WO2014045837A1 - Battery pack and battery pack capacity calculation method - Google Patents

Battery pack and battery pack capacity calculation method Download PDF

Info

Publication number
WO2014045837A1
WO2014045837A1 PCT/JP2013/073302 JP2013073302W WO2014045837A1 WO 2014045837 A1 WO2014045837 A1 WO 2014045837A1 JP 2013073302 W JP2013073302 W JP 2013073302W WO 2014045837 A1 WO2014045837 A1 WO 2014045837A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery pack
capacity
load
charge
discharge current
Prior art date
Application number
PCT/JP2013/073302
Other languages
French (fr)
Japanese (ja)
Inventor
忠大 吉田
Original Assignee
Necエナジーデバイス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Necエナジーデバイス株式会社 filed Critical Necエナジーデバイス株式会社
Publication of WO2014045837A1 publication Critical patent/WO2014045837A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3648Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0063Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/005Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting using a power saving mode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery pack using a secondary battery such as a lithium ion battery, and a method of calculating the capacity of the battery pack.
  • Lithium ion secondary batteries are charged and discharged by moving lithium ions between the negative electrode and the positive electrode, and have high energy density and high output battery characteristics, so they have recently been applied in various fields.
  • a battery pack in which a plurality of secondary unit batteries such as lithium ion batteries are connected in series may be used as an energy source for electrically assisted bicycles.
  • the current sensor 5 for detecting the current flowing in the current path, the first-order lag filter 6 for filtering the output of the current sensor, and the analog signal filtered by the first-order lag filter are converted to digital signals.
  • a current integrating circuit device including an A / D converter 11 for converting and a proportional integrator 12 for proportionally integrating a digital signal output from the A / D converter, and a secondary battery pack using the same.
  • the secondary battery pack disclosed in Document 1 measures the capacity by proportionally integrating the output of the current sensor, it has a wide detection range for measuring the capacity and a high S / N ratio (Signal / Noise ratio) current measurement There is a problem that the system is required, and the capacity measuring system becomes complicated and expensive.
  • the discharge current supplied by the battery pack is approximately several 10 A at the maximum during assist, but when not assisted or when the electrically assisted bicycle stands by When it becomes, it becomes about several tens of mA, and a difference of three digits or more occurs. Therefore, when measuring the current with the current sensor for any current and calculating the capacity by time integration, the detection range is wide (10 bits or more in the range of the A / D converter), high S / N (at least The need for a current measurement system (to the extent that minute signals of about several tens of mA can be accurately measured) becomes necessary, and the measurement system becomes complicated and expensive.
  • the battery pack according to the present invention is a battery pack that supplies power to a load, and a measurement unit that measures the charge and discharge current of the battery pack.
  • a load information acquisition unit for acquiring information of the capacity demand of the load, and based on the acquired information of the capacity demand, determine the capacity from the measured charge / discharge current or determine the capacity according to the information of the capacity demand It has a determination part which determines whether it calculates
  • the battery pack according to the present invention is a battery pack that supplies power to a load, and a measurement unit that measures the charge and discharge current of the battery pack, and determines whether the charge and discharge current has a predetermined value. And a determination unit that determines whether to determine a capacitance based on the measured charge / discharge current based on the determination result of the determination unit or a capacitance demand based on the determination made by the determination unit And a capacity calculation unit that calculates the
  • the determination unit determines whether the charge and discharge current is equal to or greater than a reference value and less than zero.
  • the information of the capacity demand includes the standby current of the electric circuit constituting the load.
  • the battery pack which concerns on this invention contains a light emitting element in this electric circuit.
  • the light emitting element is a light.
  • the battery is a lithium ion secondary battery.
  • the load is a power assist bicycle or an electric vehicle.
  • the method of calculating the capacity of a battery pack is a method of calculating the capacity of a battery pack that calculates the capacity of a battery pack that supplies electric power to a load, and the measuring step of measuring the charge and discharge current of the battery pack
  • the capacity information is obtained from the measured charge / discharge current based on the load information acquisition step of acquiring information on the capacity demand of the load and the acquired information on the capacity demand, or the capacity is determined based on the information on the capacity demand And a determination step of determining
  • the method of calculating the capacity of a battery pack is a method of calculating the capacity of a battery pack that calculates the capacity of a battery pack that supplies electric power to a load, and the measuring step of measuring the charge and discharge current of the battery pack
  • the determination step it is determined whether the charge and discharge current is equal to or greater than a reference value and less than zero.
  • the information of the capacity demand includes the standby current of the electric circuit constituting the load.
  • the electric circuit includes a light emitting element.
  • the light emitting element is a light.
  • the battery is a lithium ion secondary battery.
  • the load is a power assist bicycle or an electric vehicle.
  • the capacity of the battery pack is detected based on load information (capacity demand information) and battery pack information (charge / discharge current).
  • load information capacity demand information
  • battery pack information charge / discharge current
  • the secondary battery 10 of the battery pack 1 of the present embodiment includes seven unit batteries 11 electrically connected in series.
  • the unit battery 11 uses a flat lithium ion secondary battery covered with a laminate film.
  • the load 2 of the present embodiment is a motor 20 driven by a drive circuit 21.
  • the load 2 may be provided with a plurality of drive circuits for driving a light, a liquid crystal display, and the like.
  • the battery pack 1 and the load 2 are electrically connected by fitting the connector 22 mounted on the load 2 to the connector 12 mounted on the battery pack 1.
  • a charge switch 13 and a discharge switch 14 are electrically connected in series between the high potential side terminal of the secondary battery 10 of the battery pack 1 and the positive terminal 1 B of the connector 12. Further, a current detection resistor 15 is electrically connected between the low potential side terminal of the secondary battery 10 of the battery pack 1 and the negative terminal 4 B of the connector 12.
  • the discharge switch 14 and the charge switch 13 both use P-channel MOSFETs, the drain terminals D of each other are connected, and the source terminal S is the positive electrode of the secondary battery 10 and the connector 12. Each is connected to the positive terminal 1B.
  • the gate terminal G is connected to the battery pack control circuit 16.
  • the positive terminal 1 L and the negative terminal 4 L of the connector 22 are electrically connected to the drive circuit 21 of the load 2.
  • the motor 20 of the present embodiment is a direct current motor
  • the drive circuit 21 is a full bridge circuit configured by power MOSFETs
  • the positive terminal 1L and the negative terminal 4L serve as the high side and low side power supplies of the full bridge circuit. Each is connected.
  • the load control circuit 23 controls the amount of current supplied to the motor 20 (that is, motor driving torque, motor rotation speed, etc.) by changing the voltage of the gate terminal of the power MOSFET.
  • the load control circuit 23 of the present embodiment can be realized by a general-purpose CPU.
  • the drive circuit 21 is electrically connected to the secondary battery 10 via the positive terminal 1B and the positive terminal 1L, and the negative terminal 4B and the negative terminal 4L, which are electrically connected to each other by fitting the connector 12 and the connector 22 to each other.
  • the load control circuit 23 is supplied with power from the secondary battery 10 via the positive terminal 1L and the negative terminal 4L.
  • a battery pack control circuit 16 mounted on the battery pack 1 controls charging / discharging of the secondary battery 10 by controlling opening (off) and closing (on) of the discharge switch 14 and the charge switch 13.
  • the battery pack control circuit 16 switches and outputs the voltage at which the MOSFET is turned on and the voltage at which it is turned off to each of the gate terminals G of the P-channel MOSFETs used for the discharge switch 14 and the charge switch 13. The off and on of the discharge switch 14 and the charge switch 13 are controlled.
  • the battery pack control circuit 16 of the present embodiment can be realized by a general-purpose CPU. Further, the battery pack control circuit 16 receives supply of power from the secondary battery 10 via the high potential side terminal and the low potential side terminal of the secondary battery 10.
  • the charge / discharge current detection circuit 161 of the battery pack control circuit 16 measures the voltage difference between both ends of the current detection resistor 15 which is A / D converted and measured by an A / D converter (not shown) incorporated in the charge / discharge current detection circuit 161.
  • the charge / discharge current of the secondary battery 10 is measured based on that.
  • the communication circuit 162 of the battery pack control circuit 16 and the communication circuit 231 mounted on the load control circuit 23 of the load 2 are the communication terminal 3 B of the connector 12 and the communication terminal 3 L of the connector 22. Connected through.
  • a one-wire serial communication circuit is used as the communication circuit. Therefore, when the communication terminal 3B and the communication terminal 3L are connected, the communication circuit 162 and the communication circuit 231 can perform one-wire serial communication.
  • the communication circuit may employ two-wire asynchronous serial communication, synchronous three-wire serial communication, parallel communication, and the like. In this case, although the required number of communication terminals changes, the number of connector terminals may be changed according to each communication method.
  • the battery pack control circuit 16 acquires the state of the communication circuit 231 of the load 2 by measuring the time from the communication circuit 162 to the communication circuit 231 after the communication request has been issued by the timer 163.
  • the timer 163 of the present embodiment includes a plurality of counter circuits (not shown) for measuring time by measuring the number of times of rising of a clock signal output from a clock circuit (not shown).
  • the measurement time of the timer 163 can be set to 0 by inputting a clear signal to a clear terminal (not shown) of each counter circuit.
  • the battery pack control circuit 16 of the present embodiment counts the elapsed time from the transmission by the timer 163, with the time when the communication request is transmitted from the communication circuit 162 to the communication circuit 231 as 0, and the elapsed time is a predetermined timeout time. If there is no response from the communication circuit 231 to the communication circuit 162, the communication circuit 162 and the communication circuit 231 determine that they are disconnected, and then the communication circuit 162 sends a communication request to the communication circuit 231 again.
  • the communication circuit 162 and the communication circuit 231 determine that they are in the open state, and after the time-out time elapses, the communication circuit 162 sends the communication circuit 231 again. Send a communication request.
  • the battery pack control circuit 16 When the communication circuit 162 and the communication circuit 231 are in the disconnected state, the battery pack control circuit 16 according to the present embodiment measures the duration of the disconnected state by the timer 163, and the duration time of the disconnected state is a first reference time. When it exceeds, it is determined that the load state is in the communication stop state. And after that, the battery pack control circuit 16 of this embodiment stops the measurement in the timer 163 of the continuation time of a disconnection state.
  • the battery pack control circuit 16 of this embodiment determines that the communication circuit 162 and the communication circuit 231 are in the open state, it determines that the load state is not in the communication stop state, and the timer 163 of the continuation time of the disconnection state Release the stop of measurement of.
  • the load 2 is an electrically assisted bicycle
  • the above-mentioned first reference time is desirably 0.1 seconds to 100 seconds.
  • the first reference time is one second.
  • a power assist bicycle is described as an example of the load 2, but the present invention can be applied to a load 2 such as an electric car.
  • the memory 164 records the state of the load 2 acquired via the communication circuit 162.
  • the memory 164 has a plurality of recording areas whose recording positions are specified by a plurality of addresses.
  • the state of load 2 includes information on capacity demand of load 2 and standby status information.
  • the information of the capacity demand of the load 2 in the present embodiment represents the information of the capacity consumed by the load 2, and the information of the capacity demand includes the information of the standby current of the load 2.
  • the standby current of the load 2 refers to the steady state consumed by the electric circuit of the load 2 when the load control circuit 23 stops driving the motor 20 and stops the function of the load control circuit 23 including the communication circuit 231. Dark current. This dark current can be measured in advance because it is a current consumption inherent to the electric circuit of the load 2. The standby current measured in advance is recorded in the memory 232 mounted in the load control circuit 23 of the present embodiment.
  • the standby status information includes at least a standby flag indicating whether the load 2 is in the standby state.
  • a flash memory can be used as the memory 164 and the memory 232 of this embodiment.
  • the battery pack 1 When communication with the load 2 is in the open state (that is, when the communication circuit 162 and the communication circuit 231 are in the open state), the battery pack 1 acquires information on the standby current of the load 2 via the communication circuit 162. , Recording in the recording area (not shown) of the standby current of the memory 164.
  • the battery pack control circuit 16 of the present embodiment information of typical standby current of the load 2 is recorded in advance in the recording region of the standby current of the memory 164. Further, the memory 164 of the present embodiment also records the full charge capacity of the secondary battery 10 measured in advance.
  • the capacity calculation circuit 165 calculates the charge / discharge capacity of the battery pack 1 based on the measurement result of the charge / discharge current measured by the charge / discharge current detection circuit 161 and the information of the standby current of the load 2 read from the memory 164.
  • the capacitance calculation circuit 165 of this embodiment first divides the voltage difference between both ends of the current detection resistor 15 measured by the built-in A / D converter of the charge / discharge current detection circuit 161 by the resistance value of the current detection resistor 15 and The charge / discharge current detection value of In the capacitance calculation circuit 165, the negative value of the charge / discharge current detection value is used as the discharge current value. Then, capacity calculation circuit 165 multiplies the current charge / discharge current detection value by the time from the current A / D conversion start time to the next A / D conversion start time to obtain the current charge / discharge capacity detection value. .
  • the dark current of the load 2 is as large as several tens of mA, and it is difficult to determine the presence or absence of the power demand at the load only from the charge / discharge current detected by the charge / discharge current detection circuit 161.
  • the capacity calculation circuit 165 also reads the information of the standby current of the load 2 from the recording region of the standby current of the memory 164, and the time from the current A / D conversion start time to the next A / D conversion start time To obtain the current standby discharge capacity value.
  • the standby discharge capacitance value is a negative value.
  • capacity calculation circuit 165 integrates the above-described charge / discharge capacity detection value and / or standby discharge capacity value to the current charge / discharge capacity to charge secondary battery 10. Let it be the discharge capacity.
  • Pull-up resistor 167 of battery pack control circuit 16 is a resistor having one end connected to the high potential side terminal of secondary battery 10 and the other end connected to operation switch terminal 2 B of connector 12. .
  • the potential of the operation switch terminal 2B is input to the input circuit 166.
  • the operation switch terminal 2 B is connected to the operation switch terminal 2 L of the load 2.
  • the operation switch terminal is connected to one end of the operation switch 233, and the other end of the operation switch 233 is connected to the negative terminal 4 L of the connector 22.
  • the operation switch 233 of the present embodiment is a toggle switch.
  • the potential input to the input circuit 166 approaches the terminal potential on the high potential side of the secondary battery 10 when the operation switch is turned off (or the operation switch terminal 3B and the operation switch terminal 3L are not connected), and the operation switch 233 Approaches the terminal potential of the negative terminal 4L.
  • the input circuit 166 binarizes the input potential through a comparator with hysteresis (not shown) and then inputs the input potential to the battery pack control circuit 16.
  • the battery pack control circuit 16 operates the operation switch 233. When the switch is off, it is in the H (High) state, and when it is on, the switch can be determined to be in the L (Low) state.
  • the maximum input voltage to input circuit 166 can be adjusted using a voltage regulator circuit or the like instead of pull-up resistor 167 described above. .
  • step 01 the battery pack control circuit 16 determines the condition of the load based on the input condition to the input circuit 166.
  • the battery pack control circuit 16 determines that the operation switch 233 is in the off state when the input to the input circuit 166 is in the H state (step 01 Yes).
  • the battery pack control circuit 16 determines that the operation switch 233 is not in the off state (Step 01 No).
  • step 01 described above the battery pack control circuit 16 determines that the operation switch 233 is in the off and on states, respectively, when the input to the input circuit 166 is in the H and L states.
  • This determination can also be made based on the instantaneous input state to the input circuit 166, but desirably, when the input state to the input circuit 166 continues for a predetermined time, the operation switch 233 is off and on respectively. It can also be judged that it is in the state.
  • the operation switch 233 since the operation switch 233 is assumed to be operated by a person, when the input state to the input circuit 166 continues for 0.1 seconds to 10 seconds, the operation switch 233 It is good to judge that they are off and on respectively. In particular, in the present embodiment, when the input state to the input circuit 166 continues for one second, it is determined that the operation switch 233 is in the off state and the on state, respectively.
  • the timer 163 measures the continuation time of the input state of the input circuit 166, and when the same input state continues for one second or more, the operation switch 233 is in the off state and the on state, respectively.
  • the potential of the terminal operation switch terminal 2B may be input to the input circuit 166 through a low pass filter (not shown) having a time constant of 1 second.
  • step 02 the battery pack control circuit 16 determines the condition of the load based on the communication condition of the communication circuit 231.
  • the battery pack control circuit 16 advances the process to step 03 if the load state is in the communication stop state (Yes in step 02), and ends the process if the load state is not in the communication stop state (No in step 02). .
  • step 03 the battery pack control circuit 16 determines whether the discharge switch 14 is on or off based on the current output voltage to the gate terminal G of the discharge switch 14. The battery pack control circuit 16 proceeds the process to step 04 when the discharge switch 14 is on (Yes in step 03), and ends the process when the discharge switch 14 is off (No in step 03).
  • step 04 the battery pack control circuit 16 ends the processing after the discharge switch 14 is turned off.
  • step 05 the battery pack control circuit 16 determines on / off of the discharge switch 14 based on the current output voltage to the gate terminal G of the discharge switch 14.
  • the battery pack control circuit 16 proceeds the process to step 06 if the discharge switch 14 is off (Yes in step 05), and ends the process if the discharge switch 14 is off (No in step 05).
  • step 06 the battery pack control circuit 16 ends the processing after the discharge switch 14 is turned on.
  • the presence or absence of the power demand of the load 2 which is the energy supply destination is determined based on the load state. Because the discharge control switch 14 controls the supply of the battery pack 1, the usage time of the battery pack 1 can be extended even when the standby power of the load 2 is large.
  • the method of discharging the battery pack 1 based on the state of load has been described in detail, but the method of discharging the battery pack 1 based on the state of load described above is a method of discharging based on the state of the battery pack Even when used in combination, the effects of the present invention can be obtained.
  • the battery pack control circuit 16 of the battery pack 1 gives priority to the state of the load and the discharge switch. 14 is turned off, or the battery pack control circuit 16 measures the terminal voltage of the secondary battery 10, and if the terminal voltage of the secondary battery 10 is smaller than a predetermined overdischarge voltage, priority is given to the state of the load.
  • the discharge switch 14 By turning off the discharge switch 14 or the like, the battery can also be protected from over current, short circuit and over discharge while obtaining the effects of the present invention.
  • the discharge switch 14 is prioritized over the state of the load. It may be used in combination with other battery protection, such as turning off.
  • a MOSFET is used as the charge switch 13.
  • the battery pack 1 can output the discharge current via the parasitic diode of the charge switch 13 regardless of whether the charge switch 13 is on or off.
  • the charge switch 13 be turned on while the discharge current is flowing.
  • the battery pack control circuit 16 determines that the discharge current is flowing from the secondary battery 10 based on the measurement result of the charge / discharge current in the charge / discharge current detection circuit 161 (more simply, When the battery pack control circuit 16 turns on the discharge switch 14), it is desirable to turn on the charge switch 13 as well.
  • the battery pack control circuit 16 transmits a communication request from the communication circuit 162 to the communication circuit 231.
  • the load control circuit 23 sends a communication request from the communication circuit 231 to the communication circuit 162
  • the effect of the present invention can be obtained.
  • the load control circuit 23 transmits a communication request to the load control circuit 23 from the communication circuit 231 to the communication circuit 162 at predetermined communication time intervals measured by a built-in timer (not shown), and the battery pack control circuit
  • the timer 16 counts the time spent without receiving a communication request from the communication circuit 231 by the timer 163, and when the time spent without receiving this communication request exceeds a predetermined timeout time, the communication circuit 231 and the communication circuit 162 If it is determined that the communication circuit 231 is in the disconnection state and a communication request is received from the communication circuit 231, it can be determined that the communication circuit 231 and the communication circuit 162 are in the open state.
  • the above-mentioned communication time interval can be desirably less than the first reference time.
  • the “communication stop state” or the “operation switch off state” is used as the state of the load 2.
  • the load 2 transmits the "state of presence / absence of power demand" of the load 2 as communication data to the battery pack 1 via the communication circuit 231 and the communication circuit 162, and the battery pack control circuit 16 It is possible to judge the condition based on the communication data of “presence or absence” and turn off the discharge switch 14 when there is no power demand, and turn on the discharge switch 14 when there is a power demand.
  • the capacity calculation circuit 165 reads the standby flag from the memory 164, and when the standby flag is 1, selects the standby discharge capacity value as the capacity to be integrated to the current charge and discharge capacity of the secondary battery 10 (Yes in step 11). On the other hand, when the standby flag is not 1 (ie, when the standby flag is 0), the charge / discharge capacity value is selected as the capacity to be integrated to the current charge / discharge capacity of the secondary battery 10 (step 11 No).
  • the capacity calculation circuit 165 adds the selected standby discharge capacity value or charge / discharge capacity value to the current charge / discharge capacity of the secondary battery 10, and replaces the current charge / discharge capacity with this addition result.
  • the capacity calculation circuit 165 reads the full charge capacity of the secondary battery 10 from the memory 164 and adds the current charge / discharge capacity to the full charge capacity to obtain the result of detection of the capacity of the battery pack 1.
  • the capacity of the battery pack 1 can be detected with high accuracy with a simple circuit configuration.
  • the “standby discharge capacity value” is measured based on the dark current of the load 2.
  • the measurement is performed based on the sum of the dark current of the load 2 and the dark current of the electric circuit of the battery pack 1
  • the effects of the present invention can be obtained. Since the dark current of the electric circuit of the battery pack 1 is a consumption current inherent to the electric circuit of the battery pack 1, the dark current is measured in advance and recorded in the memory 164 to detect the capacity in the capacity calculation circuit 165. It can be added.
  • the capacity calculation circuit 165 integrates the current charge / discharge capacity of the secondary battery 10
  • the standby discharge capacity value is selected as (step 31 Yes).
  • the current reference value takes a negative value.
  • the charge / discharge capacity value is selected as the capacity to be integrated with the current charge / discharge capacity of secondary battery 10 (step 31 No) .
  • the current reference value be larger than the resolution of the built-in A / D converter of the charge / discharge current detection circuit 161 in comparison of absolute values.
  • 10 A and 10 mA are assumed as typical values of the maximum discharge current and standby current from the battery pack 1, respectively. Therefore, the charge and discharge current is set by setting the current reference value to 80 mA.
  • the dynamic range of the built-in A / D converter of the detection circuit 161 is suppressed to a simple circuit configuration such as 8 bits (including 1 sign bit, 1 bit is 78 mA), and a wide detection range of 3 digits or more and a high S / S. Capacitance detection of a highly accurate battery pack having N can be realized.
  • the capacity of the secondary battery can be detected with high accuracy with a simple circuit configuration.
  • the standby current of the load 2 is a steady dark current to simplify the description.
  • a light mounted on a motor-assisted bicycle Information on the current consumption of the light emitting element such as
  • the load 2 is mounted with a lamp to which power is supplied from the positive terminal 1L and the negative terminal 4L of the connector 22, and power supply (lighting) and interruption (lighting out) to the lamp are performed.
  • a light switch for switching is mounted, and the load control circuit 23 switches the light switch to control the turning on and off of the light, and the memory 232 contains information on the current required to turn on the light and the light.
  • a lighting flag indicating whether the light is on or off is recorded, and the lighting flag is transferred if it is transferred through the communication circuit 231 and the communication circuit 162 and is recorded in the memory 164, and further, it is shown in FIG.
  • step 3 when “step 11" is “Yes” and the lighting flag indicates lighting, the current required for the lighting and the standby current are integrated over time, and “step 11" is “Yes” and the lighting flag When referring to off, be modified similarly to integrating the standby current time step 12, the effect of the present invention is obtained.
  • the secondary battery 10 of the battery pack 1 includes seven unit cells 11 electrically connected in series, the number of unit cells included in the battery pack and the electrical connection
  • the form can be appropriately changed depending on the output voltage and capacity required for the battery pack, and can be, for example, a total of 20 unit cells in which two rows of 10 unit cells connected in series are connected in parallel.
  • the effects of the present invention can be obtained by using a battery of another form such as a cylindrical battery, a rectangular battery, or a nickel hydrogen battery instead of a laminate type lithium ion battery as the unit battery 11.
  • the present invention relates to a battery pack using a secondary battery such as a lithium ion battery, and a method of calculating the capacity of the battery pack.
  • a secondary battery such as a lithium ion battery
  • the detection range is wide (10 bits or more in the A / D converter range) and high S / N in order to measure the discharge current of the battery pack.
  • a current measurement system (at least a level capable of accurately measuring a minute signal of about several tens of mA) is required, and the measurement system is complicated and expensive.
  • the capacity of the battery pack is detected based on load information (capacity demand information) and battery pack information (charge / discharge current). It is possible to measure the capacity of the battery pack with high accuracy with a simple circuit configuration, and the industrial applicability is very large.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Secondary Cells (AREA)

Abstract

In order to provide a battery pack that has a simple circuit configuration and that is capable of measuring the capacity of said battery pack with high precision, this battery pack supplies power to a load and comprises: a measurement unit that measures the charge/discharge current of the battery pack; a load information acquisition unit that acquires information about the capacity demand of the load; a determination unit that, on the basis of the acquired information about capacity demand, determines whether to determine capacity from the measured charge/discharge current or to determine capacity from the information about capacity demand (Step 11); and a capacity calculation unit that calculates capacity in accordance with the determination of the determination unit.

Description

電池パック及び電池パックの容量算出方法Battery pack and battery pack capacity calculation method
 本発明は、リチウムイオン電池などの二次電池を用いた電池パック及び、電池パックの容量算出方法に関する。 The present invention relates to a battery pack using a secondary battery such as a lithium ion battery, and a method of calculating the capacity of the battery pack.
 リチウムイオン二次電池は、リチウムイオンが負極と正極とを移動することにより充放電が行われ、高エネルギー密度で、高出力である電池特性を有することから、近年、様々な分野で応用されている。例えば、自転車の電動アシストのためのエネルギー源として、リチウムイオン電池などの二次単位電池を複数個直列に接続した電池パックが利用されることがある。 Lithium ion secondary batteries are charged and discharged by moving lithium ions between the negative electrode and the positive electrode, and have high energy density and high output battery characteristics, so they have recently been applied in various fields. There is. For example, a battery pack in which a plurality of secondary unit batteries such as lithium ion batteries are connected in series may be used as an energy source for electrically assisted bicycles.
 このような用途に適用される電池パックでは、電池パックに蓄えられている容量(残容量)を正確に計測することが求められている。 In a battery pack applied to such a use, it is required to accurately measure the capacity (remaining capacity) stored in the battery pack.
 例えば、特許文献1には、「通電路を流れる電流を検出する電流センサ5と、電流センサの出力をフィルタリングする1次遅れフィルタ6と、1次遅れフィルタでフィルタリングされたアナログ信号をデジタル信号に変換するA/D変換器11と、A/D変換器から出力されるデジタル信号を比例積分する比例積分器12を備える」電流積算回路装置およびこれを用いた二次電池パックが開示されている。
特開2010-223781号公報
For example, in Patent Document 1, “the current sensor 5 for detecting the current flowing in the current path, the first-order lag filter 6 for filtering the output of the current sensor, and the analog signal filtered by the first-order lag filter are converted to digital signals. Disclosed is a current integrating circuit device including an A / D converter 11 for converting and a proportional integrator 12 for proportionally integrating a digital signal output from the A / D converter, and a secondary battery pack using the same. .
Unexamined-Japanese-Patent No. 2010-223781
 文献1に開示された二次電池パックは、電流センサの出力を比例積分して容量を計測するので、容量の計測に検出レンジが広くかつ高S/N比(Signal/Noise ratio)な電流計測系が必要になり、容量の計測系が煩雑で高価になるとの課題があった。 Since the secondary battery pack disclosed in Document 1 measures the capacity by proportionally integrating the output of the current sensor, it has a wide detection range for measuring the capacity and a high S / N ratio (Signal / Noise ratio) current measurement There is a problem that the system is required, and the capacity measuring system becomes complicated and expensive.
 つまり、電池パックからエネルギーを供給して電動アシスト自転車などを駆動する場合、電池パックが供給する放電電流は、アシスト時に最大で数10A程度になるが、非アシスト時や電動アシスト自転車が待機状態になった時には、数10mA程度になり、3桁以上の差が生じる。従って、何れの電流に対しても電流センサで電流計測し、時間積算して容量を算出する場合、検出レンジが広く(A/D変換器のレンジで10bit以上)、高S/N(少なくも、数10mA程度の微小信号が正確に計測可能な程度)の電流計測系が必要になり、計測系が煩雑で高価になった。 That is, when energy is supplied from the battery pack to drive an electrically assisted bicycle, etc., the discharge current supplied by the battery pack is approximately several 10 A at the maximum during assist, but when not assisted or when the electrically assisted bicycle stands by When it becomes, it becomes about several tens of mA, and a difference of three digits or more occurs. Therefore, when measuring the current with the current sensor for any current and calculating the capacity by time integration, the detection range is wide (10 bits or more in the range of the A / D converter), high S / N (at least The need for a current measurement system (to the extent that minute signals of about several tens of mA can be accurately measured) becomes necessary, and the measurement system becomes complicated and expensive.
 本発明は、このような課題を解決するためのものであって、本発明に係る電池パックは、負荷に電力を供給する電池パックであって、該電池パックの充放電電流を計測する計測部と、該負荷の容量需要の情報を取得する負荷情報取得部と、取得された該容量需要の情報に基づき、計測された該充放電電流により容量を求めるか、該容量需要の情報により容量を求めるか、を決定する決定部と、前記決定部における決定に応じて容量を算出する容量算出部と、を有する。 The present invention is to solve such problems, and the battery pack according to the present invention is a battery pack that supplies power to a load, and a measurement unit that measures the charge and discharge current of the battery pack. Or a load information acquisition unit for acquiring information of the capacity demand of the load, and based on the acquired information of the capacity demand, determine the capacity from the measured charge / discharge current or determine the capacity according to the information of the capacity demand It has a determination part which determines whether it calculates | requires, and the capacity | capacitance calculation part which calculates a capacity | capacitance according to the determination in the said determination part.
 また、本発明に係る電池パックは、負荷に電力を供給する電池パックであって、該電池パックの充放電電流を計測する計測部と、充放電電流が所定の値であるかを判断する判断部と、前記判断部の判断結果に基づき、計測された該充放電電流により容量を求めるか、該容量需要の情報により容量を求めるか、を決定する決定部と、前記決定部における決定に応じて容量を算出する容量算出部と、を有する。 The battery pack according to the present invention is a battery pack that supplies power to a load, and a measurement unit that measures the charge and discharge current of the battery pack, and determines whether the charge and discharge current has a predetermined value. And a determination unit that determines whether to determine a capacitance based on the measured charge / discharge current based on the determination result of the determination unit or a capacitance demand based on the determination made by the determination unit And a capacity calculation unit that calculates the
 また、本発明に係る電池パックは、前記判断部では、充放電電流が基準値以上であり、かつ、0未満であるかを判断する。 In the battery pack according to the present invention, the determination unit determines whether the charge and discharge current is equal to or greater than a reference value and less than zero.
 また、本発明に係る電池パックは、該容量需要の情報に該負荷を構成する電気回路の待機電流を含む。 Further, in the battery pack according to the present invention, the information of the capacity demand includes the standby current of the electric circuit constituting the load.
 また、本発明に係る電池パックは、該電気回路に発光素子を含む。 Moreover, the battery pack which concerns on this invention contains a light emitting element in this electric circuit.
 また、本発明に係る電池パックは、該発光素子がライトである。 In the battery pack according to the present invention, the light emitting element is a light.
 また、本発明に係る電池パックは、該電池がリチウムイオン二次電池である。 In the battery pack according to the present invention, the battery is a lithium ion secondary battery.
 また、本発明に係る電池パックは、該負荷が、パワーアシスト自転車、あるいは電気自動車である。 Further, in the battery pack according to the present invention, the load is a power assist bicycle or an electric vehicle.
 また、本発明に係る電池パックの容量算出方法は、負荷に電力を供給する電池パックの容量を算出する電池パックの容量算出方法であって、該電池パックの充放電電流を計測する計測工程と、該負荷の容量需要の情報を取得する負荷情報取得工程と、取得された該容量需要の情報に基づき、計測された該充放電電流により容量を求めるか、該容量需要の情報により容量を求めるか、を決定する決定工程と、を有する。 Further, the method of calculating the capacity of a battery pack according to the present invention is a method of calculating the capacity of a battery pack that calculates the capacity of a battery pack that supplies electric power to a load, and the measuring step of measuring the charge and discharge current of the battery pack The capacity information is obtained from the measured charge / discharge current based on the load information acquisition step of acquiring information on the capacity demand of the load and the acquired information on the capacity demand, or the capacity is determined based on the information on the capacity demand And a determination step of determining
 また、本発明に係る電池パックの容量算出方法は、負荷に電力を供給する電池パックの容量を算出する電池パックの容量算出方法であって、該電池パックの充放電電流を計測する計測工程と、充放電電流が所定の値であるかを判断する判断工程と、前記判断工程の判断結果に基づき、計測された該充放電電流により容量を求めるか、該容量需要の情報により容量を求めるか、を決定する決定工程と、を有する。 Further, the method of calculating the capacity of a battery pack according to the present invention is a method of calculating the capacity of a battery pack that calculates the capacity of a battery pack that supplies electric power to a load, and the measuring step of measuring the charge and discharge current of the battery pack A determination step of determining whether the charge / discharge current has a predetermined value and a determination result of the determination step based on the determination result of the determination step, determining a capacity by the measured charge / discharge current or determining a capacity by information of the capacity demand , And a determination step of determining.
 また、本発明に係る電池パックの容量算出方法は、前記判断工程では、充放電電流が基準値以上であり、かつ、0未満であるかを判断する。 In the battery pack capacity calculation method according to the present invention, in the determination step, it is determined whether the charge and discharge current is equal to or greater than a reference value and less than zero.
 また、本発明に係る電池パックの容量算出方法は、該容量需要の情報に該負荷を構成する電気回路の待機電流を含む。 Further, in the method of calculating the capacity of a battery pack according to the present invention, the information of the capacity demand includes the standby current of the electric circuit constituting the load.
 また、本発明に係る電池パックの容量算出方法は、該電気回路に発光素子を含む。 In the battery pack capacity calculation method according to the present invention, the electric circuit includes a light emitting element.
 また、本発明に係る電池パックの容量算出方法は、該発光素子がライトである。 In the battery pack capacity calculation method according to the present invention, the light emitting element is a light.
 また、本発明に係る電池パックの容量算出方法は、該電池がリチウムイオン二次電池である。 In the method of calculating the capacity of a battery pack according to the present invention, the battery is a lithium ion secondary battery.
 また、本発明に係る電池パックの容量算出方法は、該負荷が、パワーアシスト自転車、あるいは電気自動車である。 In the battery pack capacity calculation method according to the present invention, the load is a power assist bicycle or an electric vehicle.
 本発明に係る電池パック及び電池パックの容量算出方法によれば、負荷の情報(容量需要の情報)と電池パックの情報(充放電電流)に基づき電池パックの容量を検出するので、簡易な回路構成で高精度に電池パックの容量を計測することができる。 According to the battery pack and the battery pack capacity calculation method according to the present invention, the capacity of the battery pack is detected based on load information (capacity demand information) and battery pack information (charge / discharge current). The configuration can measure the capacity of the battery pack with high accuracy.
本発明に係る電池パックと負荷の接続状態を説明するブロック図である。It is a block diagram explaining the connection state of the battery pack and load which concern on this invention. 本発明に係る電池パックの放電方法を示すフローチャートである。It is a flowchart which shows the discharge method of the battery pack which concerns on this invention. 本発明に係る電池パックの残量検出方法を示すフローチャートである。It is a flowchart which shows the residual amount detection method of the battery pack which concerns on this invention. 本発明に係る電池パックの残量検出方法を示すフローチャートである。It is a flowchart which shows the residual amount detection method of the battery pack which concerns on this invention.
 以下、本発明の実施の形態を、図面を参照しつつ説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 まず、本発明の第1の実施形態に係る電池パック1と電池パック1の電力の供給先である負荷2の構成について、図1を参照して説明する。 First, the configuration of the battery pack 1 according to the first embodiment of the present invention and the load 2 to which the power of the battery pack 1 is supplied will be described with reference to FIG.
 本実施形態の電池パック1の二次電池10は、電気的に直列に接続した7個の単位電池11を含む。単位電池11には、ラミネートフィルムで外装した扁平型のリチウムイオン二次電池を用いている。 The secondary battery 10 of the battery pack 1 of the present embodiment includes seven unit batteries 11 electrically connected in series. The unit battery 11 uses a flat lithium ion secondary battery covered with a laminate film.
 本実施形態の負荷2は、駆動回路21により駆動されるモータ20である。ただし、負荷2には、モータ20の駆動回路21に加え、ライトや液晶ディスプレイ等も駆動する複数の駆動回路を設けるようにしても良い。 The load 2 of the present embodiment is a motor 20 driven by a drive circuit 21. However, in addition to the drive circuit 21 of the motor 20, the load 2 may be provided with a plurality of drive circuits for driving a light, a liquid crystal display, and the like.
 電池パック1と負荷2は、電池パック1に搭載するコネクタ12に、負荷2に搭載するコネクタ22を嵌合させることで電気的に接続させている。 The battery pack 1 and the load 2 are electrically connected by fitting the connector 22 mounted on the load 2 to the connector 12 mounted on the battery pack 1.
 電池パック1の二次電池10の高電位側端子と、コネクタ12の正端子1Bとの間には、充電スイッチ13と放電スイッチ14とが、電気的に直列に接続されている。また、電池パック1の二次電池10の低電位側端子と、コネクタ12の負端子4Bとの間には、電流検出抵抗15が、電気的に接続されている。 A charge switch 13 and a discharge switch 14 are electrically connected in series between the high potential side terminal of the secondary battery 10 of the battery pack 1 and the positive terminal 1 B of the connector 12. Further, a current detection resistor 15 is electrically connected between the low potential side terminal of the secondary battery 10 of the battery pack 1 and the negative terminal 4 B of the connector 12.
 本実施形態の放電スイッチ14と充電スイッチ13は、何れもPチャンネルのMOSFETを用いており、互いのドレイン端子Dは接続してあり、ソース端子Sは二次電池10の正極と、コネクタ12の正端子1Bとにそれぞれ接続してある。また、ゲート端子Gは、電池パック制御回路16に接続してある。 The discharge switch 14 and the charge switch 13 according to this embodiment both use P-channel MOSFETs, the drain terminals D of each other are connected, and the source terminal S is the positive electrode of the secondary battery 10 and the connector 12. Each is connected to the positive terminal 1B. The gate terminal G is connected to the battery pack control circuit 16.
 一方、負荷2の駆動回路21には、コネクタ22の正端子1Lと負端子4Lが電気的に接続してある。本実施形態のモータ20は直流モータであり、駆動回路21は、パワーMOSFETで構成したフルブリッジ回路であり、正極端子1Lと負端子4Lは、このフルブリッジ回路のハイサイドとローサイドの電源に、それぞれ接続してある。負荷制御回路23は、このパワーMOSFETのゲート端子の電圧を変化させることによって、モータ20に供給する電流量(すなわち、モータ駆動トルクやモータ回転速度など)を制御する。本実施の形態の負荷制御回路23は、汎用のCPUにより実現することができる。 On the other hand, the positive terminal 1 L and the negative terminal 4 L of the connector 22 are electrically connected to the drive circuit 21 of the load 2. The motor 20 of the present embodiment is a direct current motor, the drive circuit 21 is a full bridge circuit configured by power MOSFETs, and the positive terminal 1L and the negative terminal 4L serve as the high side and low side power supplies of the full bridge circuit. Each is connected. The load control circuit 23 controls the amount of current supplied to the motor 20 (that is, motor driving torque, motor rotation speed, etc.) by changing the voltage of the gate terminal of the power MOSFET. The load control circuit 23 of the present embodiment can be realized by a general-purpose CPU.
 駆動回路21は、コネクタ12、コネクタ22同士の嵌合により、互いに電気的に接続した正端子1Bと正端子1L、及び、及び負端子4Bと負端子4Lを経由して二次電池10と電力を授受する。負荷制御回路23は、正端子1Lと負端子4Lを経由して二次電池10から電力を供給される。 The drive circuit 21 is electrically connected to the secondary battery 10 via the positive terminal 1B and the positive terminal 1L, and the negative terminal 4B and the negative terminal 4L, which are electrically connected to each other by fitting the connector 12 and the connector 22 to each other. Give and receive The load control circuit 23 is supplied with power from the secondary battery 10 via the positive terminal 1L and the negative terminal 4L.
 電池パック1に搭載した電池パック制御回路16は、放電スイッチ14と充電スイッチ13の開成(オフ)と閉成(オン)を制御することで二次電池10の充放電を制御する。 A battery pack control circuit 16 mounted on the battery pack 1 controls charging / discharging of the secondary battery 10 by controlling opening (off) and closing (on) of the discharge switch 14 and the charge switch 13.
 本実施の形態の電池パック制御回路16は、放電スイッチ14と充電スイッチ13に用いたPチャネルMOSFETのゲート端子Gそれぞれに、このMOSFETがオンする電圧とオフする電圧を切換えて出力することで、放電スイッチ14と充電スイッチ13のオフとオンを制御している。本実施の形態の電池パック制御回路16は、汎用のCPUにより実現することができる。また、電池パック制御回路16は、二次電池10の高電位側端子と低電位側端子を経由して、二次電池10から電力の供給を受けている。 The battery pack control circuit 16 according to the present embodiment switches and outputs the voltage at which the MOSFET is turned on and the voltage at which it is turned off to each of the gate terminals G of the P-channel MOSFETs used for the discharge switch 14 and the charge switch 13. The off and on of the discharge switch 14 and the charge switch 13 are controlled. The battery pack control circuit 16 of the present embodiment can be realized by a general-purpose CPU. Further, the battery pack control circuit 16 receives supply of power from the secondary battery 10 via the high potential side terminal and the low potential side terminal of the secondary battery 10.
 電池パック制御回路16の充放電電流検出回路161は、充放電電流検出回路161が内蔵するA/Dコンバータ(不図示)によりA/D変換して計測した電流検出抵抗15の両端の電圧差に基づき二次電池10の充放電電流を計測する。 The charge / discharge current detection circuit 161 of the battery pack control circuit 16 measures the voltage difference between both ends of the current detection resistor 15 which is A / D converted and measured by an A / D converter (not shown) incorporated in the charge / discharge current detection circuit 161. The charge / discharge current of the secondary battery 10 is measured based on that.
 コネクタ12をコネクタ22に嵌合した場合、電池パック制御回路16の通信回路162と負荷2の負荷制御回路23に搭載した通信回路231とは、コネクタ12の通信端子3Bとコネクタ22の通信端子3Lを介して接続される。 When the connector 12 is fitted to the connector 22, the communication circuit 162 of the battery pack control circuit 16 and the communication circuit 231 mounted on the load control circuit 23 of the load 2 are the communication terminal 3 B of the connector 12 and the communication terminal 3 L of the connector 22. Connected through.
 本実施形態では、通信回路として1線シリアル通信回路を用いている。したがって、通信端子3Bと通信端子3Lが接続すると、通信回路162と通信回路231は、1線シリアル通信が可能になる。なお、通信回路には、2線非同期シリアル通信や同期3線シリアル通信、パラレル通信なども採用できる。この場合、所要通信端子数が変わるが、コネクタの端子数を各通信方式に応じて変えればよい。 In the present embodiment, a one-wire serial communication circuit is used as the communication circuit. Therefore, when the communication terminal 3B and the communication terminal 3L are connected, the communication circuit 162 and the communication circuit 231 can perform one-wire serial communication. The communication circuit may employ two-wire asynchronous serial communication, synchronous three-wire serial communication, parallel communication, and the like. In this case, although the required number of communication terminals changes, the number of connector terminals may be changed according to each communication method.
 電池パック制御回路16は、通信回路162から通信回路231に通信要求を発信してから現在までの時間をタイマ163で計測することで、負荷2の通信回路231の状態を取得する。 The battery pack control circuit 16 acquires the state of the communication circuit 231 of the load 2 by measuring the time from the communication circuit 162 to the communication circuit 231 after the communication request has been issued by the timer 163.
 本実施形態のタイマ163は、クロック回路(不図示)から出力されるクロック信号の立ち上がり回数を計測することで時間を計測するカウンタ回路(不図示)を複数備える。タイマ163での計測時間は、各カウンタ回路が有するクリア端子(不図示)にクリア信号を入力することでそれぞれ0に設定できる。 The timer 163 of the present embodiment includes a plurality of counter circuits (not shown) for measuring time by measuring the number of times of rising of a clock signal output from a clock circuit (not shown). The measurement time of the timer 163 can be set to 0 by inputting a clear signal to a clear terminal (not shown) of each counter circuit.
 本実施形態の電池パック制御回路16は、通信回路162から通信回路231に通信要求を発信した時刻を0として、発信からの経過時間をタイマ163で計数し、経過時間が予め定めたタイムアウト時間を超えても通信回路231から通信回路162に応答がない場合、通信回路162と通信回路231は不通状態にあると判定した後、再度、通信回路162から通信回路231に通信要求を発信する。 The battery pack control circuit 16 of the present embodiment counts the elapsed time from the transmission by the timer 163, with the time when the communication request is transmitted from the communication circuit 162 to the communication circuit 231 as 0, and the elapsed time is a predetermined timeout time. If there is no response from the communication circuit 231 to the communication circuit 162, the communication circuit 162 and the communication circuit 231 determine that they are disconnected, and then the communication circuit 162 sends a communication request to the communication circuit 231 again.
 タイムアウト時間内に通信回路231から通信回路162に応答があった場合、通信回路162と通信回路231は開通状態にあると判定し、タイムアウト時間の経過後、再度、通信回路162から通信回路231に通信要求を発信する。 If there is a response from the communication circuit 231 to the communication circuit 162 within the time-out time, the communication circuit 162 and the communication circuit 231 determine that they are in the open state, and after the time-out time elapses, the communication circuit 162 sends the communication circuit 231 again. Send a communication request.
 本実施形態の電池パック制御回路16は、通信回路162と通信回路231が不通状態にある場合、不通状態の継続時間をタイマ163で計測し、不通状態の継続時間が予め定めた第1基準時間を超えた場合、負荷の状態は通信停止状態にあると判定する。そして、その後、本実施形態の電池パック制御回路16は、不通状態の継続時間のタイマ163での計測を停止する。 When the communication circuit 162 and the communication circuit 231 are in the disconnected state, the battery pack control circuit 16 according to the present embodiment measures the duration of the disconnected state by the timer 163, and the duration time of the disconnected state is a first reference time. When it exceeds, it is determined that the load state is in the communication stop state. And after that, the battery pack control circuit 16 of this embodiment stops the measurement in the timer 163 of the continuation time of a disconnection state.
 本実施形態の電池パック制御回路16は、通信回路162と通信回路231が開通状態にあると判定した場合、負荷の状態は通信停止状態にないと判定し、不通状態の継続時間のタイマ163での計測の停止を解除する。 If the battery pack control circuit 16 of this embodiment determines that the communication circuit 162 and the communication circuit 231 are in the open state, it determines that the load state is not in the communication stop state, and the timer 163 of the continuation time of the disconnection state Release the stop of measurement of.
 本実施形態では、負荷2は電動アシスト自転車であると前提しているので、上述した第1基準時間は、0.1秒から100秒が望ましい。本実施形態の電池パック1では、第1基準時間は1秒としている。このようにすることで、走行時の振動や衝撃に起因した通信の遮断がある場合にも、本実施形態に係る放電方法が安定して適用できる。 In the present embodiment, it is assumed that the load 2 is an electrically assisted bicycle, so the above-mentioned first reference time is desirably 0.1 seconds to 100 seconds. In the battery pack 1 of the present embodiment, the first reference time is one second. By doing this, the discharge method according to the present embodiment can be stably applied even when communication is interrupted due to vibration or shock during traveling.
 なお、以下の実施形態では、負荷2としてパワーアシスト自転車を例にとり説明するが、本発明は、電気自動車などの負荷2にも適用することができる。 In the following embodiments, a power assist bicycle is described as an example of the load 2, but the present invention can be applied to a load 2 such as an electric car.
 メモリ164は、通信回路162を介して取得した負荷2の状態を記録する。メモリ164は、複数のアドレスで記録位置が特定される複数の記録領域を有している。負荷2の状態には、負荷2の容量需要の情報や待機ステータス情報を含んでいる。本実施形態における負荷2の容量需要の情報とは、負荷2で消費する容量の情報を表し、容量需要の情報には、負荷2の待機電流の情報を含んでいる。 The memory 164 records the state of the load 2 acquired via the communication circuit 162. The memory 164 has a plurality of recording areas whose recording positions are specified by a plurality of addresses. The state of load 2 includes information on capacity demand of load 2 and standby status information. The information of the capacity demand of the load 2 in the present embodiment represents the information of the capacity consumed by the load 2, and the information of the capacity demand includes the information of the standby current of the load 2.
 本実施形態では、負荷2の待機電流とは、負荷制御回路23がモータ20の駆動を停止し、通信回路231を含む負荷制御回路23の機能を停止した時に負荷2の電気回路が消費する定常的な暗電流である。この暗電流は、負荷2の電気回路に固有の消費電流であるので、予め測定することもできる。本実施形態の負荷制御回路23に搭載したメモリ232には、この予め測定した待機電流が記録してある。 In the present embodiment, the standby current of the load 2 refers to the steady state consumed by the electric circuit of the load 2 when the load control circuit 23 stops driving the motor 20 and stops the function of the load control circuit 23 including the communication circuit 231. Dark current. This dark current can be measured in advance because it is a current consumption inherent to the electric circuit of the load 2. The standby current measured in advance is recorded in the memory 232 mounted in the load control circuit 23 of the present embodiment.
 待機ステータス情報は、少なくも負荷2が待機状態にあるか否かを表す待機フラグを含む。待機フラグは、1bitの情報であり、待機フラグ=1が、負荷2が待機状態にあることを表し、待機フラグ=0が、負荷2が待機状態にないことを表す。 The standby status information includes at least a standby flag indicating whether the load 2 is in the standby state. The standby flag is 1-bit information, and the standby flag = 1 represents that the load 2 is in the standby state, and the standby flag = 0 represents that the load 2 is not in the standby state.
 本実施形態のメモリ164とメモリ232には、フラッシュメモリを用いることができる。 A flash memory can be used as the memory 164 and the memory 232 of this embodiment.
 電池パック1は、負荷2との通信が開通状態にある場合(すなわち、通信回路162と通信回路231が開通状態にある場合)、通信回路162を介して負荷2の待機電流の情報を取得し、メモリ164の待機電流の記録領域(不図示)に記録する。なお、本実施形態の電池パック制御回路16では、メモリ164の待機電流の記録領域には、負荷2の代表的な待機電流の情報が予め記録してある。また、本実施例のメモリ164には、予め計測した二次電池10の満充電容量も記録してある。 When communication with the load 2 is in the open state (that is, when the communication circuit 162 and the communication circuit 231 are in the open state), the battery pack 1 acquires information on the standby current of the load 2 via the communication circuit 162. , Recording in the recording area (not shown) of the standby current of the memory 164. In the battery pack control circuit 16 of the present embodiment, information of typical standby current of the load 2 is recorded in advance in the recording region of the standby current of the memory 164. Further, the memory 164 of the present embodiment also records the full charge capacity of the secondary battery 10 measured in advance.
 容量計算回路165は、充放電電流検出回路161が計測した充放電電流の計測結果とメモリ164から読みだした負荷2の待機電流の情報に基づき、電池パック1の充放電容量を算出する。 The capacity calculation circuit 165 calculates the charge / discharge capacity of the battery pack 1 based on the measurement result of the charge / discharge current measured by the charge / discharge current detection circuit 161 and the information of the standby current of the load 2 read from the memory 164.
 本実施形態の容量計算回路165は、先ず、充放電電流検出回路161の内蔵A/Dコンバータで計測した現在の電流検出抵抗15の両端の電圧差を電流検出抵抗15の抵抗値で割って現在の充放電電流検出値とする。容量計算回路165では、充放電電流検出値の負値を放電電流値としている。次いで、容量計算回路165は、現在の充放電電流検出値に現在のA/D変換開始時刻から次のA/D変換開始時刻までの間の時間を掛けて現在の充放電容量検出値とする。 The capacitance calculation circuit 165 of this embodiment first divides the voltage difference between both ends of the current detection resistor 15 measured by the built-in A / D converter of the charge / discharge current detection circuit 161 by the resistance value of the current detection resistor 15 and The charge / discharge current detection value of In the capacitance calculation circuit 165, the negative value of the charge / discharge current detection value is used as the discharge current value. Then, capacity calculation circuit 165 multiplies the current charge / discharge current detection value by the time from the current A / D conversion start time to the next A / D conversion start time to obtain the current charge / discharge capacity detection value. .
 本実施形態では、負荷2の暗電流は、数10mAと大きく、充放電電流検出回路161で検出した充放電電流のみからでは、負荷での電力需要の有無の判定が難しい。 In the present embodiment, the dark current of the load 2 is as large as several tens of mA, and it is difficult to determine the presence or absence of the power demand at the load only from the charge / discharge current detected by the charge / discharge current detection circuit 161.
 容量計算回路165はまた、メモリ164の待機電流の記録領域から負荷2の待機電流の情報を読み出し、上述した現在のA/D変換開始時刻から次のA/D変換開始時刻までの間の時間を掛けて現在の待機放電容量値とする。容量計算回路165では、待機放電容量値は、負値である。 The capacity calculation circuit 165 also reads the information of the standby current of the load 2 from the recording region of the standby current of the memory 164, and the time from the current A / D conversion start time to the next A / D conversion start time To obtain the current standby discharge capacity value. In the capacitance calculation circuit 165, the standby discharge capacitance value is a negative value.
 容量計算回路165は、A/D変換の開始時刻が経過する毎に、上述した充放電容量検出値、及び/または待機放電容量値を現在の充放電容量に積算して二次電池10の充放電容量とする。 Each time the start time of A / D conversion elapses, capacity calculation circuit 165 integrates the above-described charge / discharge capacity detection value and / or standby discharge capacity value to the current charge / discharge capacity to charge secondary battery 10. Let it be the discharge capacity.
 電池パック制御回路16のプルアップ抵抗167は、その1端が二次電池10の高電位側の端子に接続され、他の1端がコネクタ12の操作スイッチ端子2Bに接続された抵抗器である。操作スイッチ端子2Bの電位は、入力回路166に入力してある。 Pull-up resistor 167 of battery pack control circuit 16 is a resistor having one end connected to the high potential side terminal of secondary battery 10 and the other end connected to operation switch terminal 2 B of connector 12. . The potential of the operation switch terminal 2B is input to the input circuit 166.
 コネクタ12とコネクタ22を嵌合した時、操作スイッチ端子2Bは、負荷2の操作スイッチ端子2Lに接続する。 When the connector 12 and the connector 22 are fitted, the operation switch terminal 2 B is connected to the operation switch terminal 2 L of the load 2.
 操作スイッチ端子は、操作スイッチ233の1端に接続してあり、操作スイッチ233の他端は、コネクタ22の負端子4Lに接続してある。 The operation switch terminal is connected to one end of the operation switch 233, and the other end of the operation switch 233 is connected to the negative terminal 4 L of the connector 22.
 本実施形態の操作スイッチ233は、トグル式のスイッチである。入力回路166に入力される電位は、操作スイッチがオフする(あるいは操作スイッチ端子3Bと操作スイッチ端子3Lが接続していない)と二次電池10の高電位側の端子電位に近づき、操作スイッチ233がオンすると負端子4Lの端子電位に近づく。 The operation switch 233 of the present embodiment is a toggle switch. The potential input to the input circuit 166 approaches the terminal potential on the high potential side of the secondary battery 10 when the operation switch is turned off (or the operation switch terminal 3B and the operation switch terminal 3L are not connected), and the operation switch 233 Approaches the terminal potential of the negative terminal 4L.
 本実施形態の入力回路166は、入力電位を、ヒステリシス付コンパレータ(不図示)を介して二値化したうえで電池パック制御回路16に入力しており、電池パック制御回路16は、操作スイッチ233がオフしている時はH(High)状態であり、オンしている時はL(Low)状態であると判定できる。 The input circuit 166 according to the present embodiment binarizes the input potential through a comparator with hysteresis (not shown) and then inputs the input potential to the battery pack control circuit 16. The battery pack control circuit 16 operates the operation switch 233. When the switch is off, it is in the H (High) state, and when it is on, the switch can be determined to be in the L (Low) state.
 なお、入力回路166の最大入力電圧に制限がある場合に等には、上述したプルアップ抵抗167に代えて、電圧レギュレータ回路などを用い、入力回路166への最大入力電圧を調整することもできる。 If there is a limit to the maximum input voltage of input circuit 166, the maximum input voltage to input circuit 166 can be adjusted using a voltage regulator circuit or the like instead of pull-up resistor 167 described above. .
 次に、本実施形態の電池パック1の放電方法を、図2を参照して説明する。 Next, a method of discharging the battery pack 1 of the present embodiment will be described with reference to FIG.
 図2では、電池パック1のコネクタ12と負荷2のコネクタ22は、嵌合しており、電気的に接続しているとしている。 In FIG. 2, the connector 12 of the battery pack 1 and the connector 22 of the load 2 are fitted and electrically connected.
 ステップ01において、電池パック制御回路16は、入力回路166への入力状態に基づき負荷の状態を条件判断する。電池パック制御回路16は、入力回路166への入力がH状態であると操作スイッチ233はオフの状態にあると判断する(ステップ01 Yes)。 In step 01, the battery pack control circuit 16 determines the condition of the load based on the input condition to the input circuit 166. The battery pack control circuit 16 determines that the operation switch 233 is in the off state when the input to the input circuit 166 is in the H state (step 01 Yes).
 一方、電池パック制御回路16は、入力回路166への入力がL状態であると、操作スイッチ233はオフの状態にないと判断する(ステップ01 No)。 On the other hand, when the input to the input circuit 166 is in the L state, the battery pack control circuit 16 determines that the operation switch 233 is not in the off state (Step 01 No).
 なお、上述したステップ01では、電池パック制御回路16は、入力回路166への入力がH状態、L状態にあるとき、操作スイッチ233が、それぞれオフ、オンの状態にあると判断するとした。 In step 01 described above, the battery pack control circuit 16 determines that the operation switch 233 is in the off and on states, respectively, when the input to the input circuit 166 is in the H and L states.
 この判断は、入力回路166への瞬時の入力状態に基づき判断することもできるが、望ましくは、入力回路166への入力状態が所定の時間継続した場合に操作スイッチ233が、それぞれオフ、オンの状態にあると判断するともできる。 This determination can also be made based on the instantaneous input state to the input circuit 166, but desirably, when the input state to the input circuit 166 continues for a predetermined time, the operation switch 233 is off and on respectively. It can also be judged that it is in the state.
 本実施形態に係る電池パック1では、操作スイッチ233は、人が操作することを前提としているので、入力回路166への入力状態が、0.1秒~10秒継続した場合に操作スイッチ233が、それぞれオフ、オンの状態にあると判断するとよい。特に、本実施形態においては、入力回路166への入力状態が、1秒継続した場合に操作スイッチ233が、それぞれオフ、オンの状態にあると判断している。 In the battery pack 1 according to the present embodiment, since the operation switch 233 is assumed to be operated by a person, when the input state to the input circuit 166 continues for 0.1 seconds to 10 seconds, the operation switch 233 It is good to judge that they are off and on respectively. In particular, in the present embodiment, when the input state to the input circuit 166 continues for one second, it is determined that the operation switch 233 is in the off state and the on state, respectively.
 このように状態を平準化することで、操作スイッチ233のオン、オフに伴うチャタリングなどに起因した状態の誤判定を減らすことができる。本実施形態の電池パック1では、タイマ163で入力回路166の入力状態の継続時間を計測し、同じ入力状態が1秒以上継続した場合に操作スイッチ233が、それぞれオフ、オンの状態にあると判断しているが、例えば、端子操作スイッチ端子2Bの電位を、時定数1秒のローパスフィルタ(不図示)を介して入力回路166に入力するなどとしても良い。 By leveling the state in this manner, it is possible to reduce erroneous determination of the state caused by chattering accompanying the on / off of the operation switch 233 and the like. In the battery pack 1 of this embodiment, the timer 163 measures the continuation time of the input state of the input circuit 166, and when the same input state continues for one second or more, the operation switch 233 is in the off state and the on state, respectively. Although determined, for example, the potential of the terminal operation switch terminal 2B may be input to the input circuit 166 through a low pass filter (not shown) having a time constant of 1 second.
 ステップ02において、電池パック制御回路16は、通信回路231の通信状態に基づき、負荷の状態を条件判断する。電池パック制御回路16は、負荷の状態が通信停止状態にある場合(ステップ02 Yes)、ステップ03に処理を進め、負荷の状態が通信停止状態にない場合(ステップ02 No)、処理を終了する。 In step 02, the battery pack control circuit 16 determines the condition of the load based on the communication condition of the communication circuit 231. The battery pack control circuit 16 advances the process to step 03 if the load state is in the communication stop state (Yes in step 02), and ends the process if the load state is not in the communication stop state (No in step 02). .
 ステップ03において、電池パック制御回路16は、放電スイッチ14のゲート端子Gへの現在の出力電圧に基づき、放電スイッチ14のオン、オフを条件判断する。電池パック制御回路16は、放電スイッチ14がオンである場合(ステップ03 Yes)、ステップ04に処理を進め、放電スイッチ14がオフである場合(ステップ03 No)、処理を終了する。 In step 03, the battery pack control circuit 16 determines whether the discharge switch 14 is on or off based on the current output voltage to the gate terminal G of the discharge switch 14. The battery pack control circuit 16 proceeds the process to step 04 when the discharge switch 14 is on (Yes in step 03), and ends the process when the discharge switch 14 is off (No in step 03).
 ステップ04において、電池パック制御回路16は、放電スイッチ14をオフした後、処理を終了する。 In step 04, the battery pack control circuit 16 ends the processing after the discharge switch 14 is turned off.
 ステップ05において、電池パック制御回路16は、放電スイッチ14のゲート端子Gへの現在の出力電圧に基づき、放電スイッチ14のオン、オフを条件判断する。電池パック制御回路16は、放電スイッチ14がオフである場合(ステップ05 Yes)、ステップ06に処理を進め、放電スイッチ14がオフである場合(ステップ05 No)、処理を終了する。 In step 05, the battery pack control circuit 16 determines on / off of the discharge switch 14 based on the current output voltage to the gate terminal G of the discharge switch 14. The battery pack control circuit 16 proceeds the process to step 06 if the discharge switch 14 is off (Yes in step 05), and ends the process if the discharge switch 14 is off (No in step 05).
 ステップ06において、電池パック制御回路16は、放電スイッチ14をオンした後、処理を終了する。 In step 06, the battery pack control circuit 16 ends the processing after the discharge switch 14 is turned on.
 以上の動作により、本発明に係る電池パック、及び電池パックの放電方法によれば、エネルギーの供給先である負荷2の電力需要の有無を負荷の状態に基づき判定し、電池パック1からのエネルギーの供給を放電制御スイッチ14で制御するので、負荷2の待機電力が大きい場合であっても電池パック1の使用時間を長くできる。 According to the above-described operation, according to the battery pack and the method of discharging the battery pack of the present invention, the presence or absence of the power demand of the load 2 which is the energy supply destination is determined based on the load state. Because the discharge control switch 14 controls the supply of the battery pack 1, the usage time of the battery pack 1 can be extended even when the standby power of the load 2 is large.
 なお、上述した実施形態では、負荷の状態に基づく電池パック1の放電方法を詳述したが、上述した負荷の状態に基づく電池パック1の放電方法は、電池パック内部の状態に基づく放電方法と併用しても本発明の効果が得られる。 In the embodiment described above, the method of discharging the battery pack 1 based on the state of load has been described in detail, but the method of discharging the battery pack 1 based on the state of load described above is a method of discharging based on the state of the battery pack Even when used in combination, the effects of the present invention can be obtained.
 具体的には、電池パック1の電池パック制御回路16は、電流検出抵抗15で検出した放電電流が予め定めた過電流値や短絡電流値を超えた場合、負荷の状態に優先して放電スイッチ14をオフする、または、電池パック制御回路16が二次電池10の端子電圧を計測し、二次電池10の端子電圧が、予め定めた過放電電圧より小さい場合、負荷の状態に優先して放電スイッチ14をオフするなどとすることで、本発明の効果を得ながら、過電流、短絡や過放電から電池を保護することもできる。 Specifically, when the discharge current detected by the current detection resistor 15 exceeds a predetermined overcurrent value or short-circuit current value, the battery pack control circuit 16 of the battery pack 1 gives priority to the state of the load and the discharge switch. 14 is turned off, or the battery pack control circuit 16 measures the terminal voltage of the secondary battery 10, and if the terminal voltage of the secondary battery 10 is smaller than a predetermined overdischarge voltage, priority is given to the state of the load. By turning off the discharge switch 14 or the like, the battery can also be protected from over current, short circuit and over discharge while obtaining the effects of the present invention.
 また、電池パック1に搭載した温度センサ(不図示)で検出した電池パック1内の温度が、予め定めた電池パック1の運用温度範囲から外れた場合、負荷の状態に優先して放電スイッチ14をオフするなど、他の電池保護と併用しても良い。 Further, when the temperature in the battery pack 1 detected by a temperature sensor (not shown) mounted on the battery pack 1 is out of a predetermined operating temperature range of the battery pack 1, the discharge switch 14 is prioritized over the state of the load. It may be used in combination with other battery protection, such as turning off.
 また、上述した実施形態では、充電スイッチ13にはMOSFETを用いるとした。 In the embodiment described above, a MOSFET is used as the charge switch 13.
 したがって、電池パック1は、充電スイッチ13のオン、オフに関わらず、充電スイッチ13の寄生ダイオードを経由して放電電流を出力できる。しかし、放電中に充電スイッチ13での熱損を防ぐためには、放電電流が流れている間は、充電スイッチ13もオンすることが望ましい。具体的には、電池パック制御回路16が、充放電電流検出回路161での充放電電流の計測結果に基づき、二次電池10から放電電流が流れていると判定した場合(より簡便には、電池パック制御回路16が、放電スイッチ14をオンする場合)には、充電スイッチ13もオンすることが望ましい。 Therefore, the battery pack 1 can output the discharge current via the parasitic diode of the charge switch 13 regardless of whether the charge switch 13 is on or off. However, in order to prevent heat loss in the charge switch 13 during discharge, it is desirable that the charge switch 13 be turned on while the discharge current is flowing. Specifically, when the battery pack control circuit 16 determines that the discharge current is flowing from the secondary battery 10 based on the measurement result of the charge / discharge current in the charge / discharge current detection circuit 161 (more simply, When the battery pack control circuit 16 turns on the discharge switch 14), it is desirable to turn on the charge switch 13 as well.
 また、上述した本発明の実施形態では、電池パック制御回路16が、通信回路162から通信回路231に通信要求を発信するとした。しかし、負荷制御回路23が、通信回路231から通信回路162に通信要求を発信するとしても本発明の効果が得られる。 Further, in the embodiment of the present invention described above, the battery pack control circuit 16 transmits a communication request from the communication circuit 162 to the communication circuit 231. However, even if the load control circuit 23 sends a communication request from the communication circuit 231 to the communication circuit 162, the effect of the present invention can be obtained.
 つまり、負荷制御回路23は、内蔵するタイマ(不図示)で計測した予め定めた通信時間間隔毎に通信回路231から通信回路162に負荷制御回路23に通信要求を発信するとし、電池パック制御回路16は、通信回路231から通信要求を受けずにいる時間をタイマ163で計数し、この通信要求を受けずにいる時間が予め定めたタイムアウト時間を超えた場合、通信回路231と通信回路162は不通状態にあると判定し、通信回路231から通信要求を受けた場合、通信回路231と、通信回路162は開通状態にあると判定することもできる。なお、上述した通信時間間隔は、望ましくは、第1基準時間未満とすることができる。 That is, the load control circuit 23 transmits a communication request to the load control circuit 23 from the communication circuit 231 to the communication circuit 162 at predetermined communication time intervals measured by a built-in timer (not shown), and the battery pack control circuit The timer 16 counts the time spent without receiving a communication request from the communication circuit 231 by the timer 163, and when the time spent without receiving this communication request exceeds a predetermined timeout time, the communication circuit 231 and the communication circuit 162 If it is determined that the communication circuit 231 is in the disconnection state and a communication request is received from the communication circuit 231, it can be determined that the communication circuit 231 and the communication circuit 162 are in the open state. The above-mentioned communication time interval can be desirably less than the first reference time.
 また、上述した本発明の実施形態では、負荷2の状態として「通信停止状態」や「操作スイッチの操作オフ状態」を用いるとした。しかし、他の状態を用いても本発明の効果が得られる。つまり、負荷2は、電池パック1に、通信回路231と通信回路162を介して、負荷2の「電力需要の有無の状態」を通信データとして発信し、電池パック制御回路16は、「電力需要の有無の状態」の通信データに基づき条件判断し、電力需要が無しの状態の場合に放電スイッチ14をオフし、電力需要が有りの状態の場合に放電スイッチ14をオンするなどともできる。 Further, in the embodiment of the present invention described above, the “communication stop state” or the “operation switch off state” is used as the state of the load 2. However, the effects of the present invention can be obtained using other states. That is, the load 2 transmits the "state of presence / absence of power demand" of the load 2 as communication data to the battery pack 1 via the communication circuit 231 and the communication circuit 162, and the battery pack control circuit 16 It is possible to judge the condition based on the communication data of “presence or absence” and turn off the discharge switch 14 when there is no power demand, and turn on the discharge switch 14 when there is a power demand.
 次に、本実施形態の電池パック1の容量検出方法を、図3を参照して説明する。 Next, a method of detecting the capacity of the battery pack 1 according to the present embodiment will be described with reference to FIG.
 容量計算回路165は、メモリ164から待機フラグを読み出し、待機フラグが1である場合、現在の二次電池10の充放電容量に積算する容量として待機放電容量値を選択する(ステップ11 Yes)。一方、待機フラグが1でない場合(すなわち、待機フラグが0である場合)、現在の二次電池10の充放電容量に積算する容量として充放電容量値を選択する(ステップ11 No)。 The capacity calculation circuit 165 reads the standby flag from the memory 164, and when the standby flag is 1, selects the standby discharge capacity value as the capacity to be integrated to the current charge and discharge capacity of the secondary battery 10 (Yes in step 11). On the other hand, when the standby flag is not 1 (ie, when the standby flag is 0), the charge / discharge capacity value is selected as the capacity to be integrated to the current charge / discharge capacity of the secondary battery 10 (step 11 No).
 容量計算回路165は、現在の二次電池10の充放電容量に、選択した待機放電容量値あるいは充放電容量値を加算し、現在の充放電容量をこの加算結果で置き換える。 The capacity calculation circuit 165 adds the selected standby discharge capacity value or charge / discharge capacity value to the current charge / discharge capacity of the secondary battery 10, and replaces the current charge / discharge capacity with this addition result.
 容量計算回路165は、二次電池10の満充電容量をメモリ164から読み出し、この満充電容量に現在の充放電容量を加算した結果を、電池パック1の容量の検出値とする。 The capacity calculation circuit 165 reads the full charge capacity of the secondary battery 10 from the memory 164 and adds the current charge / discharge capacity to the full charge capacity to obtain the result of detection of the capacity of the battery pack 1.
 以上の動作により、本発明の容量検出方法では、簡易な回路構成で高精度に電池パック1の容量が検出できる。 According to the above operation, in the capacity detection method of the present invention, the capacity of the battery pack 1 can be detected with high accuracy with a simple circuit configuration.
 なお、上述した実施形態では、「待機放電容量値」を負荷2の暗電流に基づき計測するとしたが、負荷2の暗電流と電池パック1の有する電気回路の暗電流の加算値に基づき計測するとしても本発明の効果が有られる。電池パック1の有する電気回路の暗電流は、電池パック1の電気回路に固有の消費電流であるので、予め測定し、メモリ164に記録しておくことで、容量計算回路165での容量検出時に加算できる。 In the above embodiment, the “standby discharge capacity value” is measured based on the dark current of the load 2. However, the measurement is performed based on the sum of the dark current of the load 2 and the dark current of the electric circuit of the battery pack 1 Also, the effects of the present invention can be obtained. Since the dark current of the electric circuit of the battery pack 1 is a consumption current inherent to the electric circuit of the battery pack 1, the dark current is measured in advance and recorded in the memory 164 to detect the capacity in the capacity calculation circuit 165. It can be added.
 次に、本発明の第2の実施形態における電池パック1の容量検出方法を、図4を参照して説明する。 Next, a method of detecting the capacity of the battery pack 1 according to the second embodiment of the present invention will be described with reference to FIG.
 容量計算回路165は、充放電電流検出回路161が計測した充放電電流が負値(放電電流)であり、かつ電流基準値以上の場合、現在の二次電池10の充放電容量に積算する容量として待機放電容量値を選択する(ステップ31 Yes)。ここに、電流基準値は負の値を採る。一方、充放電電流が負値(放電電流)でないか、あるいは電流基準値未満の場合、現在の二次電池10の充放電容量に積算する容量として充放電容量値を選択する(ステップ31 No)。 When the charge / discharge current measured by the charge / discharge current detection circuit 161 is a negative value (discharge current) and is equal to or greater than the current reference value, the capacity calculation circuit 165 integrates the current charge / discharge capacity of the secondary battery 10 The standby discharge capacity value is selected as (step 31 Yes). Here, the current reference value takes a negative value. On the other hand, if the charge / discharge current is not a negative value (discharge current) or less than the current reference value, the charge / discharge capacity value is selected as the capacity to be integrated with the current charge / discharge capacity of secondary battery 10 (step 31 No) .
 ここに、電流基準値は、絶対値の比較で、充放電電流検出回路161の内蔵A/Dコンバータの分解能より大きく採ることが望ましい。本実施形態の電池パック1では、電池パック1からの最大放電電流と待機電流の典型値として、それぞれ10Aと10mAを前提にしているので、電流基準値を80mAと設定することで、充放電電流検出回路161の内蔵A/Dコンバータのダイナミックレンジを8bit(符号ビット1ビットを含む。1bitは78mA。)と、簡易な回路構成に抑えられ、かつ3桁以上の広い検出レンジと、高いS/Nを有する高精度な電池パックの容量検出が実現できる。 Here, it is desirable that the current reference value be larger than the resolution of the built-in A / D converter of the charge / discharge current detection circuit 161 in comparison of absolute values. In the battery pack 1 of the present embodiment, 10 A and 10 mA are assumed as typical values of the maximum discharge current and standby current from the battery pack 1, respectively. Therefore, the charge and discharge current is set by setting the current reference value to 80 mA. The dynamic range of the built-in A / D converter of the detection circuit 161 is suppressed to a simple circuit configuration such as 8 bits (including 1 sign bit, 1 bit is 78 mA), and a wide detection range of 3 digits or more and a high S / S. Capacitance detection of a highly accurate battery pack having N can be realized.
 上述したように、本発明の第2の実施形態に係る容量検出方法でも、簡易な回路構成で、高精度に二次電池の容量が検出できる。 As described above, even with the capacity detection method according to the second embodiment of the present invention, the capacity of the secondary battery can be detected with high accuracy with a simple circuit configuration.
 また、上述した実施形態では、説明を簡略化するため、負荷2の待機電流は、定常的な暗電流であるとしたが、待機電流には、例えば、電動アシスト自転車に搭載した電灯(ライト)などの発光素子に関する消費電流の情報などを含めることもできる。 In the above-described embodiment, the standby current of the load 2 is a steady dark current to simplify the description. However, for the standby current, for example, a light mounted on a motor-assisted bicycle Information on the current consumption of the light emitting element such as
 この場合、上述した本発明の第1の実施形態は、以下の様に変形できる。 In this case, the first embodiment of the present invention described above can be modified as follows.
 つまり、図1において、負荷2には、コネクタ22の正端子1Lと負端子4Lから電力を供給される電灯が搭載されており、該電灯への電力の供給(点灯)と遮断(消灯)を切換える電灯スイッチが搭載されており、負荷制御回路23は、該電灯スイッチを切換えて該電灯の点灯と消灯を制御し、メモリ232には、該電灯の点灯に要する電流の情報と、該電灯が点灯しているか消灯しているかを示す点灯フラグが記録されており、該点灯フラグは、通信回路231と通信回路162を介して転送され、メモリ164に記録されていると変形し、さらに、図3において、「ステップ11」が「Yes」でかつ該点灯フラグが点灯を表す場合、該点灯に要する電流と待機電流を時間積算し、「ステップ11」が「Yes」でかつ該点灯フラグが消灯を表す場合、ステップ12と同様に待機電流を時間積算すると変形しても、本発明の効果が得られる。 That is, in FIG. 1, the load 2 is mounted with a lamp to which power is supplied from the positive terminal 1L and the negative terminal 4L of the connector 22, and power supply (lighting) and interruption (lighting out) to the lamp are performed. A light switch for switching is mounted, and the load control circuit 23 switches the light switch to control the turning on and off of the light, and the memory 232 contains information on the current required to turn on the light and the light. A lighting flag indicating whether the light is on or off is recorded, and the lighting flag is transferred if it is transferred through the communication circuit 231 and the communication circuit 162 and is recorded in the memory 164, and further, it is shown in FIG. In step 3, when "step 11" is "Yes" and the lighting flag indicates lighting, the current required for the lighting and the standby current are integrated over time, and "step 11" is "Yes" and the lighting flag When referring to off, be modified similarly to integrating the standby current time step 12, the effect of the present invention is obtained.
 上記の例では、発光素子として電灯(ライト)を用いる場合について説明したが、発光素子としてはLEDなどのその他のものも用いることができる。 In the above-mentioned example, although the case where a light (light) was used as a light emitting element was explained, other things, such as LED, can also be used as a light emitting element.
 また、上述した実施形態では、電池パック1の二次電池10は、電気的に直列に接続した7個の単位電池11を含むとしたが、電池パックに含む単位電池の数や電気的な接続形態は、電池パックに求められる出力電圧や容量により適宜変更でき、例えば、直列に接続した10個の単位電池の2列を並列に接続した、合計20個の単位電池を含むなどとできる。 In the embodiment described above, although the secondary battery 10 of the battery pack 1 includes seven unit cells 11 electrically connected in series, the number of unit cells included in the battery pack and the electrical connection The form can be appropriately changed depending on the output voltage and capacity required for the battery pack, and can be, for example, a total of 20 unit cells in which two rows of 10 unit cells connected in series are connected in parallel.
 また、単位電池11には、ラミネート型のリチウムイオン電池に代えて、円筒電池や角型電池、ニッケル水素電池などの他の形態の電池を用いても本発明の効果が得られる。 In addition, the effects of the present invention can be obtained by using a battery of another form such as a cylindrical battery, a rectangular battery, or a nickel hydrogen battery instead of a laminate type lithium ion battery as the unit battery 11.
産業上の利用性Industrial applicability
 本発明は、リチウムイオン電池などの二次電池を用いた電池パック及び、電池パックの容量算出方法に関する。従来、電池パックから電動アシスト自転車などに電力を供給する際に、電池パックの放電電流を計測するためには、検出レンジが広く(A/D変換器のレンジで10bit以上)、高S/N(少なくも、数10mA程度の微小信号が正確に計測可能な程度)の電流計測系が必要になり、計測系が煩雑で高価になっていた。一方、本発明に係る電池パック及び電池パックの容量算出方法によれば、負荷の情報(容量需要の情報)と電池パックの情報(充放電電流)に基づき電池パックの容量を検出するので、簡易な回路構成で高精度に電池パックの容量を計測することができ、産業上の利用性が非常に大きい。 The present invention relates to a battery pack using a secondary battery such as a lithium ion battery, and a method of calculating the capacity of the battery pack. Conventionally, when power is supplied from a battery pack to a motor-assisted bicycle or the like, the detection range is wide (10 bits or more in the A / D converter range) and high S / N in order to measure the discharge current of the battery pack. A current measurement system (at least a level capable of accurately measuring a minute signal of about several tens of mA) is required, and the measurement system is complicated and expensive. On the other hand, according to the battery pack and the battery pack capacity calculation method according to the present invention, the capacity of the battery pack is detected based on load information (capacity demand information) and battery pack information (charge / discharge current). It is possible to measure the capacity of the battery pack with high accuracy with a simple circuit configuration, and the industrial applicability is very large.
1・・・電池パック、2・・・負荷、10・・・二次電池、11・・・単位電池、12・・・コネクタ、13・・・充電スイッチ、14・・・放電スイッチ、15・・・電流検出抵抗、16・・・電池パック制御回路、20・・・モータ、21・・・駆動回路、22・・・コネクタ、23・・・負荷制御回路、161・・・充放電電流検出回路、162・・・通信回路、163・・・タイマ、164・・・メモリ、165・・・容量計算回路、166・・・入力回路、167・・・プルアップ抵抗、231・・・通信回路、232・・・メモリ、233・・・操作スイッチ DESCRIPTION OF SYMBOLS 1 ... battery pack, 2 ... load, 10 ... secondary battery, 11 ... unit battery, 12 ... connector, 13 ... charge switch, 14 ... discharge switch, 15 · · · Current detection resistance, 16 · · · battery pack control circuit, 20 · · · motor, 21 · · · drive circuit, 22 · · · · · · · · · · · · · · load control circuit, 161 · · · · charge and discharge current detection Circuit, 162: communication circuit, 163: timer, 164: memory, 165: capacitance calculation circuit, 166: input circuit, 167: pull-up resistor, 231: communication circuit , 232 ... memory, 233 ... operation switch

Claims (16)

  1. 負荷に電力を供給する電池パックであって、
    該電池パックの充放電電流を計測する計測部と、
    該負荷の容量需要の情報を取得する負荷情報取得部と、
    取得された該容量需要の情報に基づき、計測された該充放電電流により容量を求めるか、該容量需要の情報により容量を求めるか、を決定する決定部と、
    前記決定部における決定に応じて容量を算出する容量算出部と、を有する電池パック。
    A battery pack that supplies power to the load,
    A measurement unit that measures the charge / discharge current of the battery pack;
    A load information acquisition unit that acquires information on capacity demand of the load;
    A determination unit that determines whether to determine a capacity based on the measured charge and discharge current based on the acquired information on the capacity demand or to determine a capacity on the basis of the information on the capacity demand;
    A capacity calculation unit that calculates a capacity according to the determination in the determination unit.
  2. 負荷に電力を供給する電池パックであって、
    該電池パックの充放電電流を計測する計測部と、
    充放電電流が所定の値であるかを判断する判断部と、
    前記判断部の判断結果に基づき、計測された該充放電電流により容量を求めるか、該容量需要の情報により容量を求めるか、を決定する決定部と、
    前記決定部における決定に応じて容量を算出する容量算出部と、を有する電池パック。
    A battery pack that supplies power to the load,
    A measurement unit that measures the charge / discharge current of the battery pack;
    A determination unit that determines whether the charge / discharge current has a predetermined value;
    A determination unit that determines whether to determine a capacity based on the measured charge and discharge current based on the determination result of the determination unit or to determine a capacity based on information on the capacity demand;
    A capacity calculation unit that calculates a capacity according to the determination in the determination unit.
  3. 前記判断部では、充放電電流が基準値以上であり、かつ、0未満であるかを判断する請求項2に記載の電池パック。 The battery pack according to claim 2, wherein the determination unit determines whether the charge and discharge current is equal to or greater than a reference value and less than zero.
  4. 該容量需要の情報に該負荷を構成する電気回路の待機電流を含む請求項1乃至請求項3のいずれか1項に記載の電池パック。 The battery pack according to any one of claims 1 to 3, wherein the information of the capacity demand includes a standby current of an electric circuit constituting the load.
  5. 該電気回路に発光素子を含む請求項4に記載の電池パック。 The battery pack according to claim 4, wherein the electric circuit includes a light emitting element.
  6. 該発光素子がライトである請求項5に記載の電池パック。 The battery pack according to claim 5, wherein the light emitting element is a light.
  7. 該電池がリチウムイオン二次電池である請求項1乃至請求項6のいずれか1項に記載の電池パック。 The battery pack according to any one of claims 1 to 6, wherein the battery is a lithium ion secondary battery.
  8. 該負荷が、パワーアシスト自転車、あるいは電気自動車である請求項1乃至請求項7のいずれか1項に記載の電池パック。 The battery pack according to any one of claims 1 to 7, wherein the load is a power assist bicycle or an electric vehicle.
  9. 負荷に電力を供給する電池パックの容量を算出する電池パックの容量算出方法であって、
    該電池パックの充放電電流を計測する計測工程と、
    該負荷の容量需要の情報を取得する負荷情報取得工程と、
    取得された該容量需要の情報に基づき、計測された該充放電電流により容量を求めるか、該容量需要の情報により容量を求めるか、を決定する決定工程と、
    を有する電池パックの容量算出方法。
    A battery pack capacity calculation method for calculating the capacity of a battery pack that supplies power to a load, the capacity calculation method comprising:
    Measuring the charge and discharge current of the battery pack;
    A load information acquisition step of acquiring information of capacity demand of the load;
    A determination step of determining whether to determine a capacity based on the measured charge / discharge current or a capacity based on information on the capacity demand based on the acquired information on the capacity demand;
    A method of calculating the capacity of a battery pack having:
  10. 負荷に電力を供給する電池パックの容量を算出する電池パックの容量算出方法であって、
    該電池パックの充放電電流を計測する計測工程と、
    充放電電流が所定の値であるかを判断する判断工程と、
    前記判断工程の判断結果に基づき、計測された該充放電電流により容量を求めるか、該容量需要の情報により容量を求めるか、を決定する決定工程と、
    を有する電池パックの容量算出方法。
    A battery pack capacity calculation method for calculating the capacity of a battery pack that supplies power to a load, the capacity calculation method comprising:
    Measuring the charge and discharge current of the battery pack;
    A determination step of determining whether the charge / discharge current is a predetermined value;
    A determination step of determining whether to determine a capacitance based on the measured charge and discharge current or a capacitance based on information on the capacitance demand based on the determination result of the determination step;
    A method of calculating the capacity of a battery pack having:
  11. 前記判断工程では、充放電電流が基準値以上であり、かつ、0未満であるかを判断する請求項10に記載の電池パックの容量算出方法。 The battery pack capacity calculation method according to claim 10, wherein in the determination step, it is determined whether the charge and discharge current is equal to or greater than a reference value and less than zero.
  12. 該容量需要の情報に該負荷を構成する電気回路の待機電流を含む請求項9乃至請求項11のいずれか1項に記載の電池パックの容量算出方法。 The method for calculating the capacity of a battery pack according to any one of claims 9 to 11, wherein the information of the capacity demand includes a standby current of an electric circuit constituting the load.
  13. 該電気回路に発光素子を含む請求項12に記載の電池パックの容量算出方法。 The method for calculating the capacity of a battery pack according to claim 12, wherein the electric circuit includes a light emitting element.
  14. 該発光素子がライトである請求項13に記載の電池パックの容量算出方法。 The method according to claim 13, wherein the light emitting element is a light.
  15. 該電池がリチウムイオン二次電池である請求項9乃至請求項14のいずれか1項に記載の電池パックの容量算出方法。 The battery pack capacity calculation method according to any one of claims 9 to 14, wherein the battery is a lithium ion secondary battery.
  16. 該負荷が、パワーアシスト自転車、あるいは電気自動車である請求項9乃至請求項15のいずれか1項に記載の電池パックの容量算出方法。 The battery pack capacity calculation method according to any one of claims 9 to 15, wherein the load is a power assist bicycle or an electric vehicle.
PCT/JP2013/073302 2012-09-24 2013-08-30 Battery pack and battery pack capacity calculation method WO2014045837A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012209506 2012-09-24
JP2012-209506 2012-09-24

Publications (1)

Publication Number Publication Date
WO2014045837A1 true WO2014045837A1 (en) 2014-03-27

Family

ID=50341158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/073302 WO2014045837A1 (en) 2012-09-24 2013-08-30 Battery pack and battery pack capacity calculation method

Country Status (1)

Country Link
WO (1) WO2014045837A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210320387A1 (en) * 2020-04-08 2021-10-14 Honda Motor Co., Ltd. Terminal apparatus for battery module assembly

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06124146A (en) * 1992-10-13 1994-05-06 Sanyo Electric Co Ltd Battery monitor system and battery pack
JP2008128686A (en) * 2006-11-17 2008-06-05 Nippon Yusoki Co Ltd Secondary battery monitoring apparatus of automated guided vehicle
JP2011203189A (en) * 2010-03-26 2011-10-13 Furukawa Electric Co Ltd:The Apparatus and method for estimating battery internal state

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06124146A (en) * 1992-10-13 1994-05-06 Sanyo Electric Co Ltd Battery monitor system and battery pack
JP2008128686A (en) * 2006-11-17 2008-06-05 Nippon Yusoki Co Ltd Secondary battery monitoring apparatus of automated guided vehicle
JP2011203189A (en) * 2010-03-26 2011-10-13 Furukawa Electric Co Ltd:The Apparatus and method for estimating battery internal state

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210320387A1 (en) * 2020-04-08 2021-10-14 Honda Motor Co., Ltd. Terminal apparatus for battery module assembly

Similar Documents

Publication Publication Date Title
JP5225559B2 (en) Battery pack abnormality determination method and battery pack
EP2159585B1 (en) Battery management system and driving method thereof
JP4960022B2 (en) Battery pack and abnormality determination method thereof
US7638976B2 (en) Lithium ion battery and method of power conservation for the same
EP2330431A1 (en) Battery pack and method of sensing voltage of battery pack
KR20090057876A (en) Apparatus and method for correcting measurements of remaining capacity of battery pack
JP2010259234A (en) Battery pack
WO2012005186A1 (en) Voltage measuring circuit and method
US9281698B2 (en) Battery pack
JP2007240234A (en) Pack battery with two or more secondary batteries connected in series/parallel
JP2009264779A (en) Battery state detection circuit, battery pack, and charging system
KR20150131977A (en) Battery remaining power predicting device and battery pack
JP2011137681A (en) Impedance detection circuit, battery power supply apparatus, and battery utilization system
KR101561887B1 (en) Apparatus and method for managing battery based on differential SOC estimation and battery pack using it
US20110311850A1 (en) Secondary battery device
JP2009254165A (en) Battery state detection circuit, battery pack, and charging system
JP2005312239A (en) Charging method for secondary battery and battery pack
EP2571137B1 (en) Circuit for a small electric appliance with an accumulator and method for measuring a charging current
WO2014045837A1 (en) Battery pack and battery pack capacity calculation method
JP5561049B2 (en) Battery voltage measuring device
JP4213624B2 (en) Battery control system
JP2021173551A (en) Assembled battery state determination device and state determination method
KR101017327B1 (en) battery charging current control circuit of protection circuit for secondary battery
JP2015102336A (en) Battery monitoring device
JP2008275524A (en) Battery pack and residual capacity computing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13839671

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13839671

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP