JP3857418B2 - Method for producing aluminum alloy semi-hard material with excellent formability - Google Patents

Method for producing aluminum alloy semi-hard material with excellent formability Download PDF

Info

Publication number
JP3857418B2
JP3857418B2 JP13659698A JP13659698A JP3857418B2 JP 3857418 B2 JP3857418 B2 JP 3857418B2 JP 13659698 A JP13659698 A JP 13659698A JP 13659698 A JP13659698 A JP 13659698A JP 3857418 B2 JP3857418 B2 JP 3857418B2
Authority
JP
Japan
Prior art keywords
annealing
aluminum alloy
intermediate annealing
rolling
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13659698A
Other languages
Japanese (ja)
Other versions
JPH11323516A (en
Inventor
清寛 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Sky Aluminum Corp
Original Assignee
Furukawa Sky Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Sky Aluminum Corp filed Critical Furukawa Sky Aluminum Corp
Priority to JP13659698A priority Critical patent/JP3857418B2/en
Publication of JPH11323516A publication Critical patent/JPH11323516A/en
Application granted granted Critical
Publication of JP3857418B2 publication Critical patent/JP3857418B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、成形性に優れるアルミニウム合金半硬質材を高歩留まりで製造する方法に関する。
【0002】
【従来の技術】
一般に、アルミニウム合金半硬質材には、加工硬化材を焼鈍軟化させた焼鈍調質材と完全焼鈍材を加工硬化させた加工調質材の2種がある。前者はH2X、後者はH1XとJIS表記される。
前記焼鈍調質材は加工調質材より伸びが大きく成形性に優れるので、プレス成形用には、通常、焼鈍調質材が使用され、特に、比較的強度の高いH24は代表的半硬質材として多用されている。
前記焼鈍調質材は、所定組成の合金鋳塊に均質化処理、熱間圧延、冷間圧延を順に施し、前記冷間圧延後、半軟化温度で焼鈍(調質焼鈍)して製造される。
【0003】
【発明が解決しようとする課題】
最近、成形加工の自動化および高速化が進み、半硬質材には品質および特性に関して変動の極小化が求められ、従来の半硬質材では対応できず、より成形性に優れる材料の開発、さらに材料の成形可能限界の向上が必須になってきている。
【0004】
ところで、成形加工材として汎用性の高い、厚さが0.5〜2mmのJIS−1100、1200など(いずれも低強度材)の半硬質材は、中間焼鈍を入れずに冷間圧延した材料を調質焼鈍して製造されている。
しかし、前記冷間圧延材は、冷間加工度が過大なため調質焼鈍で軟化が急激に起き、所要強度が得られる焼鈍温度範囲が極めて狭く、また前記温度範囲は熱間圧延状況によっても変化する。このため、焼鈍不足や過焼鈍などの焼鈍不良が多く、製造歩留まりが低下するという問題がある。
【0005】
一方、中間焼鈍を入れた冷間圧延材は、調質焼鈍での軟化が緩やかで、所要強度が得られる調質焼鈍温度範囲が広くとれ、しかも熱間圧延状況による影響も小さく、従って焼鈍不良も少ない。しかしこの焼鈍調質材は伸びが低く成形性に劣るという問題がある。
このようなことから、本発明者等は、鋳塊の均質化処理、中間焼鈍、最終冷間圧延率、調質焼鈍などの条件について詳細に検討し、成形性に優れるアルミニウム合金半硬質材を高歩留まりで製造する方法を見い出すことに成功した。
本発明は、成形性に優れるアルミニウム合金半硬質材(調質焼鈍材)を高歩留まりで製造することを目的とする。
【0006】
【課題を解決するための手段】
本発明は、Fe0.2〜0.9wt%、Si0.1〜0.3wt%を含有し、前記FeとSiの含有量の比(Fe/Si)が2.0以上、前記FeとSiの含有量の合計が1.0wt%以下であり、必要に応じてCu0.05〜0.2wt%を含有し、さらに必要に応じてTi0.005〜0.05wt%、B0.001〜0.01wt%のうちの1種または2種を含有し、残部がAlおよび不可避不純物からなるアルミニウム合金鋳塊に均質化処理を施し、その後熱間圧延、中間焼鈍を入れる冷間圧延、調質焼鈍を順に施すアルミニウム合金半硬質材の製造方法であって、前記均質化処理を540〜610℃の温度で1〜15時間施し、少なくとも最終中間焼鈍を軟化率が20〜70%になるように施し、最終中間焼鈍後の冷間圧延を圧延率50%以下で施し、調質焼鈍を200〜260℃の温度で施すことを特徴とする成形性に優れるアルミニウム合金半硬質材の製造方法である。
【0007】
【発明の実施の形態】
本発明で用いるAl−Fe−Si合金について説明する。
Feは強度向上に寄与して成形性を高め、また熱間圧延や中間焼鈍などで再結晶粒を微細化して成形性を向上させる。さらに肌荒れを防止して成形品の表面品質を高める。
Feの添加量を0.2〜0.9wt%に規定する理由は、0.2wt%未満ではその効果が十分に得られず、0.9wt%を超えるとその効果が飽和し、また他の添加元素或いは不純物との間で粗大な金属間化合物を生成して表面欠陥の原因になり、また成形性を害する。
【0008】
SiはAlマトリックス中に固溶して強度向上に寄与する。
Siの含有量を0.1〜0.3wt%に規定する理由は、0.1wt%未満ではその効果が十分に得られず、0.3wt%を超えるとFeとの間で粗大金属間化合物を生成して成形性を害するためである。
【0009】
適量のFeとSiはAlとともに金属間化合物を形成して熱間圧延や中間焼鈍などで形成される再結晶粒を微細化して成形性を向上させる。しかし、その量があまり多くなると、金属間化合物が粗大化して延性が低下し成形性が低下する。そのためFeとSiの含有量の合計は1.0wt%以下にする。
前記金属間化合物量はFeとSiの比によっても影響される。すなわち、過剰Siは前記金属間化合物の生成を妨げ、ひいては再結晶核の形成を妨げて、再結晶粒を粗大化させる。このためFeとSiの含有量の比(Fe/Si)は2.0以上とFeの含有比率を高くする。
【0010】
本発明では前記Al−Fe−Si合金に、必要に応じてCuを含有させる。
Cuは強度を向上させて成形性を高める。またアルマイト処理する場合は、その色調を均質にする。
Cuの含有量を0.05〜0.2wt%に規定する理由は、0.05wt%未満ではその効果が十分に得られず、0.2wt%を超えると耐食性が低下するためである。
【0011】
本発明では、前記Al−Fe−Si合金に、必要に応じてTi、Bのうちの1種または2種を含有させる。
Tiは鋳塊組織を微細化して、圧延材表面の肌荒れや外観の不均一性を改善する。その含有量を0.005〜0.05wt%に規定する理由は、0.005wt%未満ではその効果が十分に得られず、0.05wt%を超えると溶解鋳造時に巨大なAl−Ti系金属間化合物が生成し、これが圧延後も残存して成形品の表面傷の原因になり、また成形性を害する。
BはTiの微細化効果を助長する。Bが0.001wt%未満ではその助長効果が十分に得られず、0.01wt%を超えると溶解鋳造時に巨大なTi−B系金属間化合物が生成し、これが圧延後も残存して成形品の表面傷の原因になる。
本発明では、前記Cuと、TiまたはBの1種以上とを共存させても、それぞれが前述と同じ効果を発現する。
【0012】
本発明の半硬質材は、前述のAl−Fe−Si−(Cu)−(Ti)−(B)合金を鋳造し、得られる鋳塊に均質化処理、熱間圧延、中間焼鈍を入れる冷間圧延を順に施し、最後に調質焼鈍を施して製造される。
前記均質化処理により、鋳塊組織中の溶質元素の偏析が均質化し、またFe、Siなどの金属間化合物の分布が適正化される。また均質化処理により金属間化合物が適度に粗大化し、この適度に粗大化した金属間化合物は、熱間圧延や中間焼鈍で再結晶核として有効に機能して、微細な再結晶組織を形成する。
【0013】
前記均質化処理を540〜610℃の温度で1〜15時間施す理由は、540℃未満では金属間化合物が適度に粗大化せず、このため再結晶核となる金属間化合物が減少して再結晶粒が粗大化し、成形性や外観が損なわれ、610℃を超えると鋳塊に変形や膨れなどが生じ、のちに材料欠陥の原因になる。均質化処理時間が1時間未満では均質化処理効果が十分に得られず、15時間を超えるとその効果が飽和してコスト的に不利になるためである。特に望ましい均質化処理時間は2〜6時間である。
【0014】
均質化処理後の熱間圧延は常法に準じて行う。また熱間圧延後の冷間圧延では中間焼鈍を施す。中間焼鈍を入れた冷間圧延材は、前述のように、所要強度を得るための調質焼鈍温度範囲を広くとれる。
従来、この中間焼鈍は完全焼鈍(完全再結晶)させて行っていたが、完全焼鈍を行う場合は、中間焼鈍前の冷間圧延率を十分に大きくしておかないと、中間焼鈍後の再結晶粒が大きくなり肌荒れが生じ易くなる。
このため、本発明では、少なくとも最終中間焼鈍は完全再結晶させずに、部分再結晶する条件、つまり軟化率が20〜70%になる条件で施す。
【0015】
本発明において、少なくとも最終中間焼鈍を軟化率が20〜70%になるように施す理由は、前記軟化率が20%未満では、調質焼鈍後に、成形性を良好にする大きい伸びが得られず、70%を超えると調質焼鈍において軟化が急激に起きて焼鈍不良が生じ易くなるためで、特に望ましい軟化率は30〜60%である。ここで、軟化率は〔(A−B)/A〕の式で表される。但し、Aは中間焼鈍前の材料の硬さ、Bは中間焼鈍後の材料の硬さである。
【0016】
軟化率が20〜70%の結晶組織は、微細な再結晶粒と亜結晶粒界が発達した未再結晶粒とが混在したものである。
前記20〜70%の軟化率は、220〜280℃の温度で中間焼鈍することにより得られる。すなわち、中間焼鈍温度が220℃未満では未再結晶粒の亜結晶粒界が十分に発達せず、280℃を超えると急激に再結晶して軟化率を20〜70%に制御するのが困難になる。
【0017】
本発明で、最終中間焼鈍後の冷間圧延を圧延率50%以下で施す理由は、圧延率が50%を超えると調質焼鈍後に伸びが十分回復せず、必要とする成形性が得られないためである。
【0018】
本発明で、調質焼鈍を200〜260℃の温度で施す理由は、200℃未満では成形性を良好にする大きい伸びが得られず、260℃を超えると材料が過度に軟化して成形性が悪化するためである。
【0019】
【実施例】
以下に本発明を実施例により詳細に説明する。
(実施例1)
表1に示す本発明規定内組成のアルミニウム合金鋳塊(厚さ500mm、幅1200mm、長さ4000mm)に、表2に示すAの条件で、均質化処理、熱間圧延、中間焼鈍、最終冷間圧延、調質焼鈍を順に施して、厚さ1.0mmの半硬質板を製造した。均質化処理時間は、いずれも4時間とした。
【0020】
(比較例1)
表1に示す本発明規定外組成のアルミニウム合金鋳塊を用いた他は、実施例1と同じ方法により厚さ1.0mmの半硬質板を製造した。
【0021】
実施例1と比較例1で製造した各々の半硬質板について、引張強さ、伸び、成形性を調べた。
成形性はエリクセン試験により調べ、圧延板に割れが入るまでのポンチの移動距離(エリクセン値)が15mm未満のものは不良(×)、15mm以上のものは良好(○)と評価した。
結果を表3に示す。表3には中間焼鈍後の軟化率を併記した。
【0022】
【表1】

Figure 0003857418
【0023】
【表2】
Figure 0003857418
【0024】
【表3】
Figure 0003857418
【0025】
表3より明らかなように、本発明例のNo.1〜3 は、いずれも引張強さおよび伸びが高く、従って成形性に優れた。冷間圧延中に中間焼鈍を入れたので調質焼鈍温度範囲が広くなり焼鈍不良は生じなかった。
これに対し、比較例のNo.4〜8 は、合金組成が本発明組成外のため、いずれも引張強さおよび伸びが低く、従って成形性が劣った。
【0026】
(実施例2)
表1に示したNo.1の組成のアルミニウム合金鋳塊を用い、表2に示したB〜Eの製造条件により厚さ1.0mmの半硬質板を製造した。
【0027】
(比較例2)
表1に示したNo.1の組成のアルミニウム合金鋳塊を用い、表2に示したF〜Lの製造条件により厚さ1.0mmの半硬質板を製造した。
【0028】
実施例2または比較例2で製造した各々の半硬質板について、引張強さ、伸び、および成形性を実施例1と同じ方法により調査した。
結果を表4に示す。表4には中間焼鈍後の軟化率を併記した。
【0029】
【表4】
Figure 0003857418
【0030】
表4より明らかなように、本発明例のNo.9〜13は、いずれも引張強さおよび伸びが高く、従って成形性に優れた。
これに対し、比較例の No.14〜20は、製造条件が本発明規定外のため、いずれも引張強さまたは伸びが低く、従って成形性が劣った。
なお、No.15,16は中間焼鈍温度が適正でないため軟化率が本発明規定値を外れた。またNo.17,20は冷間圧延率が高かったため適正な調質焼鈍温度範囲が狭くなり、設定した調質焼鈍温度では伸びが十分回復せず成形性が不良となった。
【0031】
【発明の効果】
以上に述べたように、本発明によれば、強度および伸びが高く成形性に優れるアルミニウム合金半硬質材を高歩留まりで製造できる。前記半硬質材は成形加工の自動化、高速化に十分対応でき、また張出し成形材、張出し部分の大きい複合成形材、エンボス加工材などにも適用できる。依って、工業上顕著な効果を奏する。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing an aluminum alloy semi-hard material excellent in formability with a high yield.
[0002]
[Prior art]
In general, there are two types of aluminum alloy semi-hard materials: an annealed tempered material obtained by annealing and softening a work hardened material and a processed tempered material obtained by work hardening of a fully annealed material. The former is H2X and the latter is H1X.
Since the annealed tempered material has a larger elongation and excellent formability than the processed tempered material, an annealed tempered material is usually used for press molding, and H24 having a relatively high strength is a typical semi-hard material. It is often used as.
The annealed tempered material is manufactured by subjecting an alloy ingot having a predetermined composition to homogenization, hot rolling, and cold rolling in this order, and annealing (tempering annealing) at a semi-softening temperature after the cold rolling. .
[0003]
[Problems to be solved by the invention]
Recently, with the progress of automation and speeding up of molding processes, semi-rigid materials are required to minimize fluctuations in quality and characteristics, and conventional semi-rigid materials cannot cope with the development of materials with better moldability. Improvement of the moldability limit is becoming essential.
[0004]
By the way, semi-rigid materials such as JIS-1100 and 1200 (all are low-strength materials) having a thickness of 0.5 to 2 mm, which are highly versatile as molding materials, are cold-rolled materials without intermediate annealing. It is manufactured by temper annealing.
However, since the cold-rolled material has an excessive cold work degree, softening occurs rapidly during temper annealing, and the annealing temperature range in which the required strength can be obtained is extremely narrow, and the temperature range also depends on the hot rolling conditions. Change. For this reason, there are many annealing defects such as insufficient annealing and over-annealing, and there is a problem that the manufacturing yield is lowered.
[0005]
On the other hand, cold-rolled materials with intermediate annealing are mildly softened during temper annealing, have a wide tempering annealing temperature range where the required strength can be obtained, and are less affected by hot rolling conditions. There are few. However, the annealed tempered material has a problem of low elongation and poor formability.
For these reasons, the present inventors have studied in detail the conditions such as ingot homogenization treatment, intermediate annealing, final cold rolling rate, temper annealing, etc. We have succeeded in finding a method for manufacturing with a high yield.
An object of the present invention is to produce an aluminum alloy semi-hard material (tempered annealing material) excellent in formability at a high yield.
[0006]
[Means for Solving the Problems]
The present invention contains Fe 0.2 to 0.9 wt%, Si 0.1 to 0.3 wt%, the ratio of the content of Fe and Si (Fe / Si) is 2.0 or more, the Fe and Si of The total content is 1.0 wt% or less, containing Cu 0.05 to 0.2 wt% as necessary, further Ti 0.005 to 0.05 wt%, B0.001 to 0.01 wt% % Or more, and the remainder is made of aluminum and inevitable impurities. The aluminum alloy ingot is homogenized, followed by hot rolling, cold rolling with intermediate annealing, and temper annealing in order. A method for producing an aluminum alloy semi-hard material to be applied, wherein the homogenization treatment is performed at a temperature of 540 to 610 ° C. for 1 to 15 hours, and at least final intermediate annealing is performed so that the softening rate is 20 to 70%, Perform cold rolling after intermediate annealing at a rolling rate of 50% or less. A manufacturing method of an aluminum alloy semi-rigid material which is excellent in formability, characterized in that applying a temper annealing at a temperature of 200 to 260 ° C..
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The Al—Fe—Si alloy used in the present invention will be described.
Fe contributes to strength improvement and improves formability, and refines recrystallized grains by hot rolling or intermediate annealing to improve formability. Furthermore, it prevents skin roughness and improves the surface quality of the molded product.
The reason why the added amount of Fe is set to 0.2 to 0.9 wt% is that the effect cannot be sufficiently obtained when the amount is less than 0.2 wt%, and the effect is saturated when the amount exceeds 0.9 wt%. A coarse intermetallic compound is formed between the additive element or impurities, causing surface defects and detrimental to formability.
[0008]
Si dissolves in the Al matrix and contributes to strength improvement.
The reason why the Si content is specified to be 0.1 to 0.3 wt% is that the effect is not sufficiently obtained if the content is less than 0.1 wt%, and if it exceeds 0.3 wt%, a coarse intermetallic compound is formed with Fe. It is for producing | generating this and harming a moldability.
[0009]
Appropriate amounts of Fe and Si form an intermetallic compound together with Al to refine the recrystallized grains formed by hot rolling, intermediate annealing or the like, thereby improving formability. However, if the amount is too large, the intermetallic compound becomes coarse, the ductility is lowered, and the moldability is lowered. Therefore, the total content of Fe and Si is 1.0 wt% or less.
The amount of the intermetallic compound is also affected by the ratio of Fe and Si. That is, excess Si hinders the formation of the intermetallic compound, and thus hinders the formation of recrystallized nuclei, thereby coarsening the recrystallized grains. For this reason, the content ratio of Fe and Si (Fe / Si) is 2.0 or more, and the content ratio of Fe is increased.
[0010]
In the present invention, Cu is contained in the Al—Fe—Si alloy as necessary.
Cu improves strength and enhances formability. When anodized, the color tone is made uniform.
The reason why the Cu content is specified to be 0.05 to 0.2 wt% is that the effect cannot be sufficiently obtained when the content is less than 0.05 wt%, and the corrosion resistance decreases when the content exceeds 0.2 wt%.
[0011]
In the present invention, the Al—Fe—Si alloy contains one or two of Ti and B as required.
Ti refines the ingot structure to improve the rough surface of the rolled material and the non-uniformity of the appearance. The reason why the content is specified to be 0.005 to 0.05 wt% is that if the amount is less than 0.005 wt%, the effect cannot be sufficiently obtained. Intermetallic compounds are formed, which remain after rolling and cause surface scratches on the molded product, and also impair the moldability.
B promotes the refinement effect of Ti. If B is less than 0.001 wt%, the promoting effect cannot be sufficiently obtained. If it exceeds 0.01 wt%, a huge Ti-B intermetallic compound is produced during melt casting, which remains after rolling and is a molded product. Cause surface scratches.
In the present invention, even if the Cu and one or more of Ti or B coexist, each exhibits the same effect as described above.
[0012]
The semi-rigid material of the present invention is obtained by casting the aforementioned Al-Fe-Si- (Cu)-(Ti)-(B) alloy and cooling the resulting ingot with homogenization, hot rolling, and intermediate annealing. It is manufactured by performing intermediate rolling in order and finally tempering annealing.
By the homogenization treatment, segregation of solute elements in the ingot structure is homogenized, and the distribution of intermetallic compounds such as Fe and Si is optimized. In addition, the intermetallic compound is moderately coarsened by the homogenization treatment, and the moderately coarsened intermetallic compound functions effectively as a recrystallization nucleus in hot rolling and intermediate annealing, and forms a fine recrystallized structure. .
[0013]
The reason why the homogenization treatment is performed at a temperature of 540 to 610 ° C. for 1 to 15 hours is that the intermetallic compound is not coarsened appropriately at a temperature lower than 540 ° C. Therefore, the intermetallic compound that becomes a recrystallization nucleus is reduced and recycled. Crystal grains become coarse, formability and appearance are impaired, and when the temperature exceeds 610 ° C., the ingot is deformed or swollen, which later causes material defects. This is because if the homogenization time is less than 1 hour, the homogenization effect is not sufficiently obtained, and if it exceeds 15 hours, the effect is saturated and the cost becomes disadvantageous. A particularly desirable homogenization time is 2 to 6 hours.
[0014]
Hot rolling after the homogenization treatment is performed according to a conventional method. In the cold rolling after hot rolling, intermediate annealing is performed. As described above, the cold-rolled material with intermediate annealing can have a wide tempering annealing temperature range for obtaining the required strength.
Conventionally, this intermediate annealing was performed by complete annealing (complete recrystallization). However, in the case of complete annealing, if the cold rolling ratio before the intermediate annealing is not sufficiently increased, the re-annealing after the intermediate annealing is performed. Crystal grains become large and rough skin tends to occur.
For this reason, in the present invention, at least the final intermediate annealing is performed under the condition of partial recrystallization without complete recrystallization, that is, the condition that the softening rate is 20 to 70%.
[0015]
In the present invention, the reason why at least the final intermediate annealing is performed so that the softening rate is 20 to 70% is that if the softening rate is less than 20%, a large elongation that improves the moldability cannot be obtained after temper annealing. If it exceeds 70%, softening occurs rapidly during temper annealing, and defective annealing tends to occur, and a particularly desirable softening rate is 30 to 60%. Here, the softening rate is represented by the formula [(AB) / A]. However, A is the hardness of the material before intermediate annealing, and B is the hardness of the material after intermediate annealing.
[0016]
The crystal structure having a softening ratio of 20 to 70% is a mixture of fine recrystallized grains and non-recrystallized grains in which a subgrain boundary has developed.
The softening rate of 20 to 70% is obtained by intermediate annealing at a temperature of 220 to 280 ° C. That is, when the intermediate annealing temperature is less than 220 ° C., the sub-crystal grain boundaries of unrecrystallized grains do not develop sufficiently, and when it exceeds 280 ° C., it is difficult to control the softening rate to 20 to 70% by abrupt recrystallization. become.
[0017]
In the present invention, the reason why cold rolling after the final intermediate annealing is performed at a rolling rate of 50% or less is that when the rolling rate exceeds 50%, the elongation does not sufficiently recover after temper annealing, and the required formability is obtained. This is because there is not.
[0018]
In the present invention, the reason why the temper annealing is performed at a temperature of 200 to 260 ° C. is that if the temperature is less than 200 ° C., a large elongation that makes the moldability good cannot be obtained. This is because it gets worse.
[0019]
【Example】
Hereinafter, the present invention will be described in detail with reference to examples.
Example 1
An aluminum alloy ingot (thickness: 500 mm, width: 1200 mm, length: 4000 mm) having the composition defined in the present invention shown in Table 1 is subjected to homogenization treatment, hot rolling, intermediate annealing, and final cooling under the conditions of A shown in Table 2. Cold rolling and temper annealing were performed in order to produce a semi-rigid plate having a thickness of 1.0 mm. The homogenization time was 4 hours in all cases.
[0020]
(Comparative Example 1)
A semi-rigid plate having a thickness of 1.0 mm was manufactured in the same manner as in Example 1 except that an aluminum alloy ingot having a composition outside the scope of the present invention shown in Table 1 was used.
[0021]
About each semi-rigid board manufactured in Example 1 and Comparative Example 1, tensile strength, elongation, and moldability were investigated.
The formability was examined by an Erichsen test, and the punch moving distance (Erichsen value) until cracking in the rolled sheet was evaluated as poor (X) when it was less than 15 mm, and evaluated as good (◯) when it was 15 mm or more.
The results are shown in Table 3. Table 3 also shows the softening rate after the intermediate annealing.
[0022]
[Table 1]
Figure 0003857418
[0023]
[Table 2]
Figure 0003857418
[0024]
[Table 3]
Figure 0003857418
[0025]
As is apparent from Table 3, Nos. 1 to 3 of the examples of the present invention all have high tensile strength and elongation, and thus excellent moldability. Since intermediate annealing was performed during cold rolling, the temper annealing temperature range was widened and no annealing failure occurred.
On the other hand, Nos. 4 to 8 of the comparative examples were low in tensile strength and elongation because the alloy composition was outside the composition of the present invention, and therefore the formability was poor.
[0026]
(Example 2)
Using the aluminum alloy ingot having the composition No. 1 shown in Table 1, a semi-rigid plate having a thickness of 1.0 mm was manufactured under the manufacturing conditions B to E shown in Table 2.
[0027]
(Comparative Example 2)
Using an aluminum alloy ingot having the composition No. 1 shown in Table 1, a semi-rigid plate having a thickness of 1.0 mm was manufactured under the manufacturing conditions F to L shown in Table 2.
[0028]
About each semi-rigid board manufactured in Example 2 or Comparative Example 2, the tensile strength, elongation, and moldability were investigated by the same method as Example 1.
The results are shown in Table 4. Table 4 also shows the softening rate after the intermediate annealing.
[0029]
[Table 4]
Figure 0003857418
[0030]
As is apparent from Table 4, Nos. 9 to 13 of the examples of the present invention all had high tensile strength and elongation, and thus excellent moldability.
On the other hand, Nos. 14 to 20 of the comparative examples were low in tensile strength or elongation because the production conditions were outside the scope of the present invention, so that the moldability was inferior.
In Nos. 15 and 16, the softening rate deviated from the specified value of the present invention because the intermediate annealing temperature was not appropriate. In Nos. 17 and 20, since the cold rolling ratio was high, the appropriate temper annealing temperature range was narrowed, and the elongation was not sufficiently recovered at the set temper annealing temperature, resulting in poor formability.
[0031]
【The invention's effect】
As described above, according to the present invention, an aluminum alloy semi-hard material having high strength and elongation and excellent formability can be produced with a high yield. The semi-rigid material can sufficiently cope with automation and speeding up of the molding process, and can also be applied to a stretched molded material, a composite molded material having a large stretched portion, an embossed material, and the like. Therefore, there is an industrially significant effect.

Claims (4)

Fe0.2〜0.9wt%、Si0.1〜0.3wt%を含有し、前記FeとSiの含有量の比(Fe/Si)が2.0以上、前記FeとSiの含有量の合計が1.0wt%以下であり残部がAlおよび不可避不純物からなるアルミニウム合金鋳塊に均質化処理を施し、その後熱間圧延、中間焼鈍を入れる冷間圧延、調質焼鈍を順に施すアルミニウム合金半硬質材の製造方法であって、前記均質化処理を540〜610℃の温度で1〜15時間施し、少なくとも最終中間焼鈍を軟化率が20〜70%になるように施し、最終中間焼鈍後の冷間圧延を圧延率50%以下で施し、調質焼鈍を200〜260℃の温度で施すことを特徴とする成形性に優れるアルミニウム合金半硬質材の製造方法。  Fe 0.2 to 0.9 wt%, Si 0.1 to 0.3 wt%, the ratio of Fe and Si content (Fe / Si) is 2.0 or more, the total content of Fe and Si Aluminum alloy semi-hard, which is homogenized on an aluminum alloy ingot consisting of Al and inevitable impurities, and then subjected to hot rolling, cold rolling with intermediate annealing, and temper annealing in that order. A method for producing a material, wherein the homogenization treatment is performed at a temperature of 540 to 610 ° C. for 1 to 15 hours, at least the final intermediate annealing is performed so that the softening rate is 20 to 70%, and the cooling after the final intermediate annealing is performed. A method for producing an aluminum alloy semi-hard material excellent in formability, characterized by performing hot rolling at a rolling rate of 50% or less and tempering annealing at a temperature of 200 to 260 ° C. Fe0.2〜0.9wt%、Si0.1〜0.3wt%を含有し、前記FeとSiの含有量の比(Fe/Si)が2.0以上、前記FeとSiの含有量の合計が1.0wt%以下であり、さらにCu0.05〜0.2wt%を含有し、残部がAlおよび不可避不純物からなるアルミニウム合金鋳塊に均質化処理を施し、その後熱間圧延、中間焼鈍を入れる冷間圧延、調質焼鈍を順に施すアルミニウム合金半硬質材の製造方法であって、前記均質化処理を540〜610℃の温度で1〜15時間施し、少なくとも最終中間焼鈍を軟化率が20〜70%になるように施し、最終中間焼鈍後の冷間圧延を圧延率50%以下で施し、調質焼鈍を200〜260℃の温度で施すことを特徴とする成形性に優れるアルミニウム合金半硬質材の製造方法。  Fe 0.2 to 0.9 wt%, Si 0.1 to 0.3 wt%, the ratio of Fe and Si content (Fe / Si) is 2.0 or more, the total content of Fe and Si Is equal to or less than 1.0 wt%, further contains 0.05 to 0.2 wt% of Cu, and the remainder is homogenized to an aluminum alloy ingot consisting of Al and inevitable impurities, followed by hot rolling and intermediate annealing. A method for producing an aluminum alloy semi-hard material, which is sequentially subjected to cold rolling and temper annealing, wherein the homogenization treatment is performed at a temperature of 540 to 610 ° C. for 1 to 15 hours, and at least the final intermediate annealing is performed with a softening ratio of 20 to 20 Aluminum alloy semi-hard with excellent formability, characterized by being applied to 70%, cold rolling after final intermediate annealing is performed at a rolling rate of 50% or less, and temper annealing is performed at a temperature of 200 to 260 ° C. A method of manufacturing the material. Fe0.2〜0.9wt%、Si0.1〜0.3wt%を含有し、前記FeとSiの含有量の比(Fe/Si)が2.0以上、前記FeとSiの含有量の合計が1.0wt%以下であり、さらにTi0.005〜0.05wt%、B0.001〜0.01wt%のうちの一種または2種を含有し、残部がAlおよび不可避不純物からなるアルミニウム合金鋳塊に均質化処理を施し、その後熱間圧延、中間焼鈍を入れる冷間圧延、調質焼鈍を順に施すアルミニウム合金半硬質材の製造方法であって、前記均質化処理を540〜610℃の温度で1〜15時間施し、少なくとも最終中間焼鈍を軟化率が20〜70%になるように施し、最終中間焼鈍後の冷間圧延を圧延率50%以下で施し、調質焼鈍を200〜260℃の温度で施すことを特徴とする成形性に優れるアルミニウム合金半硬質材の製造方法。  Fe 0.2 to 0.9 wt%, Si 0.1 to 0.3 wt%, the ratio of Fe and Si content (Fe / Si) is 2.0 or more, the total content of Fe and Si Is an aluminum alloy ingot containing 1.0 wt% or less, further containing one or two of Ti 0.005 to 0.05 wt% and B 0.001 to 0.01 wt%, with the balance being Al and inevitable impurities. Is a method of manufacturing an aluminum alloy semi-rigid material in which hot rolling, cold rolling with intermediate annealing, and temper annealing are sequentially performed, and the homogenization treatment is performed at a temperature of 540 to 610 ° C. 1 to 15 hours, at least final intermediate annealing is performed so that the softening rate is 20 to 70%, cold rolling after final intermediate annealing is performed at a rolling rate of 50% or less, and temper annealing is performed at 200 to 260 ° C. Excellent formability characterized by being applied at temperature A method for producing an aluminum alloy semi-hard material. Fe0.2〜0.9wt%、Si0.1〜0.3wt%を含有し、前記FeとSiの含有量の比(Fe/Si)が2.0以上、前記FeとSiの含有量の合計が1.0wt%以下であり、さらに、Cu0.05〜0.2wt%を含有し、Ti0.005〜0.05wt%、B0.001〜0.01wt%のうちの一種または2種を含有し、残部がAlおよび不可避不純物からなるアルミニウム合金鋳塊に均質化処理を施し、その後熱間圧延、中間焼鈍を入れる冷間圧延、調質焼鈍を順に施すアルミニウム合金半硬質材の製造方法であって、前記均質化処理を540〜610℃の温度で1〜15時間施し、少なくとも最終中間焼鈍を軟化率が20〜70%になるように施し、最終中間焼鈍後の冷間圧延を圧延率50%以下で施し、調質焼鈍を200〜260℃の温度で施すことを特徴とする成形性に優れるアルミニウム合金半硬質材の製造方法。  Fe 0.2 to 0.9 wt%, Si 0.1 to 0.3 wt%, the ratio of Fe and Si content (Fe / Si) is 2.0 or more, the total content of Fe and Si 1.0 wt% or less, further containing 0.05 to 0.2 wt% of Cu, and containing one or two of Ti 0.005 to 0.05 wt% and B0.001 to 0.01 wt%. The aluminum alloy semi-hard material is manufactured by subjecting an aluminum alloy ingot consisting of Al and inevitable impurities to homogenization, followed by hot rolling, cold rolling with intermediate annealing, and temper annealing in order. The homogenization treatment is performed at a temperature of 540 to 610 ° C. for 1 to 15 hours, at least the final intermediate annealing is performed so that the softening rate is 20 to 70%, and the cold rolling after the final intermediate annealing is performed at a rolling rate of 50%. It is given below and temper annealing is performed at 200 to 260 ° C. Method for producing an aluminum alloy semi-rigid material which is excellent in formability, characterized in that applied in degrees.
JP13659698A 1998-05-19 1998-05-19 Method for producing aluminum alloy semi-hard material with excellent formability Expired - Fee Related JP3857418B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13659698A JP3857418B2 (en) 1998-05-19 1998-05-19 Method for producing aluminum alloy semi-hard material with excellent formability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13659698A JP3857418B2 (en) 1998-05-19 1998-05-19 Method for producing aluminum alloy semi-hard material with excellent formability

Publications (2)

Publication Number Publication Date
JPH11323516A JPH11323516A (en) 1999-11-26
JP3857418B2 true JP3857418B2 (en) 2006-12-13

Family

ID=15179005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13659698A Expired - Fee Related JP3857418B2 (en) 1998-05-19 1998-05-19 Method for producing aluminum alloy semi-hard material with excellent formability

Country Status (1)

Country Link
JP (1) JP3857418B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5291956B2 (en) * 2008-03-10 2013-09-18 住友軽金属工業株式会社 Aluminum alloy plate excellent in square tube deep drawing formability and manufacturing method thereof
JP4559513B2 (en) * 2008-09-09 2010-10-06 株式会社神戸製鋼所 Laminate and composite molded body

Also Published As

Publication number Publication date
JPH11323516A (en) 1999-11-26

Similar Documents

Publication Publication Date Title
JPH0127146B2 (en)
KR20060133996A (en) Method for producing al-mg-si alloy excellent in bake-hardenability and hemmability
EP0480402A1 (en) Process for manufacturing aluminium alloy material with excellent formability, shape fixability and bake hardenability
JPH06240424A (en) Production of aluminum alloy sheet excellent in formability and baking hardenability
JP3857418B2 (en) Method for producing aluminum alloy semi-hard material with excellent formability
JP2626958B2 (en) Method for producing aluminum alloy sheet excellent in formability and bake hardenability
JPH08176764A (en) Production of aluminum alloy sheet for forming
JP3871462B2 (en) Method for producing aluminum alloy plate for can body
JPH0138866B2 (en)
JP2626859B2 (en) Method for producing aluminum alloy sheet for high strength forming with low anisotropy
JPH05279822A (en) Production of aluminum alloy material for forming excellent in hardenability of coating/baking, formability, and shape freezability
JP3260227B2 (en) Al-Mg-Si based alloy sheet excellent in formability and bake hardenability by controlling crystal grains and method for producing the same
JPH07166285A (en) Hardened al alloy sheet by baking and production thereof
JPH11256291A (en) Manufacture of aluminum alloy sheet for can body
JPH04263034A (en) Aluminum alloy sheet for press forming excellent in baking hardenability and its production
JPH07228957A (en) Production of aluminum alloy sheet having excellent formability and quench-hardenability
JP3359428B2 (en) Manufacturing method of aluminum alloy sheet for forming
JPH08296011A (en) Production of aluminum alloy sheet for high speed forming excellent in baking hardenability of coating film and cold stability
JPH05279820A (en) Production of aluminum alloy sheet excellent in formability
JPH06228696A (en) Aluminum alloy sheet for di can body
JPH0533107A (en) Production of hard aluminum alloy sheet excellent in strength and formability
JPS61288055A (en) Manufacture of aluminum alloy sheet for forming excellent in strength
JPH06116689A (en) Production of al-mg-si alloy sheet excellent in formability and baking hardenability
JP4226208B2 (en) Al-Mn-Mg alloy annealed sheet reinforced by fine crystals and method for producing the same
JP2858069B2 (en) Stress corrosion cracking resistant high strength aluminum alloy sheet and method for producing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031222

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060914

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150922

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees