JPH06116935A - Liquefaction preventing method for sand ground - Google Patents

Liquefaction preventing method for sand ground

Info

Publication number
JPH06116935A
JPH06116935A JP9839591A JP9839591A JPH06116935A JP H06116935 A JPH06116935 A JP H06116935A JP 9839591 A JP9839591 A JP 9839591A JP 9839591 A JP9839591 A JP 9839591A JP H06116935 A JPH06116935 A JP H06116935A
Authority
JP
Japan
Prior art keywords
jacket
ground
inner space
liquefied
ground material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9839591A
Other languages
Japanese (ja)
Other versions
JP2592362B2 (en
Inventor
Akira Kobayashi
明 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP9839591A priority Critical patent/JP2592362B2/en
Publication of JPH06116935A publication Critical patent/JPH06116935A/en
Application granted granted Critical
Publication of JP2592362B2 publication Critical patent/JP2592362B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

PURPOSE:To create a columnar non-liquefying ground as a saturated loose sand ground is compacted under management of a quantitative strength without exercising an adverse influence on a proximity structure and to reduce a betterment cost. CONSTITUTION:By using a jacket outer cover bettering device A having a function to contract and expand a jacket 5 and a function to feed with a pressure a non-liquefying ground material, a jacket inner space 6 of the device A is forced into a vacuum and the jacket 5 is combined and brought into adhesion to a rod. The jacket outer cover bettering device A is penetrated down to a given depth. High pressure fluid is then fed in the jacket inner space 6 to expand the jacket. Simultaneous discharge of the non-liquefying ground material through the tip part of a forced feed pipe for the non-liquefying ground material with a pressure higher than the holding pressure of the jacket inner space 6, high pressure fluid in the jacket inner space 6 in an amount equivalent to the discharge amount thereof is discharged to a ground as a balance is kept, and orderly replacement with the non-liquefying ground material is carried out.

Description

【発明の詳細な説明】 「産業上の利用分野」飽和したゆるい砂地盤が地震を受
け、この時の震動の強さがある限界値以上になると、砂
地盤は液状化し構造物に壊滅的な被害を与える。このた
め本発明は砂地盤を締固めながら柱状の不液状化地盤を
造成して、液状化の発生を防止するための地盤改良工法
にかんするものである。 「従来の技術」液状化の発生を防止するための従来の主
な地盤改良工法を挙げると、振動締固めによって密度の
増大を図るものとしては、バイブロフローテーション工
法、締固め砂杭工法などがある。これらの締固めは主に
機械的な振動によるものである。地震時の砂層内の間隙
水圧の上昇をおさえる排水工法としては、グラベルドレ
ーン工法、パイプドレーン工法などがある。 「発明が解決しようとする問題点」ところで前記に示し
た従来の地盤改良工法、例えばグラベルドレーン工法、
パイプドレーン工法は地震時において砂地盤の液状化は
防止できるものの地盤の不同沈下は避けられず、構造物
に悪影響を残すことになる。またバイブロフローテーシ
ョン工法、締固め砂杭工法は有力な工法であるが、地盤
改良時、近接構造物に対して機械的振動による悪影響を
与える可能性があること、また改良設備等が大がかりと
なるので改良費が非常に高くなる傾向にある。さらに改
良効果を高めるためには締固め工法だけでは改良費用は
莫大なものとなる。また地盤改良における施工管理のう
ち特に重要なのは改良時の強度管理であり、改良中にリ
アルタイムに把握でき、且つ目的の改良強度を得るため
に、地盤土性等の変化に応じてフレキシブルに対応する
必要がある。しかし従来の強度管理は、せいぜい改良強
度を間接的に検出しているもので満足のいくものではな
い。この発明は、前記問題点を鑑みてなされたもので、
飽和したゆるい砂地盤を近接構造物に悪影響を与えるこ
となく定量的強度管理のもとに締固めながら柱状の不液
状化地盤を造成し、且つ改良費の大幅な低減を図れる改
良工法をいかにして実現するかを問題としている。 「問題点を解決するための手段」本発明による砂地盤の
改良方法は、砂地盤を締固め密度の増大を図りながら柱
状の不液状化地盤を造成し、液状化に強い複合地盤を造
成するものである。その方法はジャケットが収縮、膨脹
する機能と不液状化地盤材を圧送する機能を持つジャケ
ット外包改良装置を用いて改良するものである。ジャケ
ット外包改良装置の機構の一例をもとに説明すると貫入
軸力材を兼ねた不液状化地盤材の圧送管としての中空ロ
ッドの外面の軸方向に、先端部と頭部を外して対称に3
枚の補剛羽根板を固定し、この組合わせロッドの外面を
包み込むように装着する気密性を有する円筒状ジャケッ
トと組合わせロッドの間の密閉されたジャケット内空が
柱状に極限まで膨脹した時の内径を補剛羽根板の先端を
内接する円の直径と等しく設定する。次に地盤改良の方
法、作業工程はまず準備工程としてジャケット外包改良
装置のジャケット内空を真空化してジャケットを組合わ
せロッドに密着させた状態とする。続いての工程はジャ
ケット外包改良装置を所定の深さまで貫入させる。次の
工程はジャケット内空に高加圧流体を送ってジャケット
内空を膨脹させる。次の工程は不液状化地盤材をジャケ
ット内空の保持圧よりも高めの加圧で、不液状化地盤材
の圧送管の先端部より吐出させると同時に不液状化地盤
材の吐出量に相当するジャケット内空の高加圧流体をバ
ランスを図りながら地上に排出し、ジャケット外包改良
装置の先端部より上方に向って膨脹したジャケットを組
合わせロッドに押しつけ密着させながら不液状化地盤材
と順次置き換えていく。次の工程はジャケット外包改良
装置を引き揚げながら、組合わせロッドの跡空間を不液
状化地盤材で埋戻していく。以上の工程を1サイクルと
して、改良場所を移動しながらサイクルを繰返し行うこ
とにより所定の地盤を改良するものである。 「作 用」ジャケット外包改良装置の機構において、3
枚の対称の補剛羽根板及びジャケットの径を特別に設定
したことにより、ジャケットの膨脹の偏心を防止し、さ
らにジャケット内空を極限まで収縮させた時には、ジャ
ケット周長が組合わせロッドの表面よりもわずかに大き
目となり、ジャケットを組合わせロッドに無理なく密着
させることができる。次に地盤改良の方法、作業工程に
おいては、準備工程でジャケット内空を真空化してジャ
ケットを組合わせロッドに密着させた状態とする。この
ためジャケット外包改良装置の貫入抵抗は最少の状態と
なり、貫入工程は容易に行える。次に地盤の締固め工程
では、高加圧流体によりジャケットを柱状に膨脹させる
ので、周辺地盤はジャケットの膨脹圧により水平方向に
締固められる。この時膨脹圧を確認しながらゆっくり上
昇させることにより締固め工程は定量的に静的に確実に
行なえる。次に柱状の不液状化地盤を造成する工程にお
いては、不液状化地盤材の吐出圧とジャケット内空の保
持圧のバランスを図りながら操作するので締固めた地盤
を緩めることなく、又地盤沈下をおこすことなく不液状
化地盤を確実に造成することができる。 「実施例」以下、本発明の実施例について図面を参照し
て説明する。第1図の(A)図は本発明による改良機本
体であるジャケット外包改良装置の断面図である。図に
おいて符号1は貫入軸力材を兼ねた不液状化地盤材の圧
送管としての中空ロッドである。符号2は中空ロッド1
の先端部中心のノズルである。符号3は中空ロッド1の
先端部側面の3ケ所に設けた不液状化地盤材の吐出口で
ある。符号4は補剛羽根板で中空ロッド1の軸方向に対
称に3枚取付け固定されていて、中空ロッド1とともに
組合わせロッドを形成している。符号5は組合わせロッ
ドを外包する円筒状のジャケットである。符号6は組合
わせロッドとジャケット5の間の密閉されたジャケット
内空である。符号7は中空ロッド1の管内に配管された
高水圧管で、ノズル2に接続されている。符号8は同じ
く空気調圧管で、ジャケット内空6と複数の空気調圧孔
で接続されている。符号9は空気調圧孔である。符号1
0は補剛羽根板4で仕切られたジャケット内空6が常に
同圧となるように連絡された空気孔である。符号11は
ジャケット5の固定バンドである。図において符号イの
管は空気調圧管8の分岐管で真空ポンプに連絡されてい
る。符号ハは同じく高圧気ポンプに連絡されている。符
号ロの管は高水圧管7の延長管で高水圧ポンブに連絡さ
れている。符号二の管は中空ロッド1の延長管でグラウ
トポンプに連絡されている。第1図の(B)図はジャケ
ット外包改良装置の横断面図で、ジャケット5が極限ま
で収縮し組合わせロッドに密着した状態を示している。
(C)図は同じくジャケット5が極限まで膨脹した状態
を示している。第2図は施工概念図である。図において
符号Aはジャケット外包改良装置、符号Bはベースマシ
ーン、符号Cは地表面である。第2図はジャケット外包
改良装置を所定の位置に貫入したところを示している。
第3図は施工工程を示す図である。図において符号Dは
柱状の不液状化地盤である。第3図の(a)図はジャケ
ット外包改良装置Aを先端のノズル2から高圧水流を噴
射させながら所定の深さまで貫入させる工程を示してい
る。同じく(B)図は空気調圧管8を通して高圧気ポン
プにより高圧縮空気を送り、ジャケット5を膨脹させ周
辺地盤を締固めている工程を示している。同じく(C)
図は不液状化地盤材をジャケット内空6の保持圧よりも
高めの加圧で、中空ロッド1を通して圧送し吐出口3よ
り吐出させるとともに、不液状化地盤材の吐出量に相当
するジャケット内空6の圧縮空気をバランスを図りなが
ら、空気調圧管8を通して排出し、不液状化地盤材をジ
ャケット外包改良装置Aの先端部より上方に向っつてジ
ャケット内空6部分と順次置き換えていく工程を示して
いる。同じく(D)図はジャケット外包改良装置Aを引
き揚げながら組合わせロッドの跡空間を不液状化地盤材
で埋戻す工程を示している。以上砂地盤の液状化対策に
ついての本発明による実施例について説明した。本発明
による工法を粘性土軟弱地盤に応用する場合は、ジャケ
ット外包改良装置のジャケット表面に層状のドーレン材
を接着させたものを使用する。これを粘性土地盤に挿入
し、粘性土が塑性変形しない範囲内でゆっくりとジャケ
ットを膨脹させ、間隙水をドレーンで排出しながら地盤
を強制的に圧密させるとともにジャケット外包改良装置
の跡空間を固結地盤材で置換して複合地盤を形成するも
のである。 「発明の効果」本発明によるジャケット外包改良装置の
貫入、及び周辺地盤の締固めについてエネルギー及び施
工面から説明する。ジャケット外包改良装置の貫入時は
ジャケットが装置に密着しており、貫入抵抗は最少の状
態である。一般的にこの時の断面積はジャケットが極限
まで柱状に膨脹した時の断面積に対してわずか10%程
度となる。このため改良装置の貫入は本体の自重、先端
の高圧噴射流及び貫入補助装置で容易に行えるので、わ
ずかなエネルギーで近接構造物に影響を与えることなく
静的に行える。次に周辺地盤の締固めであるが、収縮状
態のジャケットを高加圧流体(高圧縮空気等)で柱状に
膨脹させ、周辺地盤を直接水平方向に締固めている。施
工時膨脹圧を確認しながらゆっくり上昇させることによ
り、締固めは定量的に静的に確実に行える。このため地
盤沈下をおこすことなく、また近接構造物に対しても安
全に施工ができる。また締固め砂杭工法のような縦方向
の機械的な振動エネルギーによる周辺地盤の締固めと異
なり、流体エネルギーによる水平方向の直接的締固めで
あるのでエネルギー効率が非常に良い。次に液状化防止
方法について説明する。本発明の液状化防止工法の原理
は、柱状の不液状化地盤をコアとして、周辺地盤を水平
方向に直接締固め砂層の限界間隙比に近ずけ、全体を複
合地盤として構成させるものである。これは砂層を締固
めただけの改良地盤よりもはるかに液状化に強い地盤と
なる。次に強度管理の方法について説明する。不液状化
地盤杭1本が受け持つ改良地盤層において、締固め後の
地盤層の間隙の減少は不液状化地盤柱の容積に相当する
ので、ジャケットの膨脹圧を測定することによって、締
固められた砂層の間隙比及び相対密度がリアルタイムに
求められる。このため定量的に強度管理が行なわれ、当
初計画の強度が得られない場合は、不液状化地盤柱1本
が受け持つ範囲を縮小させ、当初計画の強度の確保を図
る施工計画変更を随時行うことができる。次に地盤改良
費用について説明する。本発明による砂地盤の締固め、
不液状化地盤柱の造成などは流体エネルギーを利用して
いる。流体エネルギーはその制御が容易であるので、こ
れの設備は小規模で機動的なものとなっつている。また
不液状地盤材は現地土あるいは現地近接地の粘性土に流
動化を良くするための混和剤、及びセメントなどの固結
材を少量混入してつくるものであるから、非常に安価な
材料となっつている。このため地盤改良費は大幅に低減
されている。以上の説明のとおり本発明の工法は、定量
的な施工管理のもと地盤沈下を起こすことなく、近接構
造物に悪影響を与えることもなく、また安価な材料を使
用した不液状化地盤柱をコアーとした、液状化に強い複
合地盤を経済的に造成するものである。
[Detailed Description of the Invention] "Industrial application field" When saturated loose sand ground is subjected to an earthquake and the strength of vibration at this time exceeds a certain limit value, the sand ground is liquefied and the structure is devastating. Cause damage. Therefore, the present invention relates to a ground improvement method for preventing the occurrence of liquefaction by forming a columnar non-liquefied ground while compacting the sand ground. "Prior art" The conventional main ground improvement methods for preventing liquefaction are vibro flotation method and compacted sand pile method, which increase the density by vibration compaction. is there. These compactions are mainly due to mechanical vibrations. There are gravel drain method, pipe drain method, etc. as the drainage method for suppressing the increase of pore water pressure in the sand layer during an earthquake. "Problems to be solved by the invention" By the way, the conventional ground improvement method shown above, for example, the gravel drain method,
The pipe drain method can prevent liquefaction of the sand ground during an earthquake, but unequal subsidence of the ground is unavoidable, which will adversely affect the structure. The vibro flotation method and the compacted sand pile method are influential methods, but mechanical vibration may adversely affect neighboring structures during ground improvement, and improvement equipment will be large-scale. Therefore, the improvement cost tends to be very high. Further, in order to enhance the improvement effect, the compaction method alone would make the improvement cost enormous. In addition, strength management during improvement is particularly important in construction management for ground improvement, and it is possible to grasp in real time during improvement, and to flexibly respond to changes in the soil characteristics in order to obtain the desired improvement strength. There is a need. However, the conventional strength control is not satisfactory because it indirectly detects the improved strength at best. The present invention has been made in view of the above problems,
How to use an improved construction method that can create a columnar non-liquefied ground while compacting saturated loose sand ground under quantitative strength control without adversely affecting adjacent structures, and can significantly reduce improvement costs The question is whether or not it will be realized. "Means for Solving Problems" A method for improving sand ground according to the present invention is to form a columnar non-liquefied ground while compacting the sand ground to increase the density, thereby forming a composite ground resistant to liquefaction. It is a thing. The method is to improve by using a jacket envelope improving device having a function of contracting and expanding the jacket and a function of pumping the non-liquefied ground material. Explaining based on an example of the mechanism of the jacket envelope improving device, the tip and the head are removed symmetrically in the axial direction of the outer surface of the hollow rod as a pumping pipe for the non-liquefied ground material that also serves as the penetration axial force material. Three
When a pair of stiffening vanes are fixed and the outer surface of this combination rod is wrapped around, the airtight cylindrical jacket and the inner space of the closed jacket between the combination rods are expanded to a column shape to the maximum extent. The inner diameter of is set equal to the diameter of the circle inscribed at the tip of the stiffening vane. Next, in the ground improvement method and work step, as a preparatory step, the inside of the jacket of the jacket outer package improving apparatus is evacuated to bring the jacket into close contact with the rod. In the subsequent step, the jacket envelope improving device is penetrated to a predetermined depth. In the next step, a highly pressurized fluid is sent to the inside of the jacket to expand the inside of the jacket. The next step is to discharge the non-liquefied ground material from the tip of the feed pipe of the non-liquefied ground material by applying a pressure higher than the holding pressure in the jacket, and at the same time, it corresponds to the discharge amount of the non-liquefied ground material. The highly pressurized fluid in the air inside the jacket is discharged to the ground while balancing, and the jacket that expands upward from the tip of the jacket envelopment improvement device is pressed against the combination rod and brought into close contact with the non-liquefied ground material in order. Replace it. In the next step, the vacant space of the combination rod is backfilled with the non-liquefied ground material while the jacket envelope improving device is being pulled up. The above steps are set as one cycle, and the predetermined ground is improved by repeating the cycle while moving to the improvement place. In the mechanism of the “work” jacket envelope improving device, 3
By setting the diameter of the symmetrical stiffening vanes and the jacket specially, the eccentricity of the expansion of the jacket is prevented, and when the inner space of the jacket is contracted to the maximum, the jacket circumference is the surface of the combination rod. It is slightly larger than the above, and the jacket can be easily attached to the combination rod. Next, in the ground improvement method and work step, the inside of the jacket is evacuated in the preparation step to bring the jacket into close contact with the rod. For this reason, the penetration resistance of the jacket envelope improving device is at a minimum state, and the penetration process can be easily performed. Next, in the step of compacting the ground, the jacket is expanded in a columnar shape by the high-pressure fluid, so that the peripheral ground is compacted in the horizontal direction by the expansion pressure of the jacket. At this time, the compaction process can be quantitatively and statically performed reliably by slowly increasing the expansion pressure while checking the expansion pressure. Next, in the process of constructing the columnar non-liquefied ground, the operation is performed while balancing the discharge pressure of the non-liquefied ground material and the holding pressure in the air inside the jacket, so that the compacted ground does not loosen and the ground subsidence occurs. The non-liquefied ground can be reliably created without causing [Examples] Examples of the present invention will be described below with reference to the drawings. FIG. 1 (A) is a sectional view of a jacket encasing improving device which is an improving machine main body according to the present invention. In the figure, reference numeral 1 is a hollow rod as a pumping pipe for the non-liquefied ground material which also serves as a penetrating axial force material. Reference numeral 2 is a hollow rod 1
Is the nozzle at the center of the tip of the. Reference numeral 3 is a discharge port for the non-liquefied ground material provided at three locations on the side surface of the distal end portion of the hollow rod 1. Reference numeral 4 is a stiffening vane, three of which are symmetrically attached and fixed in the axial direction of the hollow rod 1, and form a combined rod together with the hollow rod 1. Reference numeral 5 is a cylindrical jacket that encloses the combination rod. Reference numeral 6 is a closed inner space of the jacket between the combination rod and the jacket 5. Reference numeral 7 is a high water pressure pipe which is piped in the hollow rod 1 and is connected to the nozzle 2. Reference numeral 8 is also an air pressure control pipe, which is connected to the jacket inner space 6 by a plurality of air pressure control holes. Reference numeral 9 is an air pressure adjusting hole. Code 1
Reference numeral 0 denotes an air hole which is communicated so that the jacket inner space 6 partitioned by the stiffening vane plate 4 always has the same pressure. Reference numeral 11 is a fixed band of the jacket 5. In the drawing, the pipe denoted by reference numeral a is a branch pipe of the air pressure adjusting pipe 8 and is connected to the vacuum pump. Symbol C is also connected to the high-pressure air pump. The pipe denoted by B is an extension pipe of the high water pressure pipe 7 and is connected to the high water pressure pump. The pipe denoted by reference numeral 2 is an extension pipe of the hollow rod 1 and is connected to the grout pump. FIG. 1 (B) is a cross-sectional view of the jacket envelope improving device, showing a state in which the jacket 5 contracts to the limit and is in close contact with the combination rod.
The figure (C) also shows a state where the jacket 5 is expanded to the limit. FIG. 2 is a conceptual diagram of construction. In the figure, symbol A is a jacket envelope improving device, symbol B is a base machine, and symbol C is the ground surface. FIG. 2 shows the jacket envelope improving device inserted into a predetermined position.
FIG. 3 is a diagram showing a construction process. In the figure, reference numeral D is a columnar non-liquefied ground. FIG. 3 (a) shows a step of penetrating the jacket envelope improving device A to a predetermined depth while injecting a high-pressure water stream from the nozzle 2 at the tip. Similarly, FIG. 3B shows a process in which highly compressed air is sent by a high-pressure air pump through the air pressure control pipe 8 to expand the jacket 5 and compact the surrounding ground. Similarly (C)
The figure shows that the non-liquefied ground material is pressurized at a pressure higher than the holding pressure of the inner space 6 of the jacket, pressure-fed through the hollow rod 1 and discharged from the discharge port 3, and the inside of the jacket corresponds to the discharge amount of the non-liquefied ground material. A process of discharging compressed air in the air 6 through the air pressure control pipe 8 while balancing, and sequentially replacing the non-liquefied ground material upward from the tip of the jacket outer casing improving device A with the air 6 in the jacket. Shows. Similarly, FIG. 3D shows a step of backfilling the trace space of the combination rod with the non-liquefied ground material while pulling up the jacket outer casing improving device A. The embodiment according to the present invention as a countermeasure against liquefaction of sand ground has been described above. When the method according to the present invention is applied to soft soil-soft ground, a jacket outer casing improving device having a layered drain material adhered to the jacket surface is used. Insert this into the cohesive soil, slowly expand the jacket within the range where the cohesive soil does not plastically deform, drain the pore water to forcibly consolidate the soil, and solidify the trace space of the jacket envelope improvement device. The composite ground is formed by substituting the ground material. [Effects of the Invention] Penetration of the jacket envelope improving device and compaction of the surrounding ground according to the present invention will be described in terms of energy and construction. When the jacket envelope improving device penetrates, the jacket is in close contact with the device, and the penetration resistance is at a minimum. Generally, the cross-sectional area at this time is only about 10% of the cross-sectional area when the jacket is expanded in a columnar shape to the limit. For this reason, the penetration of the improved device can be easily performed by the weight of the main body, the high-pressure jet flow at the tip, and the penetration assist device, and can be statically performed with a small amount of energy without affecting adjacent structures. Next, regarding the compaction of the surrounding ground, the jacket in the contracted state is expanded into a columnar shape with a highly pressurized fluid (such as highly compressed air), and the surrounding ground is directly compacted in the horizontal direction. By confirming the expansion pressure during construction and slowly raising it, compaction can be performed quantitatively and reliably. For this reason, it is possible to perform construction safely on adjacent structures without causing subsidence. Further, unlike the compaction of the surrounding ground by mechanical vibration energy in the vertical direction as in the compaction sand pile method, direct energy compaction in the horizontal direction by fluid energy is very efficient. Next, the liquefaction prevention method will be described. The principle of the liquefaction prevention construction method of the present invention is that the columnar non-liquefaction ground is used as a core, and the surrounding ground is directly compacted in the horizontal direction to approach the critical void ratio of the sand layer, and the whole is constructed as a composite ground. . This is a ground that is much more resistant to liquefaction than the improved ground that is simply compacted with a sand layer. Next, the strength management method will be described. In the improved ground layer which one liquefied ground pile is responsible for, the reduction of the gap in the ground layer after compaction corresponds to the volume of the liquefied ground column, so it is compacted by measuring the expansion pressure of the jacket. The void ratio and relative density of the sand layer are obtained in real time. For this reason, the strength is quantitatively controlled, and when the strength of the initial plan cannot be obtained, the area covered by one liquefied ground column is reduced, and the construction plan is changed as necessary to secure the strength of the initial plan. be able to. Next, the ground improvement cost will be described. Compaction of the sand ground according to the invention,
Fluid energy is used to create non-liquefied ground columns. Fluid energy is easy to control, so its equipment is small and agile. In addition, non-liquid ground material is a very inexpensive material because it is made by mixing a small amount of admixture for improving fluidization and solidifying material such as cement into cohesive soil in the local soil or in the vicinity of the site. It is getting worse. Therefore, the ground improvement cost has been reduced significantly. As described above, the construction method of the present invention does not cause ground subsidence under quantitative construction management, does not adversely affect adjacent structures, and also uses an inexpensive material for a non-liquefied ground column. It is an economical construction of a complex ground that is strong against liquefaction and that is used as a core.

【図面の簡単な説明】 第1図の(A)図は本発明によるジャケット外包改良装
置の断面図である。第1図の(B)図は(A)図の横断
面図で、ジャケットが極限まで収縮した状態を示してい
る。同じく(C)図はジャケットが柱状に極限まで膨脹
した状態を示している。第2図は施工概念図である。第
3図は施工順序図である。 A…ジャケット外包改良装置、B…ベースマシーン、C
…地表面、D…柱状の不液状化地盤、1…中空ロッド、
2…ノズル、3…吐出口、4…補剛羽根板、5…ジャケ
ット、6…ジャケット内空、7…高水圧管、8…空気調
圧管、9…空気調圧孔、10…空気孔、11…ジャケッ
ト固定バンド、
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 (A) is a sectional view of a jacket envelope improving device according to the present invention. FIG. 1 (B) is a transverse sectional view of FIG. 1 (A), showing a state where the jacket is contracted to the limit. Similarly, FIG. 7C shows a state in which the jacket is expanded in a columnar shape to the limit. FIG. 2 is a conceptual diagram of construction. FIG. 3 is a construction sequence diagram. A ... Jacket envelope improving device, B ... Base machine, C
... ground surface, D ... columnar non-liquefied ground, 1 ... hollow rod,
2 ... Nozzle, 3 ... Discharge port, 4 ... Stiffening vane plate, 5 ... Jacket, 6 ... Jacket inner air, 7 ... High water pressure pipe, 8 ... Air pressure control pipe, 9 ... Air pressure control hole, 10 ... Air hole, 11 ... Jacket fixing band,

Claims (1)

【特許請求の範囲】 (1)飽和したゆるい砂地盤の改良方法において、貫入
軸力材、不液状化地盤材圧送管、補剛羽根板等を組合わ
せた組合わせロッドの先端部と頭部を外して、気密性を
有する筒状のジャケットを前記組合わせロッドの外面を
包み込むように装着させ、組合わせロッドとジャケット
の間のジャケット内空を密閉状態としたジャケット外包
改良装置を用意し、ジャケット内空を真空化してジャケ
ットを組合わせロッドに密着させた状態とする準備工程
に続いて、前記ジャケット外包改良装置を所定の深さま
で貫入させる工程、次に前記ジャケット内空に高加圧流
体を送ることによりジャケット内空を膨脹させ、ジャケ
ット膨脹圧により周辺砂地盤を締固め高密度化を図のる
工程、次に不液状化地盤材をジャケット内空の保持圧よ
りも高めの加圧で、不液状化地盤材圧送管の先端部より
吐出させると同時に不液状化地盤材の吐出量に相当する
ジャケット内空の高加圧流体をバランスを図りながら地
上に排出し、締固めた地盤を緩めることなく、前記ジャ
ケット外包改良装置の先端部より上方に向かって膨脹し
たジャケットを組合わせロッドに押つけ密着させながら
不液状化地盤材と順次置換えていく工程、次にジャケッ
ト外包改良装置を引き揚げながら、組合わせロッドの跡
空間を不液状化地盤材で埋戻す工程を経て、これを改良
工程の1サイクルとして、改良場所を移動しながら前述
のサイクルを繰返し行うことにより、所定の地盤をジャ
ケットの膨脹により直接周辺地盤を強力に締固めるとと
もに締固めた地盤を緩めることなくジャケット外包改良
装置の跡空間を不液状化地盤材で置換して複合地盤を形
成することを特徴とする砂地盤の改良工法。 (2)前記ジャケット外包改良装置の構造において、貫
入軸力材を兼ねた不液状化地盤材の圧送管としての中空
ロッドの外面の軸方向に、先端部と頭部を外して対称に
3枚の補剛羽根板を固定し、この組合わせロッドの外面
を包み込むように装着する気密性を有する円筒状ジャケ
ットと組合わせロッドの間の密閉されたジャケット内空
が柱状に極限まで膨脹した時の内径を補剛羽根板の先端
を内接する円の直径と等しく設定することにより、ジャ
ケットが柱状に極限まで膨脹した時の偏心を防止し、さ
らにジャケット内空を極限まで収縮させた時にはジャケ
ット周長が組合わせロッドの表面の周長よりもわずかに
大き目となり、ジャケットを組合わせロッドに無理なく
密着させることを特徴とする特許請求範囲第一項記載の
ジャケット外包改良装置。
(1) In the method for improving saturated loose sand ground, the tip and the head of a combination rod in which a penetrating axial force material, a non-liquefied ground material pressure feed pipe, a stiffening vane plate, etc. are combined. , A tubular jacket having airtightness is attached so as to wrap the outer surface of the combination rod, and a jacket outer envelope improving device in which a jacket inner space between the combination rod and the jacket is sealed is prepared, Following the preparatory step of evacuating the inner space of the jacket to bring the jacket into close contact with the rod, the step of penetrating the jacket outer packaging improving device to a predetermined depth, and then the highly pressurized fluid in the inner space of the jacket. To inflate the inner space of the jacket and expand the jacket sand to densify the surrounding sand ground to increase the density, and then to hold the non-liquefied ground material in the inner space of the jacket. With a higher pressure than that, it is discharged from the tip of the liquefied ground material pumping pipe, and at the same time, the highly pressurized fluid inside the jacket, which is equivalent to the discharge amount of the liquefied ground material, is discharged to the ground while balancing. Then, without loosening the compacted ground, a step of sequentially replacing the non-liquefied ground material while pressing the jacket expanded toward the upper part of the jacket outer casing improving device against the combination rod while closely contacting it, Repeating the above-mentioned cycle while moving the improvement location through the step of backfilling the trace space of the combination rod with the non-liquefied ground material while pulling up the jacket encapsulation improvement device With this, the specified ground is strongly compacted directly by surrounding the ground by expanding the jacket, and the trace space of the jacket envelope improvement device is maintained without loosening the compacted ground. Improved method of Sand that was replaced by liquefied soil material and forming a composite ground. (2) In the structure of the jacket envelope improving device, three pieces are symmetrically arranged in the axial direction of the outer surface of the hollow rod as a pressure-feeding pipe for the non-liquefied ground material that also serves as the penetrating axial force material, with the tip and the head removed. The stiffening vane is fixed and the outer surface of this combination rod is wrapped around the outer surface of the cylindrical jacket and the closed jacket between the combination rod. By setting the inner diameter equal to the diameter of the circle that inscribes the tip of the stiffening blade, eccentricity is prevented when the jacket is expanded to the limit in a columnar shape, and the jacket circumference is shortened when the inner space of the jacket is contracted to the limit. Is slightly larger than the perimeter of the surface of the combination rod, so that the jacket is reasonably brought into close contact with the combination rod. Apparatus.
JP9839591A 1991-01-31 1991-01-31 Liquefaction prevention method for sand ground Expired - Lifetime JP2592362B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9839591A JP2592362B2 (en) 1991-01-31 1991-01-31 Liquefaction prevention method for sand ground

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9839591A JP2592362B2 (en) 1991-01-31 1991-01-31 Liquefaction prevention method for sand ground

Publications (2)

Publication Number Publication Date
JPH06116935A true JPH06116935A (en) 1994-04-26
JP2592362B2 JP2592362B2 (en) 1997-03-19

Family

ID=14218651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9839591A Expired - Lifetime JP2592362B2 (en) 1991-01-31 1991-01-31 Liquefaction prevention method for sand ground

Country Status (1)

Country Link
JP (1) JP2592362B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020084485A (en) * 2018-11-20 2020-06-04 五洋建設株式会社 Ground improvement device, ground improvement system, and ground improvement method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020084485A (en) * 2018-11-20 2020-06-04 五洋建設株式会社 Ground improvement device, ground improvement system, and ground improvement method

Also Published As

Publication number Publication date
JP2592362B2 (en) 1997-03-19

Similar Documents

Publication Publication Date Title
US4397588A (en) Method of constructing a compacted granular or stone column in soil masses and apparatus therefor
US10844567B2 (en) Soil densification system and method
US4634316A (en) Compacted deep foundation structure, method of and apparatus for building the same
US2555359A (en) Pile structure and method of making same
JPH06116935A (en) Liquefaction preventing method for sand ground
JP2554500B2 (en) Method of forming holes in the ground
JP2011058360A (en) Construction method for retaining wall structure
JP3714395B2 (en) Reinforcement method for the ground below existing structures
JP2011157804A (en) Sand ground improvement method and apparatus used for the same
JPH04336115A (en) Executing method for cast-in-place concrete pile
JP2509005B2 (en) Ground reinforcement method
EP2209948B1 (en) Method for the creation of a foundation pile
KR102224524B1 (en) Composite cast in place pile method using partially expanding apparatus for underground pipe
JPH028412A (en) Method and device for treating pile head
JP3671318B2 (en) Pile foundation reinforcement method for structures built near the revetment
JPH04336116A (en) Executing method for cast-in-place concrete pile
JPH07293195A (en) Deformation preventive construction method for natural ground
JP5079391B2 (en) Ground improvement method, outer pipe and injection pipe used for ground improvement method
JPH073791A (en) Method and device for extracting existing pile
JPH08326068A (en) Method for constructing hollow deep basis using air bag
JPH06128933A (en) Improvement method of liquefied subsoil and formation device of non-liquefied subsoil column
JP2013170388A (en) Repair method for inclined structure
JPH08284407A (en) Concrete pressure holding jig and form device
JPH1113070A (en) Forming method for consolidation grouting hole
JPS6353331B2 (en)