storage battery was aged, but the measurement method according to the present invention was appropriate. Since the change in the state of the storage battery can be read, it is possible to easily determine the replacement time of the storage battery, the need for replenishing water, and the like.

【0015】また、蓄電池の電気量と蓄電池電解液の比
重との関係を蓄電池の端子電圧で捉えることは、それが
微少な変化である場合、困難であるが、本発明における
計測法では、放電中に連続的に蓄電池電解液の硫酸濃度
の微少な変化を知ることができるため、端子電圧や放電
電流が大きく変化する前に、充電の時期を早期に知るこ
とができる。そして、蓄電池電解液の温度による補正の
必要も無いため、外部環境に左右されずに蓄電池の電気
容量を有効に観測することができる。
Further, it is difficult to grasp the relationship between the amount of electricity of the storage battery and the specific gravity of the storage battery electrolyte by the terminal voltage of the storage battery, if it is a slight change, but in the measuring method of the present invention, the discharge is performed. Since the minute changes in the sulfuric acid concentration of the storage battery electrolyte can be continuously detected, the charging timing can be known early before the terminal voltage or the discharge current changes significantly. Further, since there is no need to correct the temperature of the storage battery electrolyte, the electric capacity of the storage battery can be effectively observed without being affected by the external environment.

【0016】[0016]

【実施例】【Example】

実施例1 図1は実施例1による計測法の処理手順を示すフローチ
ャートである。まず、充電済み被計測蓄電池に使用され
ている蓄電池電解液の赤外線透過光強度を計測するとと
もに、蓄電池電解液の比重を調べ、これらを初期値とす
る(S1)。次に、被計測蓄電池の放電を10時間率以
上の時間率で計算される電流値で行なう。この放電電流
値は、蓄電池の使用と性能に支障がない限り自由に定め
てもよいが、通常は10時間程度の時間率で計算される
電流値で放電させることが望ましい。放電中は、連続的
に蓄電池電解液の比重と赤外線透過光強度を計測し(S
2)、図4、図5に相当する関係を求める。光強度の計
測には半導体や光電子増倍管などの光電変換素子を用い
ればよい。放電停止条件になれば、放電を止める(S
3)。この放電停止条件は、蓄電池電解液の比重が初期
値より10%程度低下した値にしておく。この値は望ま
しい値であり、あくまでも目安であって、これ以外の値
であってもよい。通常、蓄電池電解液の比重は、1.2
8前後であるので、放電停止条件の比重は、1.15前
後である。放電停止後、再び、蓄電池電解液の比重と赤
外線透過光強度を計測する(S4)。
Example 1 FIG. 1 is a flowchart showing a processing procedure of a measuring method according to Example 1. First, the infrared transmitted light intensity of the storage battery electrolyte used in the measured storage battery that has been charged is measured, and the specific gravity of the storage battery electrolyte is checked, and these are set as initial values (S1). Next, the measured storage battery is discharged at a current value calculated at a time rate of 10 hours or more. This discharge current value may be freely set as long as it does not affect the use and performance of the storage battery, but normally it is desirable to discharge at a current value calculated at a time rate of about 10 hours. During discharging, the specific gravity of the storage battery electrolyte and the infrared transmitted light intensity are continuously measured (S
2), the relationship corresponding to FIGS. 4 and 5 is obtained. A photoelectric conversion element such as a semiconductor or a photomultiplier tube may be used for measuring the light intensity. If the discharge stop condition is met, stop the discharge (S
3). The discharge stop condition is set to a value in which the specific gravity of the storage battery electrolyte is reduced by about 10% from the initial value. This value is a desirable value and is merely a guide, and may be a value other than this. Normally, the specific gravity of the storage battery electrolyte is 1.2
Since it is around 8, the specific gravity of the discharge stop condition is around 1.15. After the discharge is stopped, the specific gravity of the storage battery electrolyte and the infrared transmitted light intensity are measured again (S4).

【0017】上記両者の計測値から図4、図5に相当す
る関係を求め、被計測蓄電池の蓄電池電解液の比重と赤
外線透過光強度との関係を換算式化する(S5)。こう
して最初の計測により換算式を一旦求めた後は、被計測
蓄電池を交換し又は充電して(S6)から行う2回目以
降の計測では、赤外線透過光強度を計測するのみで、蓄
電池電解液の比重を換算式を用いて計算によって求める
ことができ、通常使用としての放電及び充電を行うこと
ができる(S7〜S14)。蓄電池電解液の比重が蓄電
池の電気容量であることを考慮すると、電気容量の消費
率の換算も容易にできる。また、充電の際には、前述し
た換算式によって計算される蓄電池電解液の比重又は電
気容量が初期値になるまで回復すれば、それをもって充
電完了条件とする。
A relationship corresponding to FIGS. 4 and 5 is obtained from the measured values of both of the above, and the relationship between the specific gravity of the storage battery electrolyte of the storage battery to be measured and the infrared transmitted light intensity is converted into a conversion formula (S5). In this way, once the conversion formula is once obtained by the first measurement, the infrared transmitted light intensity is only measured in the second and subsequent measurements performed after the storage battery to be measured is replaced or charged (S6). The specific gravity can be obtained by calculation using a conversion formula, and discharging and charging for normal use can be performed (S7 to S14). Considering that the specific gravity of the storage battery electrolyte is the electric capacity of the storage battery, it is possible to easily convert the consumption rate of the electric capacity. In addition, upon charging, if the specific gravity or the electric capacity of the storage battery electrolyte solution calculated by the above-mentioned conversion formula is restored to the initial value, then the charging completion condition is set.

【0018】また、蓄電池の形式や蓄電池そのものが変
更された場合は、上記換算式は変更されることが望まし
いが、蓄電池の変更がない限り有効であり、また、少々
の誤差を含んでもよいならば、換算式を変更せずに用い
てもよい。さらには、上記の処理は通常、計測メータで
行うが、そのメータにコンピュータや電子回路的な手段
を付加して計測を自動化しておけば、換算式の変更は容
易に対応することが可能であり、極めて容易に蓄電池の
充放電の状況を管理することができる。図1における通
常使用とは、毎日行なわれる計測作業の一環として本実
施例を適用できることを示している。また、蓄電池を交
換した場合、それらの性能にバラツキがあっても、計測
メータ側で初期オフセット調整を行うことにより、その
バラツキは補正できる。
Further, when the type of the storage battery or the storage battery itself is changed, it is desirable to change the above conversion formula, but it is effective unless the storage battery is changed, and if a slight error may be included. For example, the conversion formula may be used without being changed. Furthermore, the above process is usually performed by a measurement meter, but if the measurement is automated by adding a computer or electronic circuit means to the meter, it is possible to easily change the conversion formula. Therefore, the charge / discharge status of the storage battery can be managed very easily. The normal use in FIG. 1 indicates that this embodiment can be applied as a part of the measurement work performed every day. Further, when the storage batteries are replaced, even if there are variations in their performance, the variations can be corrected by performing the initial offset adjustment on the measurement meter side.

【0019】実施例2 図2は実施例2による計測法の処理手順を示すフローチ
ャートである。この実施例では、まず、蓄電池電解液の
初期値に相当する光学特性をもった標準サンプルを標準
値として定めておき、その標準サンプルと被計測蓄電池
を準備し(S21)、これら両者の赤外線透過光強度を
比較計算することで、被計測蓄電池の電気容量の消費の
度合いや、蓄電池電解液の比重が計算によって換算でき
るので、通常使用としての充放電を行うことができる
(S22〜S29)。初期値に相当する標準サンプル
は、蓄電池電解液である必要はなく、他の材質の物でも
よい。また、電子回路的に設定された電気信号値やコン
ピュータ等に記憶させた情報なども使用できる。また、
標準サンプルの特性が既知のものであるならば、多少の
値のずれは、計算によって補正することができるため、
例えば、蓄電池電解液の赤外光透過強度に温度特性が見
られる場合、標準サンプルの光学特性に蓄電池電解液の
温度特性と相似の関係を有する標準サンプルを採用すれ
ばよく、この場合、標準サンプルに多少の値のオフセッ
トがあったとしても、計算によってオフセットを補正す
ることができる。また、蓄電池の形式や蓄電池そのもの
の変更があった場合、標準サンプルを変更することで対
応できる。
Second Embodiment FIG. 2 is a flow chart showing the processing procedure of the measuring method according to the second embodiment. In this embodiment, first, a standard sample having optical characteristics corresponding to the initial value of the storage battery electrolyte is set as a standard value, and the standard sample and a storage battery to be measured are prepared (S21), and infrared transmission of both of them is performed. By comparing and calculating the light intensities, the degree of consumption of the electric capacity of the storage battery to be measured and the specific gravity of the storage battery electrolyte can be converted by calculation, so that charging / discharging for normal use can be performed (S22 to S29). The standard sample corresponding to the initial value does not have to be the storage battery electrolyte, but may be made of other materials. Further, an electric signal value set electronically or information stored in a computer or the like can be used. Also,
If the characteristics of the standard sample are known, some deviations in the values can be corrected by calculation.
For example, when temperature characteristics are seen in the infrared light transmission intensity of the storage battery electrolyte, a standard sample having a similar relationship to the temperature characteristics of the storage battery electrolyte may be adopted for the optical characteristics of the standard sample. In this case, the standard sample Even if there is an offset of some value in, the offset can be corrected by calculation. Also, when the type of storage battery or the storage battery itself is changed, it can be dealt with by changing the standard sample.

【0020】こうして、被計測蓄電池の透過光強度計測
値と標準サンプルの値との比較だけで、極めて簡便に蓄
電池の電気容量や蓄電池電解液の比重を計算によって換
算することができる。図2における通常使用とは、毎日
行なわれる計測作業の一環として本実施例を適用できる
ことを示す。また、図2における放電停止条件は、標準
サンプルと蓄電池電解液の赤外光透過強度の差が10%
前後変化した時点で放電を停止すればよいが、この数値
はあくまでも目安であって、別にこれ以外の値であって
もよい。充電完了条件は、標準サンプルと蓄電池電解液
の赤外光透過強度の差が0になった時点とすればよい。
前述した実施例1と同様、上記一連の手順をコンピュー
タや電子回路的な手段を使用して自動化しておけば、極
めて容易に蓄電池の充放電の状況を管理することができ
る。
In this way, the electric capacity of the storage battery and the specific gravity of the storage battery electrolyte can be converted by calculation simply by comparing the measured value of the transmitted light intensity of the storage battery to be measured with the value of the standard sample. The normal use in FIG. 2 indicates that the present embodiment can be applied as a part of the measurement work performed every day. The discharge stop condition in FIG. 2 is that the difference in infrared light transmission intensity between the standard sample and the storage battery electrolyte is 10%.
The discharge may be stopped at the time when it changes back and forth, but this numerical value is merely a guide and may be another value. The charging completion condition may be set to a time when the difference in infrared light transmission intensity between the standard sample and the storage battery electrolyte becomes zero.
As in the case of the first embodiment described above, if the series of procedures described above is automated by using a computer or electronic circuit means, it is possible to manage the charge / discharge status of the storage battery extremely easily.

【0021】前述した図3では、電解液への吸収率の少
ない1300nm前後より短い赤外波長域での放電前後
の吸収スペクトルの変動を示していなかったが、図7に
は1100nm〜1300nmの赤外波長域での様子と
水の吸収スペクトルを付加して示している。短い波長域
の赤外光を使用すれば、吸収率が小さいので、より長い
光路長での計測が可能となる。なお、図3、図7の測定
では光路長は1mmとしたが、光路長300mm程度ま
で測定可能となるが、光源の光出力特性が良質であれ
ば、さらにそれ以上の長さの光路長で測定が可能とな
る。また、図8は、図7と対になる図で、赤外光の各種
波長(1450,1600,1650nm)での放電時間経過に伴う電
解液比重と透過率の変化の測定データ(光路長1mm)
である。これらの図から分かるように、波長1500〜
1900nmでの透過率は放電とともに増加し、波長1
300〜1500nmでの透過率は放電とともに減少し
ている。また、変化量は少ないが、波長1000〜13
00nmでも放電とともに透過率が減少している(図
7)。
The above-mentioned FIG. 3 did not show the fluctuation of the absorption spectrum before and after the discharge in the infrared wavelength region shorter than around 1300 nm, which has a low absorptance to the electrolyte solution, but in FIG. 7, the red of 1100 nm to 1300 nm is not shown. The state in the outer wavelength range and the absorption spectrum of water are added. If infrared light in a short wavelength range is used, the absorption rate is small, and therefore, measurement with a longer optical path length becomes possible. Although the optical path length was set to 1 mm in the measurement of FIGS. 3 and 7, it is possible to measure up to an optical path length of about 300 mm, but if the optical output characteristics of the light source are good, an optical path length longer than that can be used. It becomes possible to measure. In addition, FIG. 8 is a diagram paired with FIG. 7, and shows measurement data of changes in specific gravity and transmittance of the electrolyte with the passage of discharge time at various wavelengths of infrared light (1450, 1600, 1650 nm) (optical path length 1 mm )
Is. As can be seen from these figures, wavelengths 1500 to
The transmittance at 1900 nm increases with discharge,
The transmittance at 300 to 1500 nm decreases with discharge. The amount of change is small, but the wavelength is 1000 to 13
Even at 00 nm, the transmittance decreased with discharge (Fig. 7).

【0022】図9は、さらに短い赤外波長域まで含ん
だ、光路長が10mmの場合の放電前後の吸収スペクト
ルの変動を示す測定データである。図10は、図9と対
になる図で、赤外光の各種波長(980,1170,1200 nm)
での放電時間経過に伴う電解液比重と透過率の変化の測
定データである。
FIG. 9 is measurement data showing fluctuations in the absorption spectrum before and after discharge in the case where the optical path length is 10 mm, including a shorter infrared wavelength range. Fig. 10 is a pair with Fig. 9 and shows various wavelengths of infrared light (980, 1170, 1200 nm).
2 is measurement data of changes in specific gravity and transmittance of the electrolyte solution with the lapse of discharge time.

【0023】次に、上述の実施例1,2(図1,2)の
測定法が適用される装置構成例を説明する。図11は実
施例1の場合を示し、サンプル10は被測定蓄電池の電
解液であり、光源11(LED、半導体レーザダイオー
ドやファイバーレーザなどのコヒーレント光源、ハロゲ
ンランプとフィルタ等)から発光される赤外光をサンプ
ル10に照射し、その透過光を受光素子(光電変換素
子)12により受光し、出射光計測器13にて光強度を
計測する。光源11から発光される赤外光の一部はハー
フミラー14にて分岐されパワーモニタ用受光素子15
により受光され、入射光計測器16にて計測される。出
射光と入射光の計測値の比から演算によりサンプル10
の透過率が算出できる。図12は図11の構成を簡素化
した例で、光源11と受光素子12とから構成され、手
順1でサンプル10を光路中に入れ、手順2でサンプル
10を光路中から取り除く。これら各手順での光強度測
定値の比より透過率が算出できる。図13は実施例1で
の換算式を算出するための構成例を示し、蓄電池17の
電解液18をポンプ19によりサンプル10として取り
出し、また、電解液の比重を比重計20により計測す
る。光強度計測及び比重計測は、蓄電池充電済みの状態
から放電しながら連続的に行う。一度、換算式が算出さ
れると、その後は、蓄電池の仕様に変更がない限り、比
重計測は必要でない。
Next, a description will be given of an apparatus configuration example to which the measuring method of Embodiments 1 and 2 (FIGS. 1 and 2) described above is applied. FIG. 11 shows the case of Example 1, in which sample 10 is an electrolyte solution of a storage battery to be measured, and red light emitted from a light source 11 (LED, coherent light source such as semiconductor laser diode or fiber laser, halogen lamp and filter, etc.). The sample 10 is irradiated with external light, the transmitted light is received by the light receiving element (photoelectric conversion element) 12, and the emitted light measuring instrument 13 measures the light intensity. Part of the infrared light emitted from the light source 11 is branched by the half mirror 14 and is received by the power monitor light receiving element 15.
The light is received by and is measured by the incident light measuring device 16. Sample 10 is calculated from the ratio of the measured values of emitted light and incident light.
Can be calculated. FIG. 12 is an example in which the configuration of FIG. 11 is simplified. It is composed of a light source 11 and a light receiving element 12. The sample 10 is put in the optical path in the procedure 1, and the sample 10 is removed from the optical path in the procedure 2. The transmittance can be calculated from the ratio of the light intensity measured values in each of these procedures. FIG. 13 shows a configuration example for calculating the conversion formula in the first embodiment, in which the electrolytic solution 18 of the storage battery 17 is taken out as the sample 10 by the pump 19 and the specific gravity of the electrolytic solution is measured by the hydrometer 20. The light intensity measurement and the specific gravity measurement are continuously performed while discharging from the charged state of the storage battery. Once the conversion formula is calculated, thereafter, specific gravity measurement is not necessary unless the specifications of the storage battery are changed.

【0024】図14は実施例2の場合を示し、光源11
からの光を切り換えミラー21により標準サンプル22
と被測定サンプル10とに切り換えて光透過させて計測
する。図15は図14の構成を簡素化した例で、手順1
でサンプル10を光路中に入れ、手順2で標準サンプル
22に取替える。両測定値の差から初期値とのずれが求
まる。
FIG. 14 shows the case of the second embodiment, in which the light source 11
Switching the light from the standard sample 22 by the mirror 21
And the sample to be measured 10 are switched to allow light to pass therethrough for measurement. FIG. 15 is an example in which the configuration of FIG. 14 is simplified.
The sample 10 is put into the optical path by and the standard sample 22 is replaced in step 2. The difference from the initial value can be obtained from the difference between the two measured values.

【0025】次に、本実施例による計測器の構成を示
す。図16は計測器30の外観を示し、計測器30には
コード31を介して電解液中に挿入されるセンサ32が
取り付けられる。図17、図18は各々センサ32の詳
細構成を示す。センサ32は、前述した図11と同等の
構成を有し、ケース33内部に、光源11、受光素子1
2、ハーフミラー14、モニタ受光素子15、導光素子
34(光ファイバー)若しくは光路用のプリズム36が
配され、ケース33に対向して設けた光学窓35の間の
ケース33外に電解液が充満され、この電解液を透過し
た光を計測するようになっている。図19は蓄電池17
の電解液18中にセンサ32を臨ませて計測を行う状態
を示す。
Next, the structure of the measuring instrument according to this embodiment will be described. FIG. 16 shows the appearance of the measuring instrument 30, and the measuring instrument 30 is provided with a sensor 32 inserted into the electrolytic solution via a cord 31. 17 and 18 show the detailed configuration of the sensor 32, respectively. The sensor 32 has the same configuration as that of FIG. 11 described above, and the light source 11 and the light receiving element 1 are provided inside the case 33.
2, the half mirror 14, the monitor light receiving element 15, the light guiding element 34 (optical fiber) or the prism 36 for the optical path is arranged, and the electrolyte is filled in the outside of the case 33 between the optical windows 35 provided opposite to the case 33. The light transmitted through the electrolytic solution is measured. FIG. 19 shows a storage battery 17
The state where the sensor 32 is exposed to the electrolytic solution 18 and the measurement is performed is shown.

【0026】図20乃至図23は蓄電池17のケース3
7自体に透過光計測のための光学窓38を設け、かつ、
その周辺に計測用の光源11や受光素子12を配置した
構成例を示す。図20は蓄電池電解液に対し横方向に光
透過させ、図21は電解液に対して深さ方向に光透過さ
せてそれぞれ計測し、図22は蓄電池の一側面に光源1
1と受光素子12とを配し、電解液での散乱光又は反射
光を計測する。図23はプリズム又は反射鏡39を用い
て電解液の深さ方向(水平方向でも可)に透過光を往復
させるようにした例である。
20 to 23 show the case 3 of the storage battery 17.
7 itself is provided with an optical window 38 for measuring transmitted light, and
A configuration example in which a measurement light source 11 and a light receiving element 12 are arranged in the periphery thereof is shown. FIG. 20 shows that the light is transmitted through the storage battery electrolyte in the lateral direction, and FIG. 21 is that the light is transmitted through the electrolyte in the depth direction, respectively, and FIG.
1 and the light receiving element 12 are arranged, and scattered light or reflected light in the electrolytic solution is measured. FIG. 23 shows an example in which transmitted light is reciprocated in the depth direction of the electrolytic solution (or in the horizontal direction) by using a prism or a reflecting mirror 39.

【0027】次に、上述した実施例1,2の具体的回路
構成例を説明する。図24は実施例1の場合の回路であ
り、光源(LED)11からの赤外光はビームスプリッ
タを経てサンプル10(セル)を透過し、受光素子(P
D)12にて受光され、その受光信号はプリアンプを経
て除算回路41に与えられる。また、パワーモニタのた
め一部の光はモニタ用受光素子(モニタPD)15にて
受光され、モニタアンプを経て除算回路41に与えられ
る。除算回路41の出力Vo(=−Vx・Vy/Vz)
は電圧計Vにあたえられる。この電圧計Vには、上述し
たフローチャート手順により予め求めた換算式に応じた
目盛り(図4、図5に相当)を表示しておくことによ
り、電圧計の指針を読むことで、蓄電池の充電完了や電
気容量が判る。蓄電池の変更に対しては、電圧計の変更
や零点調整、アンプ増幅度の調整などで対応できる。
Next, a specific circuit configuration example of the above-described first and second embodiments will be described. FIG. 24 shows a circuit in the case of the first embodiment, in which infrared light from the light source (LED) 11 passes through the beam splitter, passes through the sample 10 (cell), and receives the light receiving element (P
D) The light is received at 12, and the received light signal is given to the division circuit 41 through the preamplifier. Further, part of the light for power monitoring is received by the monitor light receiving element (monitor PD) 15, and is given to the division circuit 41 via the monitor amplifier. Output Vo of division circuit 41 (= -Vx · Vy / Vz)
Is given to the voltmeter V. This voltmeter V displays a scale (corresponding to FIG. 4 and FIG. 5) according to the conversion formula obtained in advance by the above-mentioned flow chart procedure so that the pointer of the voltmeter can be read to charge the storage battery. Completion and electric capacity are known. Changes in the storage battery can be handled by changing the voltmeter, adjusting the zero point, and adjusting the amplifier amplification.

【0028】図25は実施例2の具体的回路構成例であ
り、この回路では、サンプル10と標準サンプル22よ
る各透過光の受光信号電圧V1,V2が減算回路42に
与えられ、この減算回路42の出力Vo(=V2−V
1)が電圧計Vに与えられる。電圧V1は蓄電池の電気
容量に相当し、また、充電時に出力電圧Voが零になれ
ば充電完了である。図26は、上記回路において標準サ
ンプルを電気信号に置き換えて計測する場合の回路構成
例であり、この回路では、最初にサンプル10に標準値
となる電解液(使用前の蓄電池電解液でもよい)を入
れ、V2値つまりアンプ(AMP2)の増幅度を調整し
て出力電圧Voを零にする。次に、サンプル10から標
準となる電解液を排出し、サンプル10に被計測蓄電池
の電解液を入れて、計測を開始する。なお、図26では
標準サンプルを電気信号に置き換えるために受光素子や
アンプを用いて電圧V2を得ているが、これに代えて所
定の直流電圧源を用いることもできる。
FIG. 25 shows a concrete circuit configuration example of the second embodiment. In this circuit, the received light signal signals V1 and V2 of the transmitted light by the sample 10 and the standard sample 22 are given to the subtraction circuit 42, and this subtraction circuit 42 is provided. 42 output Vo (= V2-V
1) is given to the voltmeter V. The voltage V1 corresponds to the electric capacity of the storage battery, and the charging is completed when the output voltage Vo becomes zero during charging. FIG. 26 shows an example of a circuit configuration in the case where the standard sample is replaced with an electric signal for measurement in the above circuit, and in this circuit, the electrolytic solution first becomes the standard value in the sample 10 (the storage battery electrolytic solution before use may be used). To adjust the V2 value, that is, the amplification degree of the amplifier (AMP2) to make the output voltage Vo zero. Next, the standard electrolytic solution is discharged from the sample 10, the electrolytic solution of the storage battery to be measured is put into the sample 10, and the measurement is started. Note that in FIG. 26, the voltage V2 is obtained by using a light receiving element or an amplifier in order to replace the standard sample with an electric signal, but instead of this, a predetermined DC voltage source may be used.

【0029】図27(a)(b)は図24の回路をディ
ジタル化した場合の構成例であり、図28(a)(b)
は図25の回路をディジタル化した場合の構成例であ
り、各々(a)はアナログ−ディジタル(A/D)変換
の場合、(b)は電圧−周波数(V/f)変換の場合を
示す。図29(a)(b)は実施例1の具体回路におい
てロックインアンプを使用した場合のアナログ及びディ
ジタルの構成例である。アナログの場合、ロックインア
ンプはアクティブフィルタとアンプの機能を有し、この
出力が演算回路(加減算又は乗除算)43に与えられて
いる。
FIGS. 27 (a) and 27 (b) are configuration examples in the case where the circuit of FIG. 24 is digitized, and FIGS. 28 (a) and 28 (b).
25A and 25B are configuration examples when the circuit of FIG. 25 is digitized. FIG. 25A shows a case of analog-digital (A / D) conversion, and FIG. 25B shows a case of voltage-frequency (V / f) conversion. . 29 (a) and 29 (b) are examples of analog and digital configurations when a lock-in amplifier is used in the specific circuit of the first embodiment. In the case of analog, the lock-in amplifier has the functions of an active filter and an amplifier, and its output is given to the arithmetic circuit (addition / subtraction or multiplication / division) 43.

【0030】なお、本発明は、上記実施例の構成に限ら
れるものではなく種々の変形が可能であり、例えば、上
記においてパワーモニタ用の構成を備えることで測定精
度の向上が図れるが、それ程、厳密な精度が要求されな
い場合は、その構成は省略し得る。また、電気自動車に
搭載される蓄電池の計測器として使用される場合は、そ
れらのメーカ側で予め蓄電池の比重又は電気容量と光透
過率の相関関係(換算式相当)を求め、それに基づいた
バッテリメータを作成しておくことで、通常使用におい
て透過光計測のみで残存容量や充電必要時期、充電時の
充電完了を知ることができる。
The present invention is not limited to the configuration of the above embodiment, and various modifications can be made. For example, by providing the configuration for power monitor in the above, the measurement accuracy can be improved. If strict accuracy is not required, the configuration can be omitted. When used as a measuring instrument for a storage battery installed in an electric vehicle, the manufacturer determines the correlation (corresponding to a conversion formula) between the specific gravity or electric capacity of the storage battery and the light transmittance in advance, and the battery based on that is obtained. By creating a meter, it is possible to know the remaining capacity, the required charging time, and the completion of charging at the time of charging only by measuring transmitted light in normal use.

【0031】[0031]

【発明の効果】この発明に関わる蓄電池電気容量計測法
及び装置によれば、蓄電池電解液が有している充放電に
よる赤外線の吸収スペクトルの変動を利用しているの
で、従来の屈折率や、フロートを利用した光学測定法な
どとは異なり、外部環境の変化、例えば電解液面の乱れ
等に影響されることなく、また、複雑な構成を要するこ
となく、蓄電池電解液の赤外光透過強度を計測すること
で、蓄電池電解液の比重又は蓄電池の電気容量を正確か
つ連続的に知ることができる。
EFFECT OF THE INVENTION According to the storage battery electric capacity measuring method and device according to the present invention, since the fluctuation of the infrared absorption spectrum due to charging and discharging of the storage battery electrolyte is utilized, the conventional refractive index and Unlike optical measurement methods that use floats, infrared light transmission intensity of storage battery electrolyte is not affected by changes in the external environment, such as disturbance of the electrolyte surface, and does not require a complicated configuration. By measuring, the specific gravity of the storage battery electrolyte or the electric capacity of the storage battery can be accurately and continuously known.

【0032】また、従来の蓄電池端子電圧を計測する方
法などでは困難であった、蓄電池の寿命判定や補水の必
要性などを蓄電池の電気特性が大きく変化する前に早期
かつ確実に検知することができる。さらには、赤外光の
波長の長い領域(1450nmより長い波長)を選択す
れば、蓄電池電解液での吸収率が大きいことから、光路
長が短くても十分に測定が可能となり、測定器(セン
サ)の小型化が図れる。また、赤外光の波長を電解液の
透過率の大きい領域(1450nmより短い波長)すな
わち吸収率の小さい領域(例えば1170nm前後)に
選択すれば、赤外光を長い光路長で透過させることがで
きるため、従来技術で不可能とされていた電解槽の深い
蓄電池での電解液比重の正確な測定が可能になる。
Further, it is possible to detect the life judgment of the storage battery, the necessity of replenishing water, etc. early and surely before the electric characteristics of the storage battery largely change, which are difficult with the conventional method of measuring the storage battery terminal voltage. it can. Furthermore, if a region with a long wavelength of infrared light (wavelength longer than 1450 nm) is selected, since the absorption rate in the storage battery electrolyte is large, it is possible to perform sufficient measurement even if the optical path length is short, and a measuring instrument ( The size of the sensor can be reduced. In addition, if the wavelength of infrared light is selected to a region having a high transmittance of the electrolytic solution (wavelength shorter than 1450 nm), that is, a region having a low absorptance (for example, around 1170 nm), infrared light can be transmitted with a long optical path length. Therefore, it is possible to accurately measure the specific gravity of the electrolytic solution in a storage battery having a deep electrolytic cell, which has been impossible in the prior art.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1による計測法の処理手順を示
すフローチャートである。
FIG. 1 is a flowchart showing a processing procedure of a measuring method according to a first embodiment of the present invention.

【図2】本発明の実施例2による計測法の処理手順を示
すフローチャートである。
FIG. 2 is a flowchart showing a processing procedure of a measuring method according to a second embodiment of the present invention.

【図3】蓄電池電解液の放電前と充電後における赤外光
透過率の波長特性図である。
FIG. 3 is a wavelength characteristic diagram of infrared light transmittance of a storage battery electrolyte before and after charging.

【図4】蓄電池電解液の赤外光透過強度(波長:165
0nm)と比重との相関関係図である。
[Fig. 4] Infrared light transmission intensity of the storage battery electrolyte (wavelength: 165
(0 nm) and specific gravity.

【図5】蓄電池電解液の赤外光透過強度(波長:165
0nm)と電気容量との相関関係図である。
FIG. 5: Infrared light transmission intensity of the storage battery electrolyte (wavelength: 165
It is a correlation diagram of 0 nm) and electric capacity.

【図6】蓄電池の充放電における反応を示す図である。FIG. 6 is a diagram showing a reaction in charging / discharging a storage battery.

【図7】赤外光透過率の波長特性図である。FIG. 7 is a wavelength characteristic diagram of infrared light transmittance.

【図8】放電時間に対する透過率の変化測定図である。FIG. 8 is a measurement diagram of change in transmittance with respect to discharge time.

【図9】赤外光透過率の波長特性図である。FIG. 9 is a wavelength characteristic diagram of infrared light transmittance.

【図10】放電時間に対する透過率の変化測定図であ
る。
FIG. 10 is a measurement diagram showing changes in transmittance with respect to discharge time.

【図11】実施例1の測定法が適用される装置の構成例
を示す図である。
FIG. 11 is a diagram showing a configuration example of an apparatus to which the measuring method of Example 1 is applied.

【図12】図11の変形例を示す図である。FIG. 12 is a diagram showing a modification of FIG. 11.

【図13】実施例1の測定法が適用される装置の構成例
を示す図である。
FIG. 13 is a diagram showing a configuration example of an apparatus to which the measuring method of Example 1 is applied.

【図14】実施例2の測定法が適用される装置の構成例
を示す図である。
FIG. 14 is a diagram showing a configuration example of an apparatus to which the measuring method of Example 2 is applied.

【図15】図14の変形例を示す図である。FIG. 15 is a diagram showing a modified example of FIG.

【図16】本発明の一実施例による計測器の外観図であ
る。
FIG. 16 is an external view of a measuring instrument according to an embodiment of the present invention.

【図17】同計測器のセンサ部分の構成を示す断面図で
ある。
FIG. 17 is a cross-sectional view showing a configuration of a sensor portion of the measuring instrument.

【図18】センサ部分の変形構成を示す断面図である。FIG. 18 is a cross-sectional view showing a modified configuration of a sensor portion.

【図19】蓄電池にセンサを配置した構成例を示す断面
図である。
FIG. 19 is a cross-sectional view showing a configuration example in which a sensor is arranged in a storage battery.

【図20】蓄電池にセンサを配置した構成例を示す断面
図である。
FIG. 20 is a cross-sectional view showing a configuration example in which a sensor is arranged in a storage battery.

【図21】蓄電池にセンサを配置した構成例を示す断面
図である。
FIG. 21 is a cross-sectional view showing a configuration example in which a sensor is arranged in a storage battery.

【図22】蓄電池にセンサを配置した構成例を示す断面
図である。
FIG. 22 is a cross-sectional view showing a configuration example in which a sensor is arranged in a storage battery.

【図23】蓄電池にセンサを配置した構成例を示す断面
図である。
FIG. 23 is a cross-sectional view showing a configuration example in which a sensor is arranged in a storage battery.

【図24】実施例1の測定法が適用される回路構成例を
示す図である。
FIG. 24 is a diagram showing a circuit configuration example to which the measurement method of the first embodiment is applied.

【図25】実施例2の測定法が適用される回路構成例を
示す図である。
FIG. 25 is a diagram showing an example of a circuit configuration to which the measurement method of Example 2 is applied.

【図26】図25の変形例を示す図である。FIG. 26 is a diagram showing a modification of FIG. 25.

【図27】図24の回路をディジタル化した場合のブロ
ック構成図である。
FIG. 27 is a block diagram showing a case where the circuit of FIG. 24 is digitized.

【図28】図25の回路をディジタル化した場合のブロ
ック構成図である。
FIG. 28 is a block diagram showing a case where the circuit of FIG. 25 is digitized.

【図29】実施例1が適用される回路の他の例を示すブ
ロック構成図である。
FIG. 29 is a block diagram showing another example of the circuit to which the first embodiment is applied.

【符合の説明】[Explanation of sign]

10 サンプル 11 光源 12 受光素子 17 蓄電池 18 電解液 22 標準サンプル 41 除算回路 42 減算回路 10 sample 11 light source 12 light receiving element 17 storage battery 18 electrolyte solution 22 standard sample 41 division circuit 42 subtraction circuit

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 蓄電池電解質に光を照射し赤外線領域の
光を蓄電池電解質に吸収させ、該電解質を透過した光強
度を計測し、その計測値から蓄電池容量を換算すること
を特徴とする蓄電池電気容量計測法。
1. A storage battery electricity characterized by irradiating a storage battery electrolyte with light to cause the storage battery electrolyte to absorb light in an infrared region, measuring the intensity of light transmitted through the storage battery electrolyte, and converting the measured value into the storage battery capacity. Capacity measurement method.
【請求項2】 予め求めておいた光強度と比重又は容量
との相関関係を用いて上記計測値から蓄電池容量を換算
することを特徴とする請求項1記載の蓄電池電気容量計
測法。
2. The storage battery electric capacity measuring method according to claim 1, wherein the storage battery capacity is converted from the measured value by using a correlation between the light intensity and the specific gravity or the capacity obtained in advance.
【請求項3】 蓄電池電解液の初期値に相当する光学特
性を持った標準サンプルを透過した光強度又はそれに相
当する電気信号値と上記計測値とを比較することにより
蓄電池容量を換算することを特徴とする請求項1記載の
蓄電池電気容量計測法。
3. The storage battery capacity is converted by comparing the light intensity transmitted through a standard sample having optical characteristics corresponding to the initial value of the storage battery electrolyte or the electric signal value corresponding thereto with the measured value. The storage battery electric capacity measuring method according to claim 1, which is characterized in that.
【請求項4】 蓄電池電解質に赤外線領域の波長成分を
含む光を照射する光照射手段と、上記蓄電池電解質を透
過した光を受光する受光手段と、上記受光手段により受
光された光強度に対応して変換された電気信号を演算処
理して蓄電池容量に換算される信号を出力する信号処理
手段とを備えたことを特徴とする蓄電池電気容量計測装
置。
4. A light irradiating means for irradiating the storage battery electrolyte with light containing a wavelength component in the infrared region, a light receiving means for receiving light transmitted through the storage battery electrolyte, and a light intensity corresponding to the light intensity received by the light receiving means. A storage battery electric capacity measuring device, comprising: a signal processing means for processing the converted electric signal to output a signal converted into the storage battery capacity.
JP2359294A 1993-02-17 1994-01-27 Battery electric capacity measuring method and its device Pending JPH06341954A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2359294A JPH06341954A (en) 1993-02-17 1994-01-27 Battery electric capacity measuring method and its device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5152593 1993-02-17
JP5-51525 1993-02-17
JP2359294A JPH06341954A (en) 1993-02-17 1994-01-27 Battery electric capacity measuring method and its device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003431890A Division JP3667742B2 (en) 1993-02-17 2003-12-26 Storage battery electric capacity measurement method and apparatus

Publications (1)

Publication Number Publication Date
JPH06341954A true JPH06341954A (en) 1994-12-13

Family

ID=26360977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2359294A Pending JPH06341954A (en) 1993-02-17 1994-01-27 Battery electric capacity measuring method and its device

Country Status (1)

Country Link
JP (1) JPH06341954A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11235097A (en) * 1998-02-20 1999-08-27 Hitachi Ltd Prime elctric motor apparatus fitted with deterioration diagnostic apparatus
JP2010145252A (en) * 2008-12-18 2010-07-01 Nippon Soken Inc Apparatus for detection of liquid fuel property
WO2018230506A1 (en) * 2017-06-16 2018-12-20 株式会社村田製作所 Battery, inspection method, inspection device, battery pack, electronic apparatus, electric vehicle, electricity storage device, and electric power system
CN111308358A (en) * 2019-11-28 2020-06-19 安徽江淮汽车集团股份有限公司 Method, device and equipment for estimating state of charge of battery of electric vehicle and storage medium
JP2020101392A (en) * 2018-12-20 2020-07-02 トヨタ自動車株式会社 Appearance inspection method for lithium ion battery and appearance inspection device for lithium ion battery
TWI769693B (en) * 2021-01-26 2022-07-01 鴻海精密工業股份有限公司 Method for measuring the oxidation potential of electrolyte
CN116046730A (en) * 2023-04-03 2023-05-02 宁德时代新能源科技股份有限公司 Electrolyte monitoring device, method, storage medium, and program product

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11235097A (en) * 1998-02-20 1999-08-27 Hitachi Ltd Prime elctric motor apparatus fitted with deterioration diagnostic apparatus
JP2010145252A (en) * 2008-12-18 2010-07-01 Nippon Soken Inc Apparatus for detection of liquid fuel property
WO2018230506A1 (en) * 2017-06-16 2018-12-20 株式会社村田製作所 Battery, inspection method, inspection device, battery pack, electronic apparatus, electric vehicle, electricity storage device, and electric power system
JPWO2018230506A1 (en) * 2017-06-16 2020-02-27 株式会社村田製作所 Battery, inspection method, inspection device, battery pack, electronic device, electric vehicle, power storage device, and power system
JP2020101392A (en) * 2018-12-20 2020-07-02 トヨタ自動車株式会社 Appearance inspection method for lithium ion battery and appearance inspection device for lithium ion battery
CN111308358A (en) * 2019-11-28 2020-06-19 安徽江淮汽车集团股份有限公司 Method, device and equipment for estimating state of charge of battery of electric vehicle and storage medium
TWI769693B (en) * 2021-01-26 2022-07-01 鴻海精密工業股份有限公司 Method for measuring the oxidation potential of electrolyte
CN116046730A (en) * 2023-04-03 2023-05-02 宁德时代新能源科技股份有限公司 Electrolyte monitoring device, method, storage medium, and program product

Similar Documents

Publication Publication Date Title
KR102271939B1 (en) Battery management based on internal optical sensing
JP2023539105A (en) Operand battery condition monitoring method and system
JP2021532335A (en) Systems and methods for monitoring the charging status of power storage devices online via optical fiber
CN105388127A (en) Online detecting method and system for concentration of all ions of all-vanadium redox flow battery
Zhang et al. An on-line spectroscopic monitoring system for the electrolytes in vanadium redox flow batteries
CN112903539B (en) Imaging detection device and method for diffusion coefficient of electrolyte of flow battery
JPH06341954A (en) Battery electric capacity measuring method and its device
CN117388177A (en) Spectrophotometer for detecting all-vanadium redox flow battery and battery state monitoring method
JP3667742B2 (en) Storage battery electric capacity measurement method and apparatus
JP3030390B2 (en) Method and apparatus for measuring electric capacity of storage battery
EP3150990B1 (en) Device for measuring polarization degree and refractive index
Hancke A fiber-optic density sensor for monitoring the state-of-charge of a lead acid battery
US20060040401A1 (en) Method and equipment for measuring the concentration of antiseptic solution
Patil et al. Refractometric fiber optic sensor for in-situ monitoring the state-of-charge of a lead acid battery
Janshen et al. A correlated multi-observable assessment for vanadium redox flow battery state of charge estimation—Empirical correlations and temperature dependencies
JP2000131405A (en) Method and apparatus for measuring remaining capacity of lithium cell
Patil et al. Analysis of refractometric fiber optic state-of-charge (SOC) monitoring sensor for lead acid battery
CN221326304U (en) Spectrophotometer for detecting all-vanadium redox flow battery
Janshen et al. Fiber Optic State of Charge Sensor for Vanadium Redox Flow Batteries
RU2821154C1 (en) Method and device for determining the degree of degradation of capacitance of vanadium flow accumulator
Cortazar et al. A simple and robust fiber optics system for measuring the lead-acid battery state-of-charge
JPS61240581A (en) Measuring device of electrode active material concentration of secondary battery
JPS60143574A (en) Evaluation method of semiconductor photo electrochemical electrode and its equipment
Hu et al. Optical characterization sensing method of TFBG sensor for battery electromotive force monitoring
Patil et al. Refractometric Fiber Optic Sensor for in-situ Monitoring the State-of-Charge (SOC) of Lead Acid Battery

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031226