JPH06116710A - Aln coated metallic member and its production - Google Patents

Aln coated metallic member and its production

Info

Publication number
JPH06116710A
JPH06116710A JP27041592A JP27041592A JPH06116710A JP H06116710 A JPH06116710 A JP H06116710A JP 27041592 A JP27041592 A JP 27041592A JP 27041592 A JP27041592 A JP 27041592A JP H06116710 A JPH06116710 A JP H06116710A
Authority
JP
Japan
Prior art keywords
aln
film
torr
gas pressure
metallic member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP27041592A
Other languages
Japanese (ja)
Inventor
Hiroshi Sato
廣士 佐藤
Takenori Nakayama
武典 中山
Kenji Yamamoto
兼司 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP27041592A priority Critical patent/JPH06116710A/en
Publication of JPH06116710A publication Critical patent/JPH06116710A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To form an AlN film practically free from peeling on the surface of a metal and to provide an AlN coated metallic member excellent in corrosion resistance. CONSTITUTION:This AlN coated metallic member is constituted by forming an AlN film, having a columnar structure and oriented to (100) or (110) plane, on the surface of a metallic member. Moreover, by regulating argon gas pressure to a value higher than 2X10<-3>Torr or regulating film forming velocity to <=1.0Angstrom /sec, a sputtered AlN film having a columnar structure and oriented to (100) or (110) plane can be formed on the surface of a metallic member.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はAlN皮膜を金属部材表
面に形成させた耐食性に優れた金属部材に関するもので
あり、半導体プロセス機器等の高信頼性を必要とされる
機器部材として有用である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal member having an AlN coating formed on the surface of a metal member and having excellent corrosion resistance, and is useful as a device member such as a semiconductor process device which requires high reliability. .

【0002】[0002]

【従来の技術】窒化アルミニウム:AlNは、熱伝導性
が高く放熱性に優れる、電気絶縁性が高い、熱膨張率が
常温〜 200℃で単結晶シリコンとほぼ同じ、といった特
徴を有するセラミックス材料であり、高集積化が進むI
Cの基板材料として多く使用されている。AlNは化学
的にも安定な物質であり、塩酸、硫酸、フッ酸等の無機
酸や、溶融GaAsにも侵されない等の優れた耐食性を
持っている。
2. Description of the Related Art Aluminum nitride: AlN is a ceramic material having characteristics such as high thermal conductivity and excellent heat dissipation, high electrical insulation, and a coefficient of thermal expansion of approximately the same as single crystal silicon at room temperature to 200 ° C. Yes, high integration I
It is often used as a C substrate material. AlN is a chemically stable substance and has excellent corrosion resistance such that it is not corroded by inorganic acids such as hydrochloric acid, sulfuric acid and hydrofluoric acid, and molten GaAs.

【0003】このようなAlNの特性に着目して、金属
材料へのコーティング材料として検討された例がある
が、一般にセラミックス材料は、AlNに限らず気相コ
ーティング膜に点欠陥ができ易く、この欠陥を起点とし
て皮膜の剥離が起こるという問題があった。皮膜が剥離
すると金属材料が腐食されてしまうため、欠陥を減少さ
せる検討が行なわれているが、欠陥の存在しないセラミ
ックス材料の気相コーティング膜の生成は達成されてい
ないのが現状である。
There is an example in which a coating material for a metal material has been studied by paying attention to such characteristics of AlN, but in general, a ceramic material is not limited to AlN and a vapor phase coating film is apt to have point defects. There is a problem that the film peels off from the defect. Since the metal material is corroded when the coating film is peeled off, investigations have been made to reduce defects, but the present situation is that the production of a vapor-phase coating film of a ceramic material free of defects has not been achieved.

【0004】[0004]

【発明が解決しようとする課題】本発明は上記事情に着
目してなされたものであって、剥離しにくいAlN皮膜
を金属表面に形成する方法を見いだし、耐食性に優れた
AlN被覆金属部材を提供することを目的とするもので
ある。
The present invention has been made in view of the above circumstances, and has found a method for forming an AlN coating that is difficult to peel off on a metal surface, and provides an AlN-coated metal member having excellent corrosion resistance. The purpose is to do.

【0005】[0005]

【課題を解決するための手段】上記目的を達成した本発
明は、AlN被覆金属部材が、柱状組織を有し、かつ(1
00)または(110) 面に配向したAlN皮膜が金属材料の
表面に形成されてなるものであることを第1の要旨と
し、アルゴンガス圧を 2×10-3Torrより大きくするか、
または成膜速度を1.0 Å/秒以上にすることによって、
柱状組織を有し、かつ (100)または(110) 面に配向した
AlNスパッタリング皮膜を金属材料表面に形成させる
AlN被覆金属部材の製造方法を第2発明の要旨とす
る。
According to the present invention, which has achieved the above object, an AlN-coated metal member has a columnar structure and (1
The first gist is that the AlN film oriented to the (00) or (110) plane is formed on the surface of the metal material, and the argon gas pressure is set to be higher than 2 × 10 -3 Torr, or
Or by setting the film formation rate to 1.0 Å / sec or more,
The gist of the second invention is a method for producing an AlN-coated metal member having an AlN sputtering film having a columnar structure and oriented on the (100) or (110) plane on the surface of a metal material.

【0006】[0006]

【作用】本発明者等は、AlN皮膜のスパッタ条件と生
成皮膜特性について種々検討した結果、アルゴン:Ar
ガス圧がAlN皮膜の組織状態および配向状態と密接に
関係していることと、このAlN皮膜の組織・配向状態
が皮膜の強度を左右して剥離の抑制に影響を及ぼすこと
を明らかにし、本発明に到達したものである。以下本発
明を詳細に説明する。
The present inventors have made various examinations on the sputtering conditions and the characteristics of the formed film of the AlN film, and as a result, argon: Ar
It was clarified that the gas pressure is closely related to the microstructure and orientation of the AlN coating, and that the microstructure and orientation of the AlN coating influence the strength of the coating and affect the suppression of peeling. The invention has been reached. The present invention will be described in detail below.

【0007】本発明では、金属表面に形成されたAlN
皮膜が、柱状組織を有し、 (100)または(110) 面に配向
したものであることを必須要件とする。上記条件を満足
するAlN皮膜を形成するためには、スパッタリング法
において、Arガス圧を 2×10-3Torrより大きくするこ
とが好ましい。また、Arガス圧で制御できない時は、
AlNの成膜速度を1.0 Å/秒以上にしても上記条件を
満足するAlN皮膜が得られる。ターゲットをAlNと
して、Arガス圧を変化させたスパッタリングの実験結
果から、Arガス圧が 2×10-3Torr以下の時には、生成
するAlN皮膜が (002)面配向となり、粒状組織のまま
成長していることがわかった。 (002)面配向のAlN皮
膜を持つものは、 (100)または(110) 面に配向したAl
N皮膜に比べて強度が弱く、耐食性が劣ることも明らか
にした。(100) または(110) 面に配向したAlN皮膜の
耐食性が優れているのは次のような作用によるものと考
えられる。
In the present invention, AlN formed on the metal surface
It is essential that the film has a columnar structure and is oriented in the (100) or (110) plane. In order to form an AlN film satisfying the above conditions, the Ar gas pressure in the sputtering method is preferably higher than 2 × 10 −3 Torr. Also, when it is not possible to control with Ar gas pressure,
Even if the film forming rate of AlN is 1.0 Å / sec or more, an AlN film satisfying the above conditions can be obtained. From the experimental results of sputtering with ArN as the target and changing the Ar gas pressure, when the Ar gas pressure is 2 × 10 −3 Torr or less, the generated AlN film has the (002) plane orientation and grows with a grain structure. I found out. Those with AlN film with (002) plane orientation are those with Al oriented on (100) or (110) plane.
It was also clarified that the strength is weaker and the corrosion resistance is inferior to the N film. It is considered that the excellent corrosion resistance of the AlN film oriented on the (100) or (110) plane is due to the following action.

【0008】まず、腐食のプロセスを考えてみる。 金属材料にAlN皮膜がコーティングされると、ピン
ホール等の欠陥を通じて腐食媒体が金属に達し、欠陥部
直下の金属および金属−皮膜界面付近が腐食し始める。 欠陥部周辺の金属が腐食すると、金属と皮膜はもはや
密着しているとは言えない。 金属に密着していないAlN皮膜は、密着していない
部分が破壊することによって(破壊を伴って)完全に剥
離する。 金属の腐食がさらに広がって、皮膜の剥離も広がって
しまう。
First, consider the corrosion process. When the metal material is coated with the AlN film, the corrosive medium reaches the metal through defects such as pinholes, and the metal immediately below the defect and the vicinity of the metal-film interface begin to corrode. When the metal around the defect corrodes, the metal and the coating can no longer be said to be in close contact. The AlN film that is not in close contact with the metal is completely peeled off (with breakage) by breaking the part that is not in close contact with the metal. Corrosion of the metal further spreads, and peeling of the coating also spreads.

【0009】上記のプロセスを考えると、AlNの様な
セラミック材料をスパッタリングした場合、ピンホール
の生成を100%防止することは現時点では不可能であ
るため、およびの状態を防ぐことはできない。しか
し、AlN皮膜自体の強度を大きくすることによって、
金属から浮き上がった皮膜部分が破壊されて取れてしま
うことを防ぐことはできる。本発明の規定のAlN皮膜
は (002)面に配向した皮膜に比べて強度が2倍以上も高
いことから(後述の図5参照)、皮膜が強靭で破壊しに
くいため、剥離が抑制され、その結果耐食性が大きく向
上したものと考えられる。AlN皮膜の好ましいビッカ
ース硬度は1000HV以上である。1000HVよりビッカー
ス硬度が小さいと、上記の皮膜剥離抑制効果が発現しな
いため、耐食性に劣ったAlN被覆金属部材しか得られ
ない。
Considering the above process, it is impossible to prevent 100% formation of pinholes at the present time when a ceramic material such as AlN is sputtered. However, by increasing the strength of the AlN film itself,
It is possible to prevent the film part floating from the metal from being broken and removed. Since the strength of the AlN coating specified by the present invention is more than twice as high as that of the coating oriented on the (002) plane (see FIG. 5 to be described later), the coating is tough and is not easily broken, so that peeling is suppressed, As a result, it is considered that the corrosion resistance is greatly improved. The preferred Vickers hardness of the AlN coating is 1000 HV or higher. If the Vickers hardness is less than 1000 HV, the effect of suppressing the film peeling is not exhibited, and only an AlN-coated metal member having poor corrosion resistance can be obtained.

【0010】本発明では、AlN皮膜をスパッタリング
法によって作製したが、柱状組織を有し、かつ (100)ま
たは(110) 面に配向したAlN皮膜を得られるならば、
CVD法や反応性イオンプレーティング法を用いること
もできる。また、AlN以外のコーテイング材料に上記
作用を応用し、高機能性被覆金属部材を提供することも
可能である。基材となる金属材料は特に限定されない
が、AlN皮膜との親和性、密着性に優れた金属が好ま
しい。AlN皮膜と金属材料の間に1層以上の密着性改
善層を設けて、さらに耐食性を向上させることもでき
る。
In the present invention, the AlN film was produced by the sputtering method, but if an AlN film having a columnar structure and oriented in the (100) or (110) plane can be obtained,
A CVD method or a reactive ion plating method can also be used. Further, it is also possible to provide a highly functional coated metal member by applying the above action to a coating material other than AlN. The metal material used as the base material is not particularly limited, but a metal having excellent affinity and adhesion with the AlN film is preferable. It is possible to further improve the corrosion resistance by providing at least one adhesion improving layer between the AlN film and the metal material.

【0011】[0011]

【実施例】以下実施例によって本発明をさらに詳述する
が、下記実施例は本発明を制限するものではなく、前・
後記の趣旨を逸脱しない範囲で変更実施することは全て
本発明の技術範囲に包含される。 実施例 金属材料として JIS 5245 に示されるAl−Mg合金を
用いて、鏡面研磨後洗浄した。(株)日本真空製のRF
(高周波)マグネトロンスパッタリング装置を使用して
以下の手順でAlNの成膜を行なった。また、成膜条件
を表1に示した。 1.試料金属をチャンバー内に導入し、ベース圧力 2×
10-6Torrになるまで予備排気を行なう。 2.チャンバー内に所定の成膜圧力になるまでArガス
を導入する。 3.ターゲット[(株)フルウチ化学製のAlN;純度
99%以上;4インチφ]表面のクリーニングをするため
に予備スパッタを5分間行なう。 4.所定時間の成膜を行なう。
The present invention will be described in more detail with reference to the following examples, but the following examples do not limit the present invention.
All modifications and implementations that do not depart from the spirit of the description below are included in the technical scope of the present invention. Example An Al-Mg alloy shown in JIS 5245 was used as a metal material, and was cleaned after mirror polishing. RF manufactured by Nippon Vacuum Co., Ltd.
Using a (high frequency) magnetron sputtering apparatus, AlN was deposited by the following procedure. The film forming conditions are shown in Table 1. 1. Introduce the sample metal into the chamber and set the base pressure to 2 x
Pre-evacuate to 10 -6 Torr. 2. Ar gas is introduced into the chamber until a predetermined film forming pressure is reached. 3. Target [AlN manufactured by Furuuchi Chemical Co., Ltd .; Purity
99% or more; 4 inch φ] Pre-sputtering is performed for 5 minutes to clean the surface. 4. Film formation is performed for a predetermined time.

【0012】[0012]

【表1】 [Table 1]

【0013】[組織観察]得られた各供試材のAlN皮
膜断面を、走査型電子顕微鏡で組織観察した。図1には
1×10-2TorrのArガス圧のAlN皮膜断面を、図2に
は 2×10-3Torrのものを、図3には 5×10-4Torrのもの
を示した。図1ではAlNが柱状に成長しているのが確
認できる。図2、3では、明確な柱状組織は認められな
かった。その他のガス圧の結果から、 2×10-3Torrより
高いガス圧においては柱状組織のAlN皮膜が得られる
ことがわかった。
[Observation of Microstructure] The cross section of the obtained AlN film of each test material was observed with a scanning electron microscope. In Figure 1
A cross section of the AlN film having an Ar gas pressure of 1 × 10 −2 Torr is shown in FIG. 2 for 2 × 10 −3 Torr and in FIG. 3 for 5 × 10 −4 Torr. In FIG. 1, it can be confirmed that AlN grows in a columnar shape. In FIGS. 2 and 3, no clear columnar structure was observed. From the results of other gas pressures, it was found that an AlN film having a columnar structure was obtained at a gas pressure higher than 2 × 10 −3 Torr.

【0014】[配向測定]各供試材のAlN皮膜のX線
回折測定を行ない、皮膜の配向を測定した。図4には、
5×10-4,1×10-3,2×10-3,5×10-3,1×10-2Torrのそれ
ぞれのArガス圧で成膜した試料のX線回折パターンを
示した。図中、Tiとあるのは、X線回折用の基板に用
いたTi基板からの回折線である。サンプルからの回折
線はすべてバルクと同じウルツ鉱構造で指数付けが可能
であり、得られたAlNはいずれも単一層であると考え
られる。AlNの配向状態は、図4より明らかなよう
に、 2×10-3Torrより低いArガス圧では、(002) 配向
が優先的であり、 5×10-3,1×10-2Torrでは、 (100)お
よび(110) 面に配向していた。 2×10-3Torrでは、(00
2) 配向と(100) 配向の両方が認められた。また、各回
折線より求めた格子定数およびユニットセル体積はAr
ガス圧の増加と共に小さくなる傾向があった。Nの原子
量がAlに比べて小さいため、高Arガス圧で成膜する
と散乱され易く、金属基材上へ確実に届く確率がAlよ
りNの方が低いことが、結晶格子の縮小の原因と考えら
れる。
[Orientation measurement] The AlN film of each test material was subjected to X-ray diffraction measurement to measure the orientation of the film. In Figure 4,
The X-ray diffraction patterns of the samples formed under Ar gas pressures of 5 × 10 −4 , 1 × 10 −3 , 2 × 10 −3 , 5 × 10 −3 , and 1 × 10 −2 Torr are shown. In the figure, Ti is the diffraction line from the Ti substrate used for the X-ray diffraction substrate. All the diffraction lines from the sample can be indexed with the same wurtzite structure as the bulk, and all the obtained AlN are considered to be a single layer. As is clear from FIG. 4, the orientation state of AlN is (002) oriented preferentially at Ar gas pressure lower than 2 × 10 −3 Torr, and 5 × 10 −3 , 1 × 10 −2 Torr. , (100) and (110) planes were oriented. At 2 × 10 -3 Torr, (00
Both 2) and (100) orientations were observed. The lattice constant and unit cell volume obtained from each diffraction line are Ar.
It tended to decrease with increasing gas pressure. Since the atomic weight of N is smaller than that of Al, it tends to be scattered when a film is formed at a high Ar gas pressure, and the probability that N will surely reach a metal substrate is lower than that of Al. Conceivable.

【0015】[皮膜硬度]ダイヤモンドの圧子を持つ硬
度計で押し込み荷重を3gfとした時の圧痕の押し込み深
さからビッカース硬度を求めた。図5にはその結果を示
した。2×10-3Torrより低いArガス圧では、 500〜600
HVしか得られないのに対し、 5×10-3,1×10-2Torr
では、1000〜1500HVもの硬度が得られており、 2×10
-3Torrを境として異なった皮膜状態となっていることが
わかる。
[Film hardness] Vickers hardness was determined from the indentation depth of an indentation when the indentation load was 3 gf with a hardness meter having a diamond indenter. The results are shown in FIG. 500-600 at Ar gas pressure below 2 × 10 -3 Torr
While only HV can be obtained, 5 × 10 -3 , 1 × 10 -2 Torr
In, the hardness of 1000-1500HV is obtained, and it is 2 × 10
It can be seen that the film state is different at -3 Torr.

【0016】[耐食性評価]防食特性の評価には、Al
−Mg合金基板状に約1μmの厚さにAlNを成膜した
ものを使用した。非脱気5%NaCl水溶液中に、各試
料を5分間浸漬した後に、−500mV vs Ag/AgCl
の電位に試料を固定して定電位分極時のアノード電流の
経時変化をモニターした。試料面積は1cm2 、溶液の温
度は25℃とした。結果を図6に示した。未被覆のAl
−Mg基板、およびArガス圧 5×10-4,1×10-3Torrで
AlN膜を作ったものは、アノード電流が浸漬直後から
増加が見られた。 2×10-3Torrのものは10分後にアノ
ード電流が流れ出したが、 5×10-3,1×10-2Torrは30
分前後までほとんど流れず、優れた防食特性を示した。
浸漬試験後の皮膜を走査型電子顕微鏡で観察する(図示
せず)と、Arガス圧の低いものには、ピンホールを起
点にしたと思われる皮膜の破壊、剥離が見られた。ま
た、Arガス圧の高いものは、ピンホール直下の基板の
腐食は認められたが、周囲の皮膜は剥離していなかっ
た。
[Evaluation of Corrosion Resistance] To evaluate the anticorrosion property, Al is used.
An AlN film having a thickness of about 1 μm was formed on a —Mg alloy substrate. After immersing each sample in a non-degassed 5% NaCl aqueous solution for 5 minutes, -500 mV vs Ag / AgCl
The sample was fixed at the potential of 1 and the change with time of the anode current during the potentiostatic polarization was monitored. The sample area was 1 cm 2 , and the temperature of the solution was 25 ° C. The results are shown in Fig. 6. Uncoated Al
In the Mg substrate and the ones in which the AlN film was formed with Ar gas pressures of 5 × 10 −4 and 1 × 10 −3 Torr, the anode current increased immediately after the immersion. With 2 × 10 -3 Torr, the anode current started flowing out after 10 minutes, but with 5 × 10 -3 and 1 × 10 -2 Torr, 30
It did not flow until about a minute and showed excellent anticorrosion properties.
When the coating film after the immersion test was observed with a scanning electron microscope (not shown), destruction and peeling of the coating, which seems to have originated from the pinholes, were observed in the sample having a low Ar gas pressure. In the case of a high Ar gas pressure, corrosion of the substrate immediately below the pinhole was observed, but the surrounding film was not peeled off.

【0017】[0017]

【発明の効果】本発明に規定されるAlN皮膜は強度が
優れたものであるため、金属表面上にこのAlN皮膜を
形成させることによって耐食性に優れた金属部材を提供
することができた。また特にスパッタリング法で、柱状
組織を有し、かつ (100)または(110) 面に配向したAl
N皮膜を形成する場合には、Arガス圧を 2×10-3Torr
より大きくすること、あるいは成膜速度を1.0 Å/秒以
上とすることが有効であることを明らかにしたので、耐
食性に優れたAlN被覆金属部材を再現良く製造するこ
とができるようになった。
Since the AlN coating defined by the present invention has excellent strength, it was possible to provide a metal member having excellent corrosion resistance by forming this AlN coating on the metal surface. In addition, especially by the sputtering method, Al having a columnar structure and oriented in the (100) or (110) plane
When forming a N film, the Ar gas pressure should be 2 × 10 -3 Torr.
Since it has been clarified that it is effective to increase the film thickness or to set the film forming rate to 1.0 Å / sec or more, it becomes possible to reproducibly manufacture an AlN-coated metal member having excellent corrosion resistance.

【図面の簡単な説明】[Brief description of drawings]

【図1】Arガス圧を 1×10-2Torrとして成膜したAl
N皮膜断面の組織状態を走査型電子顕微鏡で観察した図
面代用写真である。
FIG. 1 Al deposited with Ar gas pressure of 1 × 10 -2 Torr
It is a drawing substitute photograph which observed the structure state of the cross section of N film | membrane by the scanning electron microscope.

【図2】Arガス圧を 2×10-3Torrとして成膜したAl
N皮膜断面の組織状態を走査型電子顕微鏡で観察した図
面代用写真である。
FIG. 2 Al deposited with Ar gas pressure of 2 × 10 −3 Torr
It is a drawing substitute photograph which observed the structure state of the cross section of N film | membrane by the scanning electron microscope.

【図3】Arガス圧を 5×10-4Torrとして成膜したAl
N皮膜断面の組織状態を走査型電子顕微鏡で観察した図
面代用写真である。
FIG. 3 Al deposited with Ar gas pressure of 5 × 10 −4 Torr
It is a drawing substitute photograph which observed the structure state of the cross section of N film | membrane by the scanning electron microscope.

【図4】Arガス圧を変えて成膜したAlN皮膜のX線
回折パターンを示す図である。
FIG. 4 is a diagram showing an X-ray diffraction pattern of an AlN film formed by changing the Ar gas pressure.

【図5】AlN皮膜のビッカース硬度とArガス圧の関
係を示すグラフである。
FIG. 5 is a graph showing the relationship between the Vickers hardness of an AlN film and the Ar gas pressure.

【図6】Arガス圧を変えて成膜したAlN被覆Al−
Mg合金の定電位分極時のアノード電流の経時変化を示
すグラフである。
FIG. 6 is an AlN-coated Al- film formed by changing the Ar gas pressure.
It is a graph which shows the time-dependent change of the anode current at the time of constant potential polarization of Mg alloy.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 柱状組織を有し、かつ (100)または(11
0) 面に配向したAlN皮膜が金属材料の表面に形成さ
れてなることを特徴とするAlN被覆金属部材。
1. A columnar structure and (100) or (11
(0) An AlN-coated metal member having a surface-oriented AlN film formed on the surface of a metal material.
【請求項2】 アルゴンガス圧を 2×10-3Torrより大き
くするか、または成膜速度を1.0 Å/秒以上にして、柱
状組織を有し、かつ (100)または(110) 面に配向したA
lNスパッタリング皮膜を金属部材表面に形成させるこ
とを特徴とするAlN被覆金属部材の製造方法。
2. Argon gas pressure is higher than 2 × 10 −3 Torr or film formation rate is 1.0 Å / sec or more, and has a columnar structure and is oriented on the (100) or (110) plane. Did A
A method for producing an AlN-coated metal member, which comprises forming an IN sputtering film on the surface of the metal member.
JP27041592A 1992-10-08 1992-10-08 Aln coated metallic member and its production Withdrawn JPH06116710A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27041592A JPH06116710A (en) 1992-10-08 1992-10-08 Aln coated metallic member and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27041592A JPH06116710A (en) 1992-10-08 1992-10-08 Aln coated metallic member and its production

Publications (1)

Publication Number Publication Date
JPH06116710A true JPH06116710A (en) 1994-04-26

Family

ID=17485952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27041592A Withdrawn JPH06116710A (en) 1992-10-08 1992-10-08 Aln coated metallic member and its production

Country Status (1)

Country Link
JP (1) JPH06116710A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003236702A (en) * 2002-02-19 2003-08-26 Kyocera Corp Cutting tool with wear sensor circuit
JP2008198705A (en) * 2007-02-09 2008-08-28 Showa Denko Kk Method for manufacturing group iii nitride semiconductor light-emitting device, group iii nitride semiconductor light-emitting device, and lamp

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003236702A (en) * 2002-02-19 2003-08-26 Kyocera Corp Cutting tool with wear sensor circuit
JP2008198705A (en) * 2007-02-09 2008-08-28 Showa Denko Kk Method for manufacturing group iii nitride semiconductor light-emitting device, group iii nitride semiconductor light-emitting device, and lamp

Similar Documents

Publication Publication Date Title
JPH05507115A (en) Method and structure for forming alpha Ta in thin film form
MadarakaMwema et al. Effect of substrate temperature on aluminium thin films prepared byrf-magnetron sputtering
CN113718206B (en) Preparation method of TaTiN multilayer film with sandwich structure and film
US4853346A (en) Ohmic contacts for semiconductor devices and method for forming ohmic contacts
Vacandio et al. Stress, porosity measurements and corrosion behaviour of AlN films deposited on steel substrates
JPH10505879A (en) Diamond film deposition method on electroless plated nickel layer
JPH06116710A (en) Aln coated metallic member and its production
US8404135B2 (en) Plasma cleaning for process chamber component refurbishment
US5068020A (en) Coated substrates and process
JPH068500B2 (en) Alumina-coated A-1 / A-1 alloy member manufacturing method
JPH0598423A (en) Chrome coating film for preventing oxidation of titanium
JP2002146523A (en) Sputtering target, and sputtering system using it
JP4095764B2 (en) Metal material member for film forming apparatus and film forming apparatus using the same
Speight et al. Observations on the aging of Ti-based metallizations in air/HCl environments
US4279691A (en) Method of making boron cantilever
JPH07180029A (en) Corrosion resistant material and its production
US4382454A (en) Boron cantilever pipe
JP2007100135A (en) Corrosion-resistant member
Garrido et al. Effect of angle of incidence during deposition on Ti-Pd-Au conductor film adhesion
JP3634460B2 (en) Coating film excellent in halogen-based gas corrosion resistance and halogen-based plasma corrosion resistance, and laminated structure provided with the coating film
Kalisz et al. Determination of structural, mechanical and corrosion properties of titanium alloy covered by thin films based on graphene and silicon nitride
JP2716295B2 (en) Functionally graded thin film
JP3908291B2 (en) Coating film excellent in halogen-based gas corrosion resistance and halogen-based plasma corrosion resistance, and laminated structure provided with the coating film
JPH05235149A (en) Adhesion-preventive plate and inner jig
JP3634461B2 (en) Coating film excellent in halogen-based gas corrosion resistance and halogen-based plasma corrosion resistance, and laminated structure provided with the coating film

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000104