JPH06116689A - Production of al-mg-si alloy sheet excellent in formability and baking hardenability - Google Patents

Production of al-mg-si alloy sheet excellent in formability and baking hardenability

Info

Publication number
JPH06116689A
JPH06116689A JP4296399A JP29639992A JPH06116689A JP H06116689 A JPH06116689 A JP H06116689A JP 4296399 A JP4296399 A JP 4296399A JP 29639992 A JP29639992 A JP 29639992A JP H06116689 A JPH06116689 A JP H06116689A
Authority
JP
Japan
Prior art keywords
formability
subjected
temperature
treatment
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4296399A
Other languages
Japanese (ja)
Other versions
JP3278119B2 (en
Inventor
Akinori Yoshizawa
吉澤成則
Takeo Sakurai
櫻井健夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP29639992A priority Critical patent/JP3278119B2/en
Publication of JPH06116689A publication Critical patent/JPH06116689A/en
Application granted granted Critical
Publication of JP3278119B2 publication Critical patent/JP3278119B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To increase the strength of an alloy sheet by subjecting a cold rolled Al-Mg- Si alloy sheet having a specified compsn. to heat treatment under specified conditions and executing baking and coating. CONSTITUTION:An Al alloy contg., by weight, 0.3 to 1.0% Mg and 0.5 to 2.0% Si so as to regulate <=1 Mg/Si ratio and furthermore added, as the main adding element, with 0.05 to 1.0% Mn is subjected to homogenizing treatment at the burning temp. or below, is subjected to hot rolling, is, in the hot rolled stock, subjected to standard solution treatment and water hardening as grain refining treatment and is subjected to intermediate annealing at 300 to 450 deg.C for 4 to 8hr at >=40 deg.C/hr heating rate to form fine precipitates. It is subjected to cold rolling at >=50% draft to regulate its sheet thickness into a desired one, which is, as solution treatment, subjected to rapid heating to 500 to 580 deg.C at >=100 deg.C/min heating rate, is held for >=10sec, is thereafter immediately hardened at >=400 deg.C/min cooling rate and is furthermore held to 50 to 120 deg.C for 1 to 48hr to regulate its crystalline grains into <=30mum and to improve its formability, and baking and coating is executed to increase its strength. In this way, the Al-Mg-Si alloy sheet excellent in formability and baking hardenability can be produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、自動車部品、家庭用電
気機器部品、機械部品等に使用される、成形性及び焼付
塗装性に優れたAl−Mg−Si系合金板の製造方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an Al-Mg-Si based alloy sheet which is used for automobile parts, household electric equipment parts, machine parts and the like and which is excellent in formability and baking paintability. Is.

【0002】[0002]

【従来の技術】自動車部品、家庭用電気機器部品、機械
部品等の軽量化を目的に使用されているAl合金として
は、Al−Mg−Si系合金やAl−Mg系合金などが挙げ
られる。ここで、熱処理型合金であるAl−Mg−Si系
合金は、自動車パネル材としての用途において、塗装ラ
インにおける焼付塗装時の硬化性などが注目されてい
る。このAl−Mg−Si系合金についての従来の製造工
程に関しては、例えば、「軽金属」Vol.30、No.1
1、p.609や、特願昭62−267714号などが
挙げられる。
2. Description of the Related Art Al alloys used for reducing the weight of automobile parts, household electric equipment parts, mechanical parts and the like include Al-Mg-Si based alloys and Al-Mg based alloys. Here, the heat treatment type Al-Mg-Si based alloys have been attracting attention for their curability at the time of baking coating in a coating line in the application as an automobile panel material. Regarding the conventional manufacturing process for this Al-Mg-Si based alloy, for example, "light metal" Vol. 30, No. 1
1, p.609 and Japanese Patent Application No. 62-267714.

【0003】しかし、従来の製造工程では、焼入れ後に
焼付塗装処理として140〜170℃の温度に10〜3
0分保持する焼付塗装処理を施しても、著しい強度の向
上が見られず、また、成形性の良い材料が得られていな
い。
However, in the conventional manufacturing process, a temperature of 140 to 170 ° C. is 10 to 3 as a baking coating process after quenching.
Even if a baking coating treatment of holding for 0 minutes is performed, no significant improvement in strength is observed, and a material having good moldability is not obtained.

【0004】[0004]

【発明が解決しようとする課題】Al合金を自動車部
品、家庭用電気機器部品、機械部品等に使用する際に
は、プレス加工や曲げ加工などが必要である。よって、
それらの成形加工に十分対応できる成形性(伸び、エリ
クセン値等)が必要であり、かつ、加工後の製品として
十分な強度も併せ持たせなくてはならない。
When Al alloy is used for automobile parts, household electric equipment parts, machine parts, etc., press working and bending work are required. Therefore,
It must have moldability (elongation, Erichsen value, etc.) that can sufficiently cope with those molding processes, and must also have sufficient strength as a product after processing.

【0005】しかし、従来のAl−Mg−Si系合金にお
いては、成形性を重視すると強度が不足し、高強度化す
ると成形性が著しく低下するなど、強度と成形性を適度
に併せ持つ合金板及びその製造方法が見られない。特に
自動車部品としては、CAFE規制により自動車の軽量
化が進められる中、Al合金の使用及びその薄肉化が検
討されており、これらの要求に対応するためにも、成形
性及び焼付塗装性に優れたAl−Mg−Si系合金の製造
工程を確立する必要がある。
However, in the conventional Al-Mg-Si alloys, the strength is insufficient when the formability is emphasized, and the formability is remarkably lowered when the strength is increased. The manufacturing method cannot be seen. Especially for automobile parts, the use of Al alloy and its thinning are being considered as the weight reduction of automobiles is promoted by the CAFE regulation. In order to meet these requirements, it is excellent in formability and baking paintability. It is necessary to establish a manufacturing process for Al-Mg-Si alloys.

【0006】本発明は、かゝる要請に応えるべく、成形
性及び焼付塗装性に優れたAl−Mg−Si系合金の製造
方法を提供することを目的としている。
In order to meet such demands, the present invention has an object to provide a method for producing an Al-Mg-Si alloy having excellent formability and baking coating property.

【0007】[0007]

【課題を解決するための手段】本発明者は、前記課題を
解決するために鋭意研究を重ねた結果、Al−Mg−Si
系合金の成分組成並びに製造条件を規制することによっ
て可能であることを見出し、ここに本発明を完成したも
のである。
As a result of intensive studies to solve the above-mentioned problems, the present inventor has found that Al-Mg-Si
The inventors have found that this is possible by controlling the component composition and production conditions of the base alloy, and have completed the present invention.

【0008】すなわち、本発明は、Mg:0.3〜1.0
%、Si:0.5〜2.0%をMg/Si比が1以下で含有
し、更に主添加元素としてMn:0.05〜1.0%を添加
したAl合金について、バーニング温度以下の温度にお
ける均質化処理後、熱間圧延を行い、その後、結晶粒微
細化処理として熱間圧延材のまま標準的な溶体化処理と
水焼入れを行い、更に、加熱速度40℃/hr以上で30
0〜450℃の温度で4〜8時間の中間焼鈍を行い、微
小な析出物を生成させ、次に、圧下率50%以上の冷間
圧延を行って所望の板厚とし、最後に、液体化処理とし
て、100℃/分以上の加熱速度で500〜580℃の
温度に急速加熱し、この温度域に10秒以上保持した
後、直ちに400℃/分以上の冷却速度で焼入れを行
い、更に50〜120℃の温度に1〜48時間保持する
ことにより、結晶粒を30μm以下に制御して成形性を
向上させ、更に焼付塗装処理を施すことにより高強度化
することを特徴とする成形性及び焼付硬化性に優れたA
l−Mg−Si系合金板の製造方法を要旨としている。
That is, according to the present invention, Mg: 0.3 to 1.0.
%, Si: 0.5-2.0% at a Mg / Si ratio of 1 or less, and Mn: 0.05-1.0% as a main additive element, with respect to an Al alloy at a temperature not higher than the burning temperature. After homogenizing at temperature, hot rolling is performed, and then standard solution treatment and water quenching are performed on the hot-rolled material as grain refining treatment, and at a heating rate of 40 ° C / hr or more, 30
Intermediate annealing is performed at a temperature of 0 to 450 ° C. for 4 to 8 hours to generate fine precipitates, and then cold rolling at a reduction rate of 50% or more is performed to obtain a desired plate thickness, and finally, a liquid As a chemical treatment, it is rapidly heated to a temperature of 500 to 580 ° C. at a heating rate of 100 ° C./min or more, and held in this temperature range for 10 seconds or more, and then immediately quenched at a cooling rate of 400 ° C./min or more. By maintaining the temperature at 50 to 120 ° C. for 1 to 48 hours, the crystal grain is controlled to 30 μm or less to improve the formability, and further, the baking treatment is performed to enhance the strength. A with excellent bake hardenability
The gist is a method for producing an l-Mg-Si alloy plate.

【0009】以下に本発明を更に詳細に説明する。The present invention will be described in more detail below.

【0010】[0010]

【作用】[Action]

【0011】本発明におけるAl−Mg−Si系合金の強
化機構は次のような時効硬化機構に基づくものである。
The strengthening mechanism of the Al--Mg--Si alloy according to the present invention is based on the following age hardening mechanism.

【0012】S.S.(固溶体)→G.P.ゾーン(T4状態)
→β−Mg2Si(焼付塗装処理後)
SS (solid solution) → GP zone (T4 state)
→ β-Mg 2 Si (after baking finish)

【0013】本発明においては、Al−Mg−Si系合金
において成形性を重視し、それと同時に上記の強化機構
により適度な強度を付与している。よって、本発明合金
における強度向上はβ′−Mg2Siの析出に依存するも
のであるので、Mg、Siの添加量は限定される。
In the present invention, formability is emphasized in the Al-Mg-Si system alloy, and at the same time, appropriate strength is imparted by the above-mentioned strengthening mechanism. Therefore, since the strength improvement in the alloy of the present invention depends on the precipitation of β'-Mg 2 Si, the addition amounts of Mg and Si are limited.

【0014】また、成形性を向上させるためには、ま
ず、合金組織の再結晶を抑制し結晶粒を微細化させる添
加元素Mnを加える。また、熱間圧延材に熱処理を施す
ことにより、合金中の析出物を微細に均一分散させて結
晶粒を制御することにより結晶粒の微細化を図る。
Further, in order to improve the formability, first, an additional element Mn for suppressing recrystallization of the alloy structure and refining the crystal grains is added. Further, by subjecting the hot-rolled material to a heat treatment, the precipitates in the alloy are finely and uniformly dispersed to control the crystal grains, thereby making the crystal grains finer.

【0015】本発明の製造工程は、要するに、従来の製
造工程において熱間圧延と冷間圧延の間に、溶体化処理
及び300〜450℃で4〜8時間の中間焼鈍を行う工
程を介在させる点を最も特徴とし、以下の製造工程であ
る。
In the manufacturing process of the present invention, in short, in the conventional manufacturing process, between the hot rolling and the cold rolling, the solution treatment and the step of performing intermediate annealing at 300 to 450 ° C. for 4 to 8 hours are interposed. The most characteristic point is the following manufacturing process.

【0016】Al合金鋳塊→均質化熱処理→熱間圧延→
液体化処理→中間焼鈍→冷間圧延→溶体化処理→焼入れ
(最終熱処理)→焼付塗装処理
Al alloy ingot → homogenizing heat treatment → hot rolling →
Liquefaction treatment → Intermediate annealing → Cold rolling → Solution treatment → Quenching
(Final heat treatment) → Baking coating treatment

【0017】まず、本発明におけるAl合金の化学成分
の限定理由について説明する。
First, the reasons for limiting the chemical composition of the Al alloy in the present invention will be explained.

【0018】Mg:Mgはそれ自体の固溶体強化とSiと
共同して強度を付与する元素で、時効析出物β′−Mg2
Siを析出し、その析出硬化により強度向上に寄与する
ものである。しかし、0.3%未満では、十分な強度(以
下、強度とは、素材(T4)及び170℃の焼付塗装処理
を施した後の強度をいう。)が得られず、また、1.0%
を超えて添加すると、鋳造時に平衡相Mg2Siが晶出物
として成長し、伸びの低下が見られ、成形性を著しく低
下させる。よって、Mg含有量は0.3〜1.0%の範囲
とする。
Mg: Mg is an element which, together with Si, strengthens its own solid solution and gives strength in combination with Si. Aged precipitate β'-Mg 2
Si is deposited and its precipitation hardening contributes to the improvement of strength. However, if it is less than 0.3%, sufficient strength (hereinafter, the strength means the material (T4) and the strength after baking treatment at 170 ° C.) cannot be obtained, and the strength is 1.0. %
If it is added over the range, the equilibrium phase Mg 2 Si grows as a crystallized substance during casting, the elongation is lowered, and the formability is remarkably lowered. Therefore, the Mg content is set to the range of 0.3 to 1.0%.

【0019】Si:SiはMgと共同して主として時効析
出物β′−Mg2Siの析出による析出硬化で強度向上に
寄与する元素である。しかし、0.5%未満では十分な
強度が得られず、また、2.0%を超えると平衡相Mg2
Siが晶出物し、伸びが低下し、よって、成形性が著し
く低下する。したがって、Si含有量は0.5〜2.0%
の範囲とする。
Si: Si is an element which, together with Mg, contributes to the improvement of strength mainly by precipitation hardening due to the precipitation of the aging precipitate β'-Mg 2 Si. However, if it is less than 0.5%, sufficient strength cannot be obtained, and if it exceeds 2.0%, the equilibrium phase Mg 2
Si crystallizes out and the elongation decreases, so that the formability remarkably decreases. Therefore, the Si content is 0.5-2.0%
The range is.

【0020】更に、Mg量とSi量の比(Mg/Si)が1以
下になるように上記成分を調整する必要がある。これに
より、焼付塗装処理後の強度を効率的に向上させること
ができ、また、素材の経時変化による成形性の低下を抑
制することができる。
Further, it is necessary to adjust the above components so that the ratio of the amount of Mg and the amount of Si (Mg / Si) is 1 or less. As a result, the strength after baking treatment can be efficiently improved, and the deterioration of the formability due to the change with time of the material can be suppressed.

【0021】Mn:Mnは第二相析出物としてMnAl6
析出し、合金組織の再結晶を抑制して結晶粒を微細化さ
せ、これにより、成形性向上に寄与する元素である。し
かし、0.05%未満では結晶粒の微細化が見られず、
しかも、第二相析出物MnAl6の析出が顕著でないた
め、成形性の向上が見られない。また、1.0%を超え
て添加すると粗大な晶出物を生成し、成形性を低下させ
る。よって、Mnの含有量は0.05〜1.0%の範囲と
する。
Mn: Mn is an element that precipitates MnAl 6 as a second phase precipitate, suppresses recrystallization of the alloy structure and makes the crystal grains finer, thereby contributing to the improvement of formability. However, if it is less than 0.05%, grain refinement is not observed,
Moreover, since the precipitation of the second-phase precipitate MnAl 6 is not remarkable, the moldability is not improved. If it is added in an amount of more than 1.0%, coarse crystallized substances will be formed and the formability will be deteriorated. Therefore, the content of Mn is set to the range of 0.05 to 1.0%.

【0022】なお、不純物は可及的に少ないことが望ま
しい。殊にFeは強度を向上させる効果は小さいが、含
有量が多くなると晶出物の生成が著しく成形性を低下さ
せることになるので、Feの含有量は0.5%以下に抑制
するのが望ましい。
It is desirable that the amount of impurities is as small as possible. In particular, Fe has a small effect of improving the strength, but when the content thereof is large, the formation of crystallized substances remarkably deteriorates the formability, so that the content of Fe is suppressed to 0.5% or less. desirable.

【0023】次に本発明の製造工程について説明する。Next, the manufacturing process of the present invention will be described.

【0024】上記Al合金鋳塊をバーニング温度以下の
温度で均質化処理を施し、直ちに熱間圧延を行い、鋳塊
組織を展伸材組織に加工する。その後、標準的な溶体化
処理・水焼入れを行い、更に加熱速度40℃/h以上で
300〜450℃の温度に4〜8時間の中間焼鈍を施
す。
The Al alloy ingot is homogenized at a temperature not higher than the burning temperature and immediately hot-rolled to process the ingot structure into a wrought material structure. Thereafter, standard solution treatment and water quenching are performed, and further intermediate annealing is performed at a heating rate of 40 ° C./h or more at a temperature of 300 to 450 ° C. for 4 to 8 hours.

【0025】ここで、標準的な溶体化処理・水焼入れを
行うのは、Mg、Siを固溶させてMgの固溶体強化と共
に、焼付塗装処理後に強度向上を目的に析出物(Mg2
i)を充分に析出させるためである。その条件は特に制限
されない。
Here, the standard solution treatment and water quenching are carried out by solid solution of Mg and Si to strengthen the solid solution of Mg, and at the same time, precipitates (Mg 2 S
This is for sufficiently precipitating i). The conditions are not particularly limited.

【0026】また、中間焼鈍温度が300℃未満で且つ
保持時間が8時間より長い場合は、高強度化されるもの
の、成形性が所望のレベルに達せず、逆に、450℃を
超える温度で且つ保持時間が4時間未満の場合には、高
成形性を有する材料が得られるものの、強度が不足す
る。よって、中間焼鈍条件を300〜450℃の温度に
4〜8時間保持する条件とする。
When the intermediate annealing temperature is lower than 300 ° C. and the holding time is longer than 8 hours, the strength is increased, but the formability does not reach a desired level, and conversely, at a temperature higher than 450 ° C. When the holding time is less than 4 hours, a material having high moldability can be obtained, but the strength is insufficient. Therefore, the intermediate annealing condition is set to a temperature of 300 to 450 ° C. for 4 to 8 hours.

【0027】この熱処理で析出物を生成させ、次の冷間
圧延中に、これらの析出物の回りに高密度の転位が生成
され微細結晶粒になる。この冷間圧延の際に、圧延率が
50%未満では十分な転位密度が得られないので、所望
の微細結晶粒径が得られない。したがって、仕上げ圧延
時の冷間圧延率は50%以上とする。
Precipitates are formed by this heat treatment, and during the subsequent cold rolling, high-density dislocations are generated around these precipitates to form fine crystal grains. In this cold rolling, if the rolling ratio is less than 50%, a sufficient dislocation density cannot be obtained, so that a desired fine crystal grain size cannot be obtained. Therefore, the cold rolling rate during finish rolling is 50% or more.

【0028】この冷間圧延の後、溶体化処理として、1
00℃/分以上の加熱速度で500〜580℃の温度に
急速加熱し、この温度域に10秒以上保持した後、直ち
に400℃/分以上の速度で焼入れを行い、更に50〜
120℃の温度に1〜48時間保持する。
After this cold rolling, as a solution treatment, 1
It is rapidly heated to a temperature of 500 to 580 ° C. at a heating rate of 00 ° C./minute or more, held in this temperature range for 10 seconds or more, and immediately quenched at a rate of 400 ° C./minute or more, and further 50 to
Hold at a temperature of 120 ° C. for 1-48 hours.

【0029】ここで、溶体化処理条件が500℃未満若
しくは500〜580℃で且つ保持時間が10秒未満の
場合は、焼入れ後に熱処理(50〜120℃×1〜48
時間保持)を行い、更に焼付塗装処理(170℃×20
分)を行っても、析出物の生成が不足することにより十
分な強度が得られない。また、溶体化処理温度が580
℃を超える場合には、焼入れ後に熱処理(50〜120
℃×1〜48時間保持)を行い、更に焼付塗装処理を行
うことにより高強度が得られるものの、T4状態での成
形性が低下する。更に500〜580℃で10秒より長
い保持の溶体化処理を行っても、焼入れ後の熱処理条件
が50℃未満の温度若しくは50〜120℃の温度でも
保持時間が1時間未満では、焼付塗装処理を行っても十
分な強度が得られず、また、50〜120℃の温度でも
48時間よりも長く保持すると、T4状態での成形性が
低下する。よって、冷間圧延後の溶体化処理条件は50
0〜580℃の温度に10秒以上保持し、焼入後の熱処
理条件は、50〜120℃の温度に1〜48時間保持す
るものとする。この状態(T4材)において、本発明材は
成形性に優れ、この後に焼付塗装処理を行うことにより
高強度を有する材料となる。
Here, when the solution treatment condition is less than 500 ° C. or 500 to 580 ° C. and the holding time is less than 10 seconds, heat treatment (50 to 120 ° C. × 1 to 48 ° C.) is performed after quenching.
Hold for a time, and then baking coating (170 ° C x 20
However, sufficient strength cannot be obtained due to insufficient formation of precipitates. Further, the solution treatment temperature is 580
If it exceeds ℃, heat treatment (50-120
(Temperature C × 1 to 48 hours) and then baking coating treatment gives high strength, but the formability in the T4 state decreases. Further, even if the solution treatment of holding at 500 to 580 ° C. for longer than 10 seconds is performed, if the heat treatment condition after quenching is a temperature of less than 50 ° C. or a temperature of 50 to 120 ° C. and a holding time of less than 1 hour, a baking coating treatment is performed. Does not provide sufficient strength, and if the temperature is maintained at 50 to 120 ° C. for longer than 48 hours, the formability in the T4 state deteriorates. Therefore, the solution treatment condition after cold rolling is 50
The temperature is maintained at 0 to 580 ° C for 10 seconds or more, and the heat treatment condition after quenching is maintained at the temperature of 50 to 120 ° C for 1 to 48 hours. In this state (T4 material), the material of the present invention is excellent in formability, and is subjected to baking coating treatment to become a material having high strength.

【0030】次に本発明の実施例を示す。Next, examples of the present invention will be described.

【0031】[0031]

【実施例1】[Example 1]

【0032】Mg:0.8%、Si:1.0%、Mn:0.15
%、Fe:0.13%、残部が実質的にAlからなる化学成
分を有するAl−Mg−Si系合金を通常の方法で溶解、
鋳造し、得られた鋳塊について、加熱速度40℃/hで
540℃の温度に4時間保持する均質化処理を施した
後、熱間圧延を行った。
Mg: 0.8%, Si: 1.0%, Mn: 0.15
%, Fe: 0.13%, Al-Mg-Si based alloy having a chemical composition with the balance substantially consisting of Al is melted by a usual method,
After casting, the obtained ingot was subjected to a homogenizing treatment in which the heating rate was 40 ° C./h and the temperature was maintained at 540 ° C. for 4 hours, followed by hot rolling.

【0033】この板を加熱速度800℃/分以上で53
0℃に30分保持し、800℃/分の冷却速度で水焼入
れを行い、その後、40℃/hの加熱速度で250〜5
50℃の温度に0.5〜12時間保持後、冷間圧延(圧下
率88%)を行った。
This plate is heated at a heating rate of 800 ° C./min or more to 53
Hold at 0 ° C for 30 minutes, perform water quenching at a cooling rate of 800 ° C / min, and then 250 to 5 at a heating rate of 40 ° C / h.
After holding at a temperature of 50 ° C. for 0.5 to 12 hours, cold rolling (reduction rate 88%) was performed.

【0034】最後に、加熱速度800℃/分以上で48
0〜600℃の温度に1〜40秒保持し、400〜60
0℃/分の冷却速度で強制空冷した後、40℃/hの加
熱速度で30〜150℃の温度に1〜72時間保持し
た。
Finally, at a heating rate of 800 ° C./min or more, 48
Hold at a temperature of 0-600 ° C for 1-40 seconds, 400-60
After forced air cooling at a cooling rate of 0 ° C./min, the temperature was maintained at 30 to 150 ° C. for 1 to 72 hours at a heating rate of 40 ° C./h.

【0035】得られた素材の特性並びに焼付塗装処理
(170℃×20分)後の強度を表1に示す。
Characteristics of the obtained material and baking coating treatment
The strength after (170 ° C. × 20 minutes) is shown in Table 1.

【0036】なお、引張試験はJIS5号試験片を用
い、引張速度5mm/分で行った。また、エリクセン試験
はJIS B法に準じて行った。更に結晶粒径測定は、
試料の圧延方向に対して平行断面のエメリーペーパーに
よる研磨及びバフ研磨後、電解エッチングを施した面の
100倍の偏光写真を用い、切片法により測定を行っ
た。
The tensile test was conducted using a JIS No. 5 test piece at a tensile speed of 5 mm / min. The Erichsen test was conducted according to JIS B method. Furthermore, the crystal grain size measurement is
After polishing with an emery paper having a cross section parallel to the rolling direction of the sample and buffing, the measurement was performed by the section method using a 100-fold polarized photograph of the surface subjected to electrolytic etching.

【0037】また、表1における強度と成形性の評価基
準は、強度は加工硬化を想定し、2%のストレッチング
と焼付塗装処理を行った試料の、そのT4状態からの耐
力の増分が80N/mm2以上のものに○(優れる)を付
し、また成形性は高成形性を目標とし、エリクセン値が
9.9mm以上のものを○(優れる)を付した。
The strength and formability evaluation criteria in Table 1 are such that the strength is assumed to be work-hardened, and the increment of the yield strength from the T4 state of the sample subjected to 2% stretching and baking coating is 80N. / mm 2 or more of the ○ (excellent) subjected, also formability is targeting high moldability, Erichsen value was denoted by ○ (excellent) to more than 9.9 mm.

【0038】表1から明らかなように、本発明例No.1
〜4は、比較例No.5〜15に比べて結晶粒径が30μ
m以下に制御されており、成形性に優れ、かつ、高強度
を有し、成形性と強度を適度に併せ持つ材料であること
がわかる。
As is clear from Table 1, the invention example No. 1
4 has a crystal grain size of 30 μ compared to Comparative Examples No. 5 to 15.
It can be seen that the material is controlled to m or less, has excellent moldability, has high strength, and has a suitable combination of moldability and strength.

【0039】また、本発明例No.4と比較例No.5のT
4状態の結晶粒の組織写真を図1に示す。表1及び図1
より明らかなように、本発明例No.4の結晶粒径は16
μmであり、比較例No.5の結晶粒径40μmに比べてか
なり微細化されている。本発明例における成形性の向上
には、この結晶粒の微細化が重要な役割を果たしている
ことが確認できる。
Further, T of the invention sample No. 4 and the comparative sample No. 5
FIG. 1 shows a microstructure photograph of crystal grains in four states. Table 1 and FIG.
As is clearer, the crystal grain size of Inventive Example No. 4 is 16
.mu.m, which is considerably finer than the crystal grain size of 40 .mu.m of Comparative Example No. 5. It can be confirmed that the refinement of the crystal grains plays an important role in improving the formability in the examples of the present invention.

【0040】このようにして得られたAl−Mg−Si系
合金は成形性に優れ、更に、170℃で20分の焼付塗
装処理を施した材料は所望の強度が得られることがわか
る。
It can be seen that the Al--Mg--Si alloy thus obtained is excellent in formability, and that the material subjected to the baking coating treatment at 170 ° C. for 20 minutes can obtain the desired strength.

【0041】[0041]

【表1】 [Table 1]

【0042】[0042]

【実施例2】Example 2

【0043】表2に示す化学成分を有するAl合金に、
実施例1の本発明例No.4の製造条件に基づく製造工程
を施すことにより得られた材料の強度及び成形性を表2
に併せて示す。なお、引張試験、エリクセン試験は実施
例1と同様な方法で行った。
Al alloys having the chemical composition shown in Table 2
Table 2 shows the strength and formability of the material obtained by performing the manufacturing process based on the manufacturing conditions of Example No. 4 of the present invention of Example 1.
Are also shown. The tensile test and the Erichsen test were performed in the same manner as in Example 1.

【0044】表2より明らかなように、本発明例No.1
〜4においては、本発明製造工程を施すことにより十分
な強度と成形性が得られている。しかし、比較例No.5
〜10においては、本発明製造工程を施しても十分な強
度と成形性が得られない。したがって、本発明製造工程
を施すことにより十分な強度と成形性を付与するために
は、Mg:0.3〜1.0%、Si:0.5〜2.0%が必要で
あり、成形性向上のためには、Mn:0.05〜1.0%の
添加が有効であることがわかる。
As is clear from Table 2, the invention example No. 1
In Nos. 4 to 4, sufficient strength and moldability were obtained by performing the manufacturing process of the present invention. However, Comparative Example No. 5
In Nos. 10 to 10, sufficient strength and moldability cannot be obtained even if the production process of the present invention is performed. Therefore, in order to impart sufficient strength and moldability by applying the manufacturing process of the present invention, Mg: 0.3 to 1.0% and Si: 0.5 to 2.0% are required. It can be seen that the addition of Mn: 0.05 to 1.0% is effective for improving the properties.

【0045】[0045]

【表2】 [Table 2]

【0046】[0046]

【発明の効果】以上詳述したように、本発明によれば、
Al−Mg−Si系合金の成分組成の規制のもとで、従来
の製造工程の熱間圧延と冷間圧延の間に、溶体化処理、
水焼入れ、中間焼鈍を加えることにより、成形性及び焼
付硬化性に優れるAl−Mg−Si系合金の製造が可能に
なり、Al合金の自動車部品等への需要を拡大すること
ができる。またAl合金使用による軽量化、更には薄肉
化が可能になることによる低コスト化などに大きく寄与
し、その実用上の効果は極めて大きい。
As described in detail above, according to the present invention,
Under the regulation of the composition of the Al-Mg-Si alloy, the solution heat treatment during the hot rolling and the cold rolling in the conventional manufacturing process,
By adding water quenching and intermediate annealing, it becomes possible to produce an Al-Mg-Si alloy having excellent formability and bake hardenability, and it is possible to expand the demand for Al alloys for automobile parts and the like. In addition, the use of Al alloy greatly contributes to the reduction of weight and the reduction of cost due to the reduction in thickness, and its practical effect is extremely large.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1で得られた本発明例No.4と比較例N
o.5のAl合金のT4状態の結晶粒の組織写真(金属組
織)である。
FIG. 1 is an example No. 4 of the present invention and a comparative example N obtained in Example 1.
It is a microstructure photograph (metal structure) of the T4 state crystal grain of Al alloy of 0.5.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 重量%で(以下、同じ)、Mg:0.3〜
1.0%、Si:0.5〜2.0%をMg/Si比が1以下で
含有し、更に主添加元素としてMn:0.05〜1.0%を
添加したAl合金について、バーニング温度以下の温度
における均質化処理後、熱間圧延を行い、その後、結晶
粒微細化処理として熱間圧延材のまま標準的な溶体化処
理と水焼入れを行い、更に、加熱速度40℃/hr以上で
300〜450℃の温度で4〜8時間の中間焼鈍を行
い、微小な析出物を生成させ、次に、圧下率50%以上
の冷間圧延を行って所望の板厚とし、最後に、液体化処
理として、100℃/分以上の加熱速度で500〜58
0℃の温度に急速加熱し、この温度域に10秒以上保持
した後、直ちに400℃/分以上の冷却速度で焼入れを
行い、更に50〜120℃の温度に1〜48時間保持す
ることにより、結晶粒を30μm以下に制御して成形性
を向上させ、更に焼付塗装処理を施すことにより高強度
化することを特徴とする成形性及び焼付硬化性に優れた
Al−Mg−Si系合金板の製造方法。
1. In weight% (hereinafter the same), Mg: 0.3-
Burning of an Al alloy containing 1.0% and Si: 0.5 to 2.0% at a Mg / Si ratio of 1 or less, and Mn: 0.05 to 1.0% as a main additive element. After homogenizing at a temperature below the temperature, hot rolling is performed, and then standard solution treatment and water quenching are performed on the hot rolled material as grain refining treatment, and the heating rate is 40 ° C / hr. As described above, intermediate annealing is performed at a temperature of 300 to 450 ° C. for 4 to 8 hours to form fine precipitates, and then cold rolling at a reduction rate of 50% or more is performed to obtain a desired sheet thickness, and finally, As a liquefaction treatment, 500 to 58 at a heating rate of 100 ° C./min or more.
By rapidly heating it to a temperature of 0 ° C and holding it in this temperature range for 10 seconds or more, immediately quenching it at a cooling rate of 400 ° C / minute or more, and then holding it at a temperature of 50 to 120 ° C for 1 to 48 hours. , An Al-Mg-Si alloy plate excellent in formability and bake hardenability, characterized in that the crystallinity is controlled to 30 μm or less to improve the formability and further the baking treatment is performed to increase the strength. Manufacturing method.
JP29639992A 1992-10-07 1992-10-07 Method for producing Al-Mg-Si alloy sheet excellent in formability and bake hardenability Expired - Fee Related JP3278119B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29639992A JP3278119B2 (en) 1992-10-07 1992-10-07 Method for producing Al-Mg-Si alloy sheet excellent in formability and bake hardenability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29639992A JP3278119B2 (en) 1992-10-07 1992-10-07 Method for producing Al-Mg-Si alloy sheet excellent in formability and bake hardenability

Publications (2)

Publication Number Publication Date
JPH06116689A true JPH06116689A (en) 1994-04-26
JP3278119B2 JP3278119B2 (en) 2002-04-30

Family

ID=17833045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29639992A Expired - Fee Related JP3278119B2 (en) 1992-10-07 1992-10-07 Method for producing Al-Mg-Si alloy sheet excellent in formability and bake hardenability

Country Status (1)

Country Link
JP (1) JP3278119B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995031580A1 (en) * 1994-05-11 1995-11-23 Aluminum Company Of America Corrosion resistant aluminum alloy rolled sheet
JPH0813108A (en) * 1994-06-29 1996-01-16 Furukawa Electric Co Ltd:The Production of aluminum-manganese-magnesium alloy sheet for building panel
JPH08325663A (en) * 1995-05-31 1996-12-10 Kobe Steel Ltd Aluminum alloy sheet excellent in press formability and its production
CN102788759A (en) * 2011-05-17 2012-11-21 北京有色金属研究总院 Multi-element standard solution for magnesium alloy chemistry analysis, and preparation method thereof
CN113122760A (en) * 2021-03-11 2021-07-16 中南大学 Fine-grain Goss aluminum alloy plate and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62177143A (en) * 1986-01-30 1987-08-04 Kobe Steel Ltd Aluminum alloy sheet excellent in formability and baking hardening and its production
JPH02205660A (en) * 1989-02-06 1990-08-15 Kobe Steel Ltd Manufacture of aluminum alloy sheet having excellent baking hardenability of paint
JPH04276048A (en) * 1991-03-04 1992-10-01 Furukawa Alum Co Ltd Production of aluminum alloy sheet for forming excellent in baking hardenability

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62177143A (en) * 1986-01-30 1987-08-04 Kobe Steel Ltd Aluminum alloy sheet excellent in formability and baking hardening and its production
JPH02205660A (en) * 1989-02-06 1990-08-15 Kobe Steel Ltd Manufacture of aluminum alloy sheet having excellent baking hardenability of paint
JPH04276048A (en) * 1991-03-04 1992-10-01 Furukawa Alum Co Ltd Production of aluminum alloy sheet for forming excellent in baking hardenability

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995031580A1 (en) * 1994-05-11 1995-11-23 Aluminum Company Of America Corrosion resistant aluminum alloy rolled sheet
JPH0813108A (en) * 1994-06-29 1996-01-16 Furukawa Electric Co Ltd:The Production of aluminum-manganese-magnesium alloy sheet for building panel
JPH08325663A (en) * 1995-05-31 1996-12-10 Kobe Steel Ltd Aluminum alloy sheet excellent in press formability and its production
CN102788759A (en) * 2011-05-17 2012-11-21 北京有色金属研究总院 Multi-element standard solution for magnesium alloy chemistry analysis, and preparation method thereof
CN113122760A (en) * 2021-03-11 2021-07-16 中南大学 Fine-grain Goss aluminum alloy plate and preparation method thereof
CN113122760B (en) * 2021-03-11 2022-03-04 中南大学 Fine-grain Goss aluminum alloy plate and preparation method thereof

Also Published As

Publication number Publication date
JP3278119B2 (en) 2002-04-30

Similar Documents

Publication Publication Date Title
EP0480402A1 (en) Process for manufacturing aluminium alloy material with excellent formability, shape fixability and bake hardenability
JP2000087198A (en) MANUFACTURE OF Al-Mg-Si ALLOY SHEET EXCELLENT IN THERMAL CONDUCTIVITY AND STRENGTH
JPH06240424A (en) Production of aluminum alloy sheet excellent in formability and baking hardenability
JPH06136478A (en) Baking hardening type al alloy sheet excellent in formability and its production
JPH06116689A (en) Production of al-mg-si alloy sheet excellent in formability and baking hardenability
JPH0635644B2 (en) Manufacturing method of aluminum alloy hard plate for forming
JP3260227B2 (en) Al-Mg-Si based alloy sheet excellent in formability and bake hardenability by controlling crystal grains and method for producing the same
JP3871462B2 (en) Method for producing aluminum alloy plate for can body
JPH08176764A (en) Production of aluminum alloy sheet for forming
JP2626958B2 (en) Method for producing aluminum alloy sheet excellent in formability and bake hardenability
JP3871473B2 (en) Method for producing aluminum alloy plate for can body
JPH07166285A (en) Hardened al alloy sheet by baking and production thereof
JPS63125645A (en) Production of aluminum alloy material having fine crystal grain
JP3359428B2 (en) Manufacturing method of aluminum alloy sheet for forming
JPH11256291A (en) Manufacture of aluminum alloy sheet for can body
JPH062090A (en) Manufacture of high strength aluminum alloy sheet for forming small in anisotropy
JPH07228957A (en) Production of aluminum alloy sheet having excellent formability and quench-hardenability
JPH0533107A (en) Production of hard aluminum alloy sheet excellent in strength and formability
JPH08296011A (en) Production of aluminum alloy sheet for high speed forming excellent in baking hardenability of coating film and cold stability
JPH04318144A (en) Al alloy sheet excellent in strength, baking hardening property and molding property, and its manufacture
JP3857418B2 (en) Method for producing aluminum alloy semi-hard material with excellent formability
JPH09143644A (en) Production of aluminum alloy sheet for forming
JPH07197214A (en) Al-mg-si alloy sheet excellent in formability and its production
JPH0625787A (en) Ai alloy sheet for drawn cup excellent in suppression of strain pattern and its manufacture
JPH062064A (en) High-strength and high-formability al-mg-si alloy and its manufacture

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees