JPH06116628A - Manufacture of contour quenching parts - Google Patents

Manufacture of contour quenching parts

Info

Publication number
JPH06116628A
JPH06116628A JP4286966A JP28696692A JPH06116628A JP H06116628 A JPH06116628 A JP H06116628A JP 4286966 A JP4286966 A JP 4286966A JP 28696692 A JP28696692 A JP 28696692A JP H06116628 A JPH06116628 A JP H06116628A
Authority
JP
Japan
Prior art keywords
contour
temperature
blank
quenching
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4286966A
Other languages
Japanese (ja)
Inventor
Toshiaki Tanaka
利秋 田中
Munehisa Matsui
宗久 松井
Atsushi Danno
敦 団野
Yoshinari Tsuchiya
能成 土屋
Masazumi Onishi
昌澄 大西
Noritaka Miyamoto
典孝 宮本
Mineo Ogino
峯雄 荻野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP4286966A priority Critical patent/JPH06116628A/en
Publication of JPH06116628A publication Critical patent/JPH06116628A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To economically manufacture a parts having high strength and high precision by heating a medium or high carbon steel blank, austenizing, plastic- working, reheating at just above the austenizing temp. after once cooling, quenching and tempering it. CONSTITUTION:The blank composed of the medium or high carbon steel is heated and austenized. This blank is subjected to plastic working at least in the warm temp. zone and precisely formed to a desired shape of the parts having matrix structure accomulating plastic strain. Successively, this worked blank is cooled to the pearlite transformation temp. or lower to precipitate carbide. Thereafter, this blank is preheated to the austenizing temp. or lower to remove the residual working strain and also, adjusted to the structure being apt to be austenized. This preheating is desirable to execute at 550-720 deg.C for 5sec-3min. Successively, the preheated blank is immediately cooled after rapidly heating to just above the austenizing temp. By this method, the contour quenching to only the surface along the contour of the blank is executed and further, the tempering treatment is executed to improve the toughness.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、自動車等に利用される
歯車等の部品を、高強度・高精度かつ経済的に製造する
製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a manufacturing method for manufacturing parts such as gears used in automobiles and the like with high strength, high accuracy and economically.

【0002】[0002]

【従来の技術】従来、自動車用歯車等の製造技術とし
て、肌焼鋼をブランク切削、歯切り後、シェービング加
工によって歯面をJIS3級程度の高精度に仕上げた
後、浸炭焼入れ・焼戻し処理により表面硬化を行う方法
が一般的に用いられている(たとえば、日本鉄鋼協会
編、鋼の熱処理、改訂5版、丸善、1968) しかし、この方法の最大の問題点は浸炭処理が、通常9
30〜950℃の高温で、しかも4時間程度の長時間を
要するために、結晶粒が20〜30μmと粗大化するこ
と、および浸炭異常層が存在するために、強度が低下し
てしまうという点にあった。また、前記のごとく、予め
仕上げ加工によって表面を高精度に仕上げてもその後の
高温長時間の浸炭処理のため、完成品の寸法精度が低下
すること、さらに、浸炭処理炉の設置に広いスペースが
必要とされる等の問題点があった。
2. Description of the Related Art Conventionally, as a manufacturing technology for gears for automobiles, case hardening steel is blank-cut, gear-cut, and after shaving, the tooth surface is finished with high accuracy of JIS class 3 or so, and then carburized and tempered. A method of performing surface hardening is generally used (for example, the Iron and Steel Institute of Japan, heat treatment of steel, 5th edition, Maruzen, 1968). However, the biggest problem with this method is
At a high temperature of 30 to 950 ° C. and for a long time of about 4 hours, the crystal grains are coarsened to 20 to 30 μm, and the presence of an abnormal carburized layer reduces the strength. There was Further, as described above, even if the surface is pre-finished with high accuracy in advance, the dimensional accuracy of the finished product will decrease due to the subsequent high temperature and long time carburizing treatment, and moreover there is a large space for installing the carburizing treatment furnace. There were problems such as being required.

【0003】そこで、この浸炭焼入れ処理・焼戻し処理
に替わる歯車等の表面硬化処理法として、中・高炭素鋼
の高周波輪郭焼入れ方法が検討されてきている(たとえ
ば、日本鉄鋼協会編、鋼の熱処理、改訂5版、丸善、1
968)。この方法によれば、1分程度の短時間で処理
ができ、また、生産設備のスペースも浸炭処理に比べて
少なくできる利点はある。 しかし、この方法は、歯切
り加工後の処理を前提としているため、フェライト組織
を主体とする焼鈍組織のブランクを用いる必要があり、
1秒程度の短時間の加熱で組織をオーステナイト化する
のに950℃以上という高温にする必要があるため結晶
粒が粗大化し、強度が低下してしまうという問題点があ
った。また、試料の形状に沿った深さ1mm程度の輪郭
焼入れを行うことも困難であった。
Therefore, a high-frequency contour quenching method for medium and high carbon steels has been studied as a surface hardening treatment method for gears and the like, which is an alternative to the carburizing and quenching treatments (for example, heat treatment of steel by the Japan Iron and Steel Institute). , Revised 5th Edition, Maruzen, 1
968). According to this method, there is an advantage that the treatment can be performed in a short time of about 1 minute and the space of the production facility can be reduced as compared with the carburizing treatment. However, since this method is premised on the treatment after gear cutting, it is necessary to use a blank of an annealed structure mainly composed of a ferrite structure,
In order to austenite the structure by heating for a short time of about 1 second, it is necessary to raise the temperature to 950 ° C. or higher, so that there is a problem that the crystal grains become coarse and the strength decreases. Further, it was also difficult to perform contour hardening at a depth of about 1 mm along the shape of the sample.

【0004】これを改良するため、特開昭57−207
119、特開昭61−56242では、2段の昇温によ
る高周波輪郭焼入れ法を提案している。この方法によれ
ば、1段目の昇温でオーステナイト化した組織を冷却し
てパーライト組織としているので、1秒程度の短時間の
加熱でも2段目の昇温でオーステナイト化処理が950
℃程度以下の低い温度でできる。そのため、輪郭焼入れ
が困難といった上記問題点は改善される。しかしなが
ら、この方法は、2段加熱を用いるため、前記したフェ
ライト組織が主体である焼鈍組織のブランクを用いたこ
とによる結晶粒粗大化の問題は解消されず、そのため、
浸炭焼入れ鋼より靱性が低くなるという強度上の大きな
問題点を有し、また、2回の熱履歴に起因して歪みが大
きくなる等の問題や、また、加熱焼入れの工程が煩雑に
なる等の問題が生ずるという欠点があった。また、本発
明者等は、加工熱処理と再加熱焼入れを組み合わせた焼
入れ部品の結晶粒微細化による強靱部品の製造方法を提
案した(特開昭64−52018)。しかし、この方法
は、機械部品の全体焼き入れには適用できたが、歯車等
の輪郭焼入れは困難であった。すなわち、950℃以下
の低温で、しかも、1秒程度の短時間といった処理がで
きず、歯車等の形状に沿った深さ1mm程度の輪郭焼入
れは困難であった。そのため、表面に高い圧縮応力を付
与できず、高い曲げ疲労強度を有する部品を得ることが
出来なかった。
In order to improve this, JP-A-57-207
119, Japanese Patent Laid-Open No. 61-56242 proposes a high-frequency contour hardening method by raising the temperature in two steps. According to this method, the structure austenitized by the first heating is cooled to form the pearlite structure. Therefore, even if the heating is performed for a short time of about 1 second, the austenite treatment is 950 by the second heating.
It can be performed at a low temperature of about ℃ or less. Therefore, the above problem that contour hardening is difficult is improved. However, since this method uses two-stage heating, the problem of crystal grain coarsening due to the use of the blank of the annealed structure mainly composed of the ferrite structure cannot be solved, and therefore,
It has a big problem in strength that it has lower toughness than carburized and hardened steel, and also has a problem that strain becomes large due to two heat histories, and the heating and quenching process becomes complicated. There was a drawback that the problem of. Further, the present inventors have proposed a method for producing a tough part by refining the crystal grains of the hardened part in which thermo-mechanical treatment and reheat quenching are combined (JP-A-64-52018). However, although this method could be applied to the overall quenching of machine parts, contour quenching of gears etc. was difficult. That is, it is difficult to perform a treatment at a low temperature of 950 ° C. or lower for a short time of about 1 second, and it is difficult to carry out contour hardening at a depth of about 1 mm along the shape of a gear or the like. Therefore, high compressive stress cannot be applied to the surface, and a component having high bending fatigue strength cannot be obtained.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記従来技
術のもつ問題点に鑑みてなされたものであり、その目的
は、中・高炭素鋼の高周波輪郭焼入れを含むプロセスに
おいて、通常の浸炭焼入れ等のプロセスによる場合より
高強度で高精度な部品を経済的に製造する方法を提供す
ることにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the problems of the above-mentioned prior art, and its object is ordinary carburization in a process including high-frequency contour hardening of medium / high carbon steel. It is an object of the present invention to provide a method for economically manufacturing a component having higher strength and higher precision than that obtained by a process such as quenching.

【0006】本発明者等は、上記各方法の問題点につい
て詳細な検討を繰り返し、試験・研究を行った結果、以
下に記す事実を見い出した。すなわち、素材に加工熱処
理を施し、微細なパーライト組織とした後にオーステナ
イト化温度以下で予加熱処理を行ったところ、前記予加
熱処理がない場合には不可能であった950℃以下の低
温で、しかも、1秒程度の短時間といった処理が可能と
なり、歯車等の形状に沿った深さ1mm程度の輪郭焼入
れが得られ、しかも、歯元の結晶粒が5μmと極めて微
細な部品を得ることができた。本発明は、このような事
実に基づきなしたものである。
The inventors of the present invention repeated the detailed examination of the problems of each of the above methods, and conducted tests and studies, and as a result, found the facts described below. That is, when the material is subjected to thermomechanical treatment to form a fine pearlite structure and then preheated at an austenitizing temperature or lower, at a low temperature of 950 ° C. or lower, which was impossible without the preheat treatment, In addition, processing such as a short time of about 1 second is possible, contour hardening with a depth of about 1 mm along the shape of gears etc. can be obtained, and extremely fine parts with crystal grains at the root of 5 μm can be obtained. did it. The present invention is based on such a fact.

【0007】[0007]

【課題を解決するための手段】本発明の輪郭焼入れ部品
の製造方法は、中・高炭素鋼からなる素材を加熱してオ
ーステナイト化するオーステナイト化工程と、該オース
テナイト化した素材を少なくとも温間域において塑性加
工し、所望の部品形状とする塑性加工工程と、該塑性加
工された素材がパーライトに変態を開始する温度以下に
冷却する冷却工程と、該冷却された素材にオーステナイ
ト化温度以下で加熱を行う予加熱工程と、該予加熱処理
された素材をオーステナイト化温度の直上まで急速に加
熱し、該組織をオーステナイト化した後、直ちに冷却を
行って、該素材の輪郭に沿った表面にのみ輪郭焼入れを
行う工程と、該輪郭焼入れを行った素材に焼戻し処理を
施す焼戻し工程と、からなることを特徴とする。
A method for manufacturing a contour-hardened part according to the present invention comprises an austenitizing step of heating a material made of a medium / high carbon steel to austenite, and at least a warm region of the austenitized material. In the above, the plastic working process is performed to form a desired part shape, the cooling process is performed to cool the plastic processed material to a temperature below which pearlite starts to be transformed, and the cooled material is heated to an austenitizing temperature or lower. And a preheating step for rapidly heating the preheated material to just above the austenitizing temperature, austenitizing the structure, and then immediately cooling, only on the surface along the contour of the material. It is characterized by comprising a step of performing contour hardening and a tempering step of performing tempering treatment on the material subjected to the contour hardening.

【0008】[0008]

【作用】上記構成よりなる本発明の作用は次のようであ
る。まず、オーステナイト化工程において、中・高炭素
鋼からなる素材がオーステナイト化される。次いで、塑
性加工工程において、少なくとも温間域において素材を
塑性加工することにより、塑性歪みが蓄積された基地組
織を有する所望の部品形状に精密成形される。次いで、
冷却工程において、この基地組織中の塑性歪みを有する
オーステナイトが微細なパーライトに変態するととも
に、炭化物の析出が生ずる。次いで、予加熱工程におい
て、残留加工歪みが除去され、オーステナイト化しやす
い組織に調整される。
The operation of the present invention having the above construction is as follows. First, in the austenitizing process, a material made of medium-high carbon steel is austenitized. Next, in the plastic working step, the material is plastically worked at least in the warm region, whereby it is precisely formed into a desired part shape having a matrix structure in which plastic strain is accumulated. Then
In the cooling step, the austenite having plastic strain in the matrix structure is transformed into fine pearlite, and carbide is precipitated. Next, in the preheating step, the residual processing strain is removed and the structure is adjusted to austenite.

【0009】次いで、輪郭焼入れ工程において、先ず急
速に加熱して該部品形状の輪郭に沿って所定の深さの組
織をオーステナイト化することにより、微細で均一なオ
ーステナイト等軸晶に変態する。次に、それが成長する
前、かつ前記冷却工程で析出した炭化物を充分に分解消
失させた後、直ちに冷却することにより、該素材の輪郭
に沿った表面は微細な旧オーステナイト粒度を有する焼
入れ組織となる。本工程において、理由は今のところ明
確ではないが、前記予加熱工程を設けることによって、
従来不可能であった歯車等の形状に沿った深さ1mm程
度の輪郭焼入れが初めて可能となった。さらに、焼戻し
を行うことにより、マルテンサイトの靱性を向上するこ
とができる。
Next, in the contour hardening step, first, rapid heating is performed to austenite the structure of a predetermined depth along the contour of the part shape, thereby transforming into a fine and uniform austenite equiaxed crystal. Next, before it grows, and after the carbides precipitated in the cooling step are sufficiently decomposed and eliminated, the material is immediately cooled, so that the surface along the contour of the material has a quenched structure having a fine prior austenite grain size. Becomes In this step, although the reason is not clear so far, by providing the preheating step,
For the first time, contour quenching with a depth of about 1 mm along the shape of gears, etc., which was previously impossible, became possible. Furthermore, by tempering, the toughness of martensite can be improved.

【0010】[0010]

【発明の効果】本発明の輪郭焼入れ部品の製造方法によ
れば、通常の浸炭焼入れ等のプロセスによる場合より高
強度で高精度な部品を得ることができる。さらに、従
来、広い設備スペースを必要とした浸炭工程や歯切り工
程が省略できる結果、小スペースの生産工程を提供する
ことができる。
According to the method for manufacturing a contour-hardened part of the present invention, it is possible to obtain a part having higher strength and higher precision than in the case of the ordinary carburizing and hardening process. Further, as a carburizing process and a gear cutting process which conventionally require a large equipment space can be omitted, a small space production process can be provided.

【0011】また、熱間・温間域での塑性加工による高
生産性と浸炭に替わるインライン熱処理のため、生産時
間の大幅な短縮が可能である。
Further, because of high productivity by plastic working in hot and warm regions and in-line heat treatment instead of carburization, the production time can be greatly shortened.

【0012】[0012]

【実施例】【Example】

【0013】(第1具体例)本具体例は、本発明の輪郭
焼入れ部品の製造方法を具体的に説明するものである。
本具体例の方法において用いる中・高炭素鋼は、Cを重
量%で0.45〜0.7%含むのがよい。0.45%よ
り少ないと焼入れ硬さが低下し、またオーステナイト化
温度も高くなるため好ましくなく、また、0.7%より
多いと焼割れが生じやすくなったり、炭化物の析出量が
多くなって、オーステナイト化に悪影響を与え、靭性の
低下をもたらすため好ましくない。
(First Specific Example) This specific example specifically describes a method for manufacturing a contour-hardened part according to the present invention.
The medium-high carbon steel used in the method of the present specific example preferably contains 0.45 to 0.7% by weight of C. If it is less than 0.45%, the quenching hardness is lowered, and the austenitizing temperature is also increased, which is not preferable, and if it is more than 0.7%, quenching cracks are likely to occur or the amount of precipitated carbides is increased. However, it adversely affects austenitization and lowers toughness, which is not preferable.

【0014】また、試料内部まで焼きを入れず、輪郭焼
入れ状態を得やすくする、すなわち焼入れ性を下げるた
めに、含有Mn量は0.5%未満とするのが望ましい。
Further, it is desirable that the content of Mn is less than 0.5% in order to easily obtain the contour quenching state without quenching the inside of the sample, that is, to reduce the quenching property.

【0015】さらに、疲労強度を向上させるためには、
含有させるSi、P、S、およびOを低い値におさえる
のがよい。すなわち、これらの元素の含有量は、Si:
0.35%未満、P:0.015%未満、S:0.01
5%未満、O:0.0015%未満とするのが望まし
い。
Further, in order to improve fatigue strength,
It is preferable to keep the contained Si, P, S, and O at low values. That is, the contents of these elements are Si:
Less than 0.35%, P: less than 0.015%, S: 0.01
Less than 5% and O: less than 0.0015% are desirable.

【0016】また、結晶粒微細化元素としてNb、V、
Ti等を1種以上添加させてもよい。この場合、含有さ
せるCの量は、0.6〜1%程度の高い値とし、炭化物
を微細に分散させて、マトリックスとしてのC濃度は
0.5〜0.6%程度にしておくことが望ましい。
Further, Nb, V, and
One or more kinds of Ti and the like may be added. In this case, the amount of C contained is set to a high value of about 0.6 to 1%, the carbide is finely dispersed, and the C concentration as a matrix is set to about 0.5 to 0.6%. desirable.

【0017】また、焼入れ深さを浅くするために短時間
たとえば0.1〜0.2秒程度の昇温時間で輪郭焼入れ
する場合には、CrやMo等の元素を鋼に添加して、焼
入れ性向上を図ってもよい。
When contour hardening is performed for a short time, for example, for a heating time of about 0.1 to 0.2 seconds in order to reduce the hardening depth, elements such as Cr and Mo are added to the steel. Hardenability may be improved.

【0018】次に、本発明に係る方法を、それぞれの工
程について一つの例として温度−時間軸で模式的に展開
したものを図1に示す。図中、(イ)はオーステナイト
化工程、(ロ)は塑性加工工程、(ハ)は冷却工程、
(ニ)は予加熱工程、(ホ)は輪郭焼入れ工程、(ヘ)
は焼戻し工程をそれぞれ示す(以下、同じ)。
Next, FIG. 1 shows the method according to the present invention schematically developed on the temperature-time axis as an example for each step. In the figure, (a) is an austenitizing process, (b) is a plastic working process, (c) is a cooling process,
(D) is the preheating process, (e) is the contour hardening process, (f)
Indicates the tempering process (hereinafter the same).

【0019】素材を加熱してオーステナイト化する工程
において、加熱には電気炉または高周波誘導加熱装置等
を用い、加熱温度は、800〜1300℃とすることが
望ましい。電気炉による加熱の場合、20〜30分の保
持時間をとれば、オーステナイト化温度は800〜90
0℃程度でよい。また、高周波誘導加熱装置による加熱
の場合、数秒〜30秒で必要な部分のみ局部加熱できる
が、オーステナイト化のためには到達温度を1000〜
1300℃程度にすることが望ましい。
In the step of heating the material to austenite, an electric furnace or a high frequency induction heating device is used for heating, and the heating temperature is preferably 800 to 1300 ° C. In the case of heating by an electric furnace, if the holding time of 20 to 30 minutes is taken, the austenitizing temperature is 800 to 90.
It may be about 0 ° C. Further, in the case of heating by a high frequency induction heating device, only a necessary portion can be locally heated in a few seconds to 30 seconds, but the ultimate temperature is 1000 to 1000 for austenitization.
It is desirable to set the temperature to about 1300 ° C.

【0020】次に、温間域で塑性加工を行う工程におい
て、加工温度は600〜900℃であり、過冷オーステ
ナイト状態および一部フェライト変態が生じる。このと
き、オーステナイトが再結晶しないために大きな歪みの
蓄積が生じる。さらに、650℃程度の温度で行う場合
には大気中においても酸化が少ない状態となって、精密
な加工を行うことができる。また、温間域で塑性加工を
行う前に熱間域で塑性加工を行う場合には、加工温度が
950〜1300℃と高く、したがって素材に予め大き
な変形を与えることができる。
Next, in the step of performing plastic working in the warm region, the working temperature is 600 to 900 ° C., and a supercooled austenite state and a partial ferrite transformation occur. At this time, since austenite is not recrystallized, a large strain is accumulated. Furthermore, when the process is performed at a temperature of about 650 ° C., there is little oxidation even in the atmosphere, and precise processing can be performed. Further, when performing the plastic working in the hot region before performing the plastic working in the warm region, the working temperature is as high as 950 to 1300 ° C., and therefore the material can be largely deformed in advance.

【0021】次に、冷却工程では、素材のパーライト変
態が開始する温度、すなわち、600〜500℃以下ま
で素材を冷却する。
Next, in the cooling step, the raw material is cooled to a temperature at which the pearlite transformation of the raw material starts, that is, 600 to 500 ° C. or lower.

【0022】次に、予加熱工程では、素材をオーステナ
イト化温度以下で予加熱処理を行う。望ましくは、オー
ステナイト変態開始温度直下から500℃程度までの温
度域で鋼材の大きさ焼入れ深さ等の条件により数秒〜数
分間保持するのがよい。また、前記温度・時間範囲内で
あれば、予加熱中、温度を必ずしも一定に保つ必要はな
く、途中で変化させても同じ効果が得られる条件であれ
ばよい。例えば、700℃まで昇温した後、20秒程度
放冷して600℃まで冷却した後、輪郭加熱しても、こ
の放冷途中で700℃を上限として再度加熱を繰り返し
た後、輪郭焼入れしてもよい。次に、輪郭焼入れ処理工
程では、先に予加熱した素材を、部品形状に沿って輪郭
状に急速に加熱した後、急速に冷却して輪郭焼入れを行
う。該輪郭焼入れは、高周波輪郭焼入れ等の手段を用い
て行うのがよい。
Next, in the preheating step, the material is preheated below the austenitizing temperature. Desirably, the temperature is maintained for a few seconds to a few minutes in a temperature range from just below the austenite transformation start temperature to about 500 ° C. depending on the size of the steel material and the quenching depth. Further, as long as it is within the temperature / time range, it is not always necessary to keep the temperature constant during preheating, and it may be changed under the condition that the same effect can be obtained. For example, after raising the temperature to 700 ° C., allowing it to cool for about 20 seconds and cooling to 600 ° C., and then performing contour heating, after repeating the heating up to 700 ° C. as an upper limit during this cooling, contour quenching is performed. May be. Next, in the contour quenching treatment step, the preheated material is rapidly heated in a contour along the shape of the part, and then rapidly cooled to perform contour quenching. The contour hardening is preferably performed by means of induction hardening or the like.

【0023】急速に加熱する時間は、鋼中の熱伝導を考
慮して約0.1〜1秒とするのが望ましい。1秒を越え
ると特に自動車用歯車等の比較的小さな部品の場合、全
体焼入れに近い硬化パターンとなるため不適切であり、
0.1秒未満では形成される硬化層が薄すぎたり、加熱
のための装置として高出力・大がかりなものが必要とさ
れるため好ましくない。この加熱時間帯においては、オ
ーステナイト結晶粒を粗大化させない温度範囲として7
70〜1100℃が望ましい。しかし、950℃以上と
加熱温度が高い場合には、図2に示すように、加熱時間
は、結晶粒微細化のため、0.6秒以下が望ましい。
The rapid heating time is preferably about 0.1 to 1 second in consideration of heat conduction in the steel. If it exceeds 1 second, especially for relatively small parts such as gears for automobiles, the hardening pattern will be close to that of overall quenching, which is inappropriate.
If it is less than 0.1 seconds, the formed cured layer will be too thin, and a high-output and large-scale device for heating is required, which is not preferable. In this heating time zone, the temperature range is set to 7 so that the austenite crystal grains are not coarsened.
70-1100 degreeC is desirable. However, when the heating temperature is as high as 950 ° C. or higher, as shown in FIG. 2, the heating time is preferably 0.6 seconds or less because of the refinement of crystal grains.

【0024】加熱後の急冷の手段としては、特に限定す
るものではなく、水溶性焼入れ剤あるいは焼入れ油等の
焼入れ剤を表面に噴射したり、加熱された部品を焼入れ
剤中に急速に投入する方法等を用いることができる。
The means for quenching after heating is not particularly limited, and a water-soluble quenching agent or a quenching agent such as quenching oil is sprayed on the surface, or heated parts are rapidly charged into the quenching agent. The method etc. can be used.

【0025】次に、焼戻し工程では、焼入れによって過
剰に炭素を固溶した高炭素マルテンサイトを低炭素マル
テンサイトと炭化物に分解して靭性を向上させる。電気
炉加熱による場合、120〜200℃の温度範囲で30
分〜2時間の処理を施すことが望ましい。処理温度が1
20℃より低いと炭素が過剰に固溶したままの状態であ
るため靭性が低く、好ましくない。また、処理温度が2
00℃を越えるとマルテンサイトの分解が進み、硬さが
急激に低下するため好ましくない。処理時間は処理品の
肉厚、重量によって決められる。処理時間が短すぎると
内部まで十分に焼戻しされない。また、長すぎると経済
的でない。このため、処理時間は30分〜2時間とする
ことが望ましい。なお、高周波加熱装置を用いる場合に
は、これより高温で短時間側に条件が移行する。
Next, in the tempering step, the toughness is improved by decomposing the high carbon martensite in which carbon is excessively solid-dissolved into the low carbon martensite and the carbide by quenching. In case of heating by electric furnace, 30 in the temperature range of 120-200 ℃
It is desirable to perform the treatment for a minute to 2 hours. Processing temperature is 1
If the temperature is lower than 20 ° C, the carbon remains in an excessively solid-solved state and the toughness is low, which is not preferable. Also, the processing temperature is 2
If the temperature exceeds 00 ° C, the decomposition of martensite proceeds and the hardness sharply decreases, which is not preferable. The processing time is determined by the thickness and weight of the processed product. If the treatment time is too short, the interior will not be sufficiently tempered. Also, if it is too long, it is not economical. Therefore, the processing time is preferably 30 minutes to 2 hours. When a high-frequency heating device is used, the conditions shift to a short time side at a higher temperature than this.

【0026】(第2具体例)本具体例は、本発明の高強
度かつ高精度な輪郭焼入れ部品の製造方法において、予
加熱処理の温度範囲を550〜720℃、処理時間を5
秒から3分の条件とすることを特徴とする。前記予加熱
温度が550℃未満の場合には、残留加工歪みの除去に
長時間を要するため好ましくない。また、720℃を越
えるとオーステナイトを生じて結晶粒が粗大化する等輪
郭焼入れに影響を及ぼすので好ましくない。
(Second Embodiment) In this embodiment, in the method for manufacturing a high-strength and high-precision contour-quenched part of the present invention, the preheating temperature range is 550 to 720 ° C. and the treatment time is 5 hours.
It is characterized in that the condition is from 3 seconds to 3 minutes. If the preheating temperature is lower than 550 ° C, it takes a long time to remove the residual working strain, which is not preferable. On the other hand, if the temperature exceeds 720 ° C., austenite is generated and the crystal grains are coarsened, which affects contour quenching, which is not preferable.

【0027】一方、処理時間は処理温度との関係で決ま
り、一般に、処理温度が高ければ処理時間は短くてす
み、逆に低ければ長くなる。したがって、処理温度が7
20℃のときには処理時間は5秒程度でよく、また、あ
まり長くなると生産性の低下を招き、組織的には炭化物
の凝集やフェライトへの変態が進行して、次の輪郭焼入
れ工程において短時間でのオーステナイト化を阻害して
好ましくないので、最長3分とする。望ましくは、オー
ステナイト変態開始点直下の700℃付近30秒程度の
加熱がよい。この場合、残留加工歪みの除去に効果的な
温度域であるため、短時間の輪郭加熱に対する効果が最
も大きい。これらの条件は用いられる加熱手段あるいは
生産タクト等により決定される。このように予加熱処理
の温度、時間を前記範囲とすることにより輪郭焼入れの
温度、時間を図2に示すように低温、短時間とすること
ができる。
On the other hand, the processing time is determined by the relationship with the processing temperature. Generally, the higher the processing temperature, the shorter the processing time, and conversely, the lower the processing time, the longer the processing time. Therefore, the processing temperature is 7
When the temperature is 20 ° C., the treatment time may be about 5 seconds, and when it is too long, the productivity is lowered and, structurally, agglomeration of carbides and transformation to ferrite proceed, and a short time is required in the next contour hardening step. It is unfavorable since it inhibits austenitization at 3, so the maximum time is 3 minutes. Desirably, heating at 700 ° C. for about 30 seconds immediately below the austenite transformation start point is preferable. In this case, since the temperature range is effective for removing the residual machining strain, the effect on the contour heating for a short time is greatest. These conditions are determined by the heating means used or the production tact. By setting the temperature and time for the preheating treatment within the above ranges, the temperature and time for contour hardening can be set to a low temperature and a short time as shown in FIG.

【0028】(第3具体例)本具体例は本発明の高強度
かつ高精度な輪郭焼入れ部品の製造方法において、輪郭
焼入れ、焼戻し処理の後、および/または少なくとも温
間域における塑性加工の後に、該加工品に仕上げ加工を
行うことを特徴とする。このように、輪郭焼入れ、焼戻
し処理の後、または少なくとも温間域における塑性加工
の後に、該加工品に仕上げ加工を行うことにより、さら
に優れた寸法精度をもつ高精度な輪郭焼入れ部品を得る
ことができる。また、本発明は、インライン熱処理のた
め、生産時間の大幅な短縮が可能であるため、熱処理後
の最終工程で歯研仕上げを導入して高精度を保証したプ
ロセスにした場合でも、従来の浸炭法等による場合より
コスト的に優位性を保てる等の優れた効果を発揮するも
のである。
(Third embodiment) This embodiment is a method for manufacturing a high-strength and highly accurate contour-quenched part of the present invention, after contour-quenching and tempering, and / or at least after plastic working in a warm zone. The finished product is finished. As described above, after the contour quenching and tempering treatment, or at least after the plastic working in the warm region, the finished product is subjected to the finish working to obtain a highly precise contour-quenched part having further excellent dimensional accuracy. You can Further, since the present invention can significantly reduce the production time due to the in-line heat treatment, even when the process that ensures high accuracy is introduced by introducing the tooth polishing in the final step after the heat treatment, the conventional carburization is performed. It exhibits excellent effects such as maintaining cost advantage over the method.

【0029】(実施例1)以下、本発明を実施例に基づ
いて説明する。
(Embodiment 1) The present invention will be described below with reference to embodiments.

【0030】素材として、重量%(以下、単に%と記
す)で、Cを0.63%、Siを0.28%、Mnを
0.38%、Pを0.012%、Sを0.002%、C
uを0.04%、Crを0.11%含み、残部がFeか
らなる炭素鋼を用いて、リング歯車を成形するために転
造により加工を施した。素材は、外径181mm、内径
108mm、幅19mmのリングである。このリング素
材の外周部を、高周波誘導加熱装置を用いて30秒間で
1200℃に昇温し、該素材の組織をオーステナイト化
した。次に、このオーステナイト化したリング素材の外
周部を歯車形状のローラで転造加工し、モジュール2.
4、歯数65、ねじれ角30°、外径184mm、内径
108mm、幅21mmのリング歯車に成形した。この
際、加工開始温度は、1050℃、加工完了温度は約6
50℃であり、この間に連続して転造加工を行った。な
お、ローラ押込み速度は素材1回転当たり1mm、加工
所要時間は6秒であった。
As a raw material, C is 0.63%, Si is 0.28%, Mn is 0.38%, P is 0.012%, and S is 0. 002%, C
Using carbon steel containing 0.04% of u, 0.11% of Cr and the balance of Fe, the carbon steel was processed by rolling to form a ring gear. The material is a ring having an outer diameter of 181 mm, an inner diameter of 108 mm, and a width of 19 mm. The outer peripheral portion of this ring material was heated to 1200 ° C. for 30 seconds using a high frequency induction heating device to austenite the structure of the material. Next, the outer peripheral portion of this austenitized ring material is rolled with a gear-shaped roller to form a module 2.
4, a ring gear having 65 teeth, a twist angle of 30 °, an outer diameter of 184 mm, an inner diameter of 108 mm and a width of 21 mm was formed. At this time, the processing start temperature is 1050 ° C and the processing completion temperature is about 6
The temperature was 50 ° C., and rolling was continuously performed during this period. The roller pushing speed was 1 mm per revolution of the material, and the processing time was 6 seconds.

【0031】転造加工終了後、成形品を25℃まで放冷
した。次いで720℃まで加熱し、650℃まで10秒
間放冷却する予加熱工程を施した後、0.3秒間に、9
00℃まで急速に再加熱し、素材の輪郭に沿った外周部
の組織をオーステナイト化した後、直ちに水溶性焼入れ
剤により輪郭焼入れする工程を施した。
After the rolling process was completed, the molded product was allowed to cool to 25 ° C. Then, after performing a preheating step of heating to 720 ° C. and allowing to cool to 650 ° C. for 10 seconds, 9 seconds were applied for 9 seconds.
After rapidly reheating to 00 ° C. to austenite the structure of the outer peripheral portion along the contour of the material, a step of contour quenching was immediately performed with a water-soluble quenching agent.

【0032】次いで、160℃、120分間焼戻し工程
を施した。
Then, a tempering process was performed at 160 ° C. for 120 minutes.

【0033】得られたリング歯車の表面仕上がりは平滑
で割れ等の欠陥は全く発生しておらず、そのままで研磨
仕上げが可能であった。
The surface finish of the obtained ring gear was smooth and had no defects such as cracks at all, and could be polished as it was.

【0034】上述の方法で製造した、リング歯車の歯部
の硬さ分布測定を行った。測定にはマイクロビッカース
硬さ計を用い、歯直角断面を測定面として調べた。硬さ
計の負荷荷重は500gfとした。結果を図3に示す。
横軸は歯部表面からの距離を示し、縦軸は、ビッカース
硬さを示す。この結果から、歯先および歯元において表
面近傍では硬さが高くなっており、歯の輪郭に沿った焼
入れができていることがわかる。特に、強度の点から最
も重要な歯元部での硬化深さは、1mmと適正な値を示
している。このような輪郭焼入れは従来不可能であった
が、予加熱処理を導入することにより、初めて可能とな
った。また、同試料の歯直角断面における組織観察で
は、歯元における旧オーステナイト結晶粒径は5μmで
あった。
The hardness distribution of the tooth portion of the ring gear manufactured by the above method was measured. A micro Vickers hardness meter was used for the measurement, and the cross section perpendicular to the tooth was measured as the measurement surface. The load applied to the hardness meter was 500 gf. The results are shown in Fig. 3.
The horizontal axis represents the distance from the tooth surface, and the vertical axis represents the Vickers hardness. From this result, it can be seen that the hardness is high near the surface of the tooth tip and the tooth root, and the quenching is performed along the contour of the tooth. In particular, the hardening depth at the root portion, which is most important in terms of strength, shows an appropriate value of 1 mm. Although such contour hardening has not been possible in the past, it became possible only by introducing a preheating treatment. Further, in the structure observation of the cross section of the same sample at a right angle to the tooth, the prior austenite crystal grain size at the tooth root was 5 μm.

【0035】次に、X線により歯元部表面の残留応力測
定を行った。その結果、歯元の残留応力値は圧縮側に約
70kgf/mm2 であり、通常の浸炭焼入れを行った
場合の引張り応力値0〜20kgf/mm2 より充分圧
縮側に高いものであった。
Next, the residual stress on the tooth root surface was measured by X-ray. As a result, the residual stress value of the dedendum is about 70 kgf / mm 2 on the compressed side, was higher sufficiently compressive side of the stress value 0~20kgf / mm 2 tensile in the case of performing normal carburizing quenching.

【0036】(実施例2)図4に示すように、熱間・温
間域で転造により歯車を製造し、室温まで冷却した。用
いた素材および製造条件は実施例1と同様である。冷却
後、シェービング加工により、仕上げ加工を行い、歯面
精度をJIS3級まで向上させた。その後、予加熱・輪
郭焼入れ処理を行っても、現在使われている浸炭焼入の
場合のように寸法精度の低下することがなくJIS3級
が維持されたままの歯車が得られた。
(Example 2) As shown in FIG. 4, a gear was manufactured by rolling in a hot / warm zone and cooled to room temperature. The materials and manufacturing conditions used are the same as in Example 1. After cooling, a finishing process was performed by shaving to improve the tooth surface accuracy to JIS class 3. After that, even if preheating and contour quenching were performed, the dimensional accuracy did not deteriorate as in the case of carburizing and quenching used at present, and a gear with JIS class 3 maintained was obtained.

【0037】(実施例3)Cを0.6%含む以外は実施
例1と同じ組成の鋼からなる素材を準備した。該素材か
ら、中央にVノッチ(半径1mm、深さ1.9mm、角
度60°)をもつ角棒状(高さ12mm、幅10mm、
長さ90mm)試験片を製作した。次にこの試験片を図
5に示すように、850℃で20分間オーステナイト化
処理した後、空冷途中の730℃でナックルジョイント
プレスを用いて50%の圧縮加工を施し、室温まで空冷
した。これに700℃、30秒の予加熱工程を施し、続
いて到達温度840℃、加熱時間1秒間で高周波輪郭焼
入れ工程を施し、焼戻しを行って図6に示す切欠試験片
を採取した。なお、Vノッチ底には、研削仕上げした
後、ショットピーニング処理を施してある。
(Example 3) A material made of steel having the same composition as in Example 1 except that it contained 0.6% of C was prepared. From the material, a square bar shape (height 12 mm, width 10 mm, V-notch (radius 1 mm, depth 1.9 mm, angle 60 °) in the center,
A test piece having a length of 90 mm was manufactured. Next, as shown in FIG. 5, this test piece was subjected to austenitizing treatment at 850 ° C. for 20 minutes, then subjected to 50% compression processing at 730 ° C. in the middle of air cooling using a knuckle joint press, and air-cooled to room temperature. This was subjected to a preheating step at 700 ° C. for 30 seconds, followed by an induction contour hardening step at an ultimate temperature of 840 ° C. for a heating time of 1 second, and tempering was performed to obtain a notch test piece shown in FIG. The bottom of the V notch is ground and then shot peened.

【0038】この切欠試験片の硬さ分布を測定した。測
定条件は実施例1と同様である。測定結果を図7に示
す。この結果から、本実施例の場合にも浸炭焼入れ(H
v:外周部780〜内部350)に匹敵する硬さ分布が
得られていることがわかる。また、硬化層の旧オーステ
ナイト結晶粒径は、約5μmであった。なお、温間加工
を施さない試験片にこの輪郭焼入れ工程を施した場合に
は、フェライトが面積比で数%程度残留し、均一で充分
な表面硬さは得られなかった。
The hardness distribution of this notched test piece was measured. The measurement conditions are the same as in Example 1. The measurement result is shown in FIG. 7. From this result, the carburizing and quenching (H
v: It can be seen that a hardness distribution comparable to that of the outer peripheral portion 780 to the inner 350) is obtained. Also, the former austenite crystal grain size of the hardened layer was about 5 μm. When the contour hardening process was performed on the test piece that was not subjected to warm working, ferrite remained in an area ratio of about several percent, and uniform and sufficient surface hardness could not be obtained.

【0039】次に、この切欠試験片を用いて、曲げ疲労
強度を測定した。測定にはシェンク式曲げ疲労試験機を
用い、完全片振り(応力比0)、繰り返し速度1800
rpmの条件で測定を行った。結果を図8に示す。横軸
は、負荷の繰り返し数を示し、縦軸は、Vノッチ底での
公称応力全振幅を示す。同図には、比較例として、浸炭
焼入れした試験片の曲げ疲労強度測定結果も示したが、
本実施例の試験片の方が浸炭焼入れの場合に比べ、10
%程度高い疲労強度を示していることがわかる。
Next, the bending fatigue strength was measured using this notch test piece. Schenk type bending fatigue tester is used for measurement, complete swing (stress ratio 0), repetition rate 1800
The measurement was performed under the condition of rpm. The results are shown in Fig. 8. The horizontal axis represents the number of load cycles and the vertical axis represents the nominal total stress amplitude at the bottom of the V-notch. In the same figure, as a comparative example, the bending fatigue strength measurement results of the carburized and quenched test pieces are also shown.
Compared with the case of carburizing and quenching, the test piece of this example is 10
It can be seen that the fatigue strength is high at about%.

【0040】次に、輪郭焼入れ工程における加熱温度を
種々変化させた試験片を用いて、衝撃試験を行った。試
験はシャルピー衝撃試験機により行った。図9に試験結
果を示す。横軸は輪郭焼入れ温度を示し、縦軸は衝撃値
を示す。この結果より、衝撃値は、輪郭焼入れ温度が低
い程高く、輪郭焼入れ温度の上昇に伴って低くなるが、
950℃程度までなら、浸炭焼入れ品と同等程度以上で
あることがわかる。
Next, an impact test was conducted using test pieces having various heating temperatures in the contour hardening process. The test was performed using a Charpy impact tester. The test results are shown in FIG. The horizontal axis represents the contour hardening temperature, and the vertical axis represents the impact value. From this result, the impact value is higher as the contour hardening temperature is lower, and becomes lower as the contour hardening temperature rises,
It can be seen that up to about 950 ° C, it is at least equivalent to the carburized and quenched product.

【0041】次に、輪郭焼入れ温度を種々変化させた前
記試験片を用いて、静曲げ強度試験を行った。試験には
万能材料試験機を用い、負荷速度2mm/分、支点間距
離50mmの条件で3点曲げ試験を行った。結果を図1
0に示す。横軸は輪郭焼入れ温度を示し、縦軸は、曲げ
破断応力を示す。同図には、比較例として浸炭焼入れ材
の通常の静曲げ強度レベル、および0.6%C鋼を従来
の高周波焼入れ法で硬化させた場合の静曲げ強度試験結
果も示す。本実施例の試験片は、浸炭焼入れ材の通常の
静曲げ強度レベルに比べ30%程度強度が高くなってお
り、0.6%C鋼を従来の高周波焼入れ法で硬化させた
場合の静曲げ強度に比べれば、約2.5倍に高くなって
いることがわかる。
Next, a static bending strength test was carried out using the test pieces with various contour hardening temperatures. For the test, a three-point bending test was performed using a universal material testing machine under the conditions of a load speed of 2 mm / min and a distance between fulcrums of 50 mm. The result is shown in Figure 1.
It shows in 0. The horizontal axis represents the contour hardening temperature, and the vertical axis represents the bending rupture stress. As a comparative example, the figure also shows the normal static bending strength level of the carburized and hardened material and the static bending strength test result when 0.6% C steel was hardened by the conventional induction hardening method. The test piece of this example has a strength about 30% higher than the normal static bending strength level of the carburized and hardened material, and the static bending when 0.6% C steel is hardened by the conventional induction hardening method. It can be seen that it is about 2.5 times higher than the strength.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は本発明の工程を模式的に示した説明図で
ある。
FIG. 1 is an explanatory view schematically showing a process of the present invention.

【図2】図2は本発明の輪郭焼入れの焼入れ温度、昇温
時間の範囲を示す図である。
FIG. 2 is a diagram showing a range of a quenching temperature and a temperature rising time of contour quenching according to the present invention.

【図3】図3は実施例1において、本発明に係る処理を
施した歯車の硬さ分布測定結果を示す図である。
FIG. 3 is a diagram showing a result of measuring a hardness distribution of a gear that has been subjected to the treatment according to the present invention in the first embodiment.

【図4】図4は実施例2の工程を模式的に示した説明図
である。
FIG. 4 is an explanatory view schematically showing the process of Example 2.

【図5】図5は実施例3の工程を模式的に示した説明図
である。
FIG. 5 is an explanatory view schematically showing the process of Example 3.

【図6】図6は実施例3の試験片の形状寸法を示す図で
ある。
FIG. 6 is a diagram showing the geometrical dimensions of the test piece of Example 3;

【図7】図7は実施例3において、本発明に係る処理を
施した試験片の硬さ分布測定結果を示す図である。
FIG. 7 is a diagram showing the results of measuring the hardness distribution of a test piece that has been treated according to the present invention in Example 3.

【図8】図8は実施例3において、試験片の曲げ疲労強
度測定結果を示す図である。
FIG. 8 is a diagram showing the results of measurement of bending fatigue strength of a test piece in Example 3.

【図9】図9は実施例3において、試験片の衝撃試験結
果を示す図である。
FIG. 9 is a diagram showing a result of an impact test of a test piece in Example 3.

【図10】図10は実施例3において、試験片の静曲げ
強度試験結果を示す図である。
FIG. 10 is a view showing a static bending strength test result of a test piece in Example 3.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 団野 敦 愛知県愛知郡長久手町大字長湫字横道41番 地の1株式会社豊田中央研究所内 (72)発明者 土屋 能成 愛知県愛知郡長久手町大字長湫字横道41番 地の1株式会社豊田中央研究所内 (72)発明者 大西 昌澄 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 宮本 典孝 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 荻野 峯雄 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Atsushi Danno, Nagakute-cho, Aichi-gun, Aichi-gun, Nagatake 1 1st at 41 Yokomichi Toyota Central Research Institute Co., Ltd. 1 at 41 Chuo-dori, Toyota Central Research Institute Co., Ltd. (72) Inventor Masasumi Onishi 1 Toyota Town, Toyota City, Aichi Prefecture Toyota Automobile Co., Ltd. (72) Noritaka Miyamoto 1 Toyota Town, Toyota City, Aichi Prefecture Inside Toyota Motor Co., Ltd. (72) Inventor Mineo Ogino 1 Toyota Town, Toyota City, Aichi Prefecture Inside Toyota Motor Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 中・高炭素鋼からなる素材を加熱してオ
ーステナイト化するオーステナイト化工程と、 該オーステナイト化した素材を少なくとも温間域におい
て塑性加工し、所望の部品形状とする塑性加工工程と、 該塑性加工された素材がパーライトに変態を開始する温
度以下に冷却する冷却工程と、 該冷却された素材にオーステナイト化温度以下で加熱を
行う予加熱工程と、 該予加熱処理された素材をオーステナイト化温度の直上
まで急速に再加熱し、該組織をオーステナイト化した
後、直ちに冷却を行って、該素材の輪郭に沿った表面に
のみ輪郭焼入れを行う輪郭焼入れ工程と、 該輪郭焼入れを行った素材に焼戻し処理を施す焼戻し工
程と、からなることを特徴とする輪郭焼入部品の製造方
法。
1. An austenitizing step of heating a material made of medium-high carbon steel to austenite, and a plasticizing step of plastically working the austenitized material in at least a warm region to obtain a desired part shape. A cooling step of cooling the plastically worked material below a temperature at which it transforms into pearlite, a preheating step of heating the cooled material below an austenitizing temperature, and a preheating treatment of the preheated material. Rapid reheating to just above the austenitizing temperature, austenitizing the structure, then immediately cooling, and a contour hardening step of carrying out contour hardening only on the surface along the contour of the material, and performing the contour hardening And a tempering step of subjecting the material to a tempering process, and a method for manufacturing a contour-quenched part.
【請求項2】 請求項1において、予加熱処理は、温度
範囲が550〜720℃、処理時間が5秒から3分の条
件で行うことを特徴とする輪郭焼入れ部品の製造方法。
2. The method for manufacturing a contour-hardened part according to claim 1, wherein the preheating treatment is performed under the conditions of a temperature range of 550 to 720 ° C. and a treatment time of 5 seconds to 3 minutes.
【請求項3】 請求項1において、輪郭焼入れ処理の
後、および/または少なくとも温間域における塑性加工
の後に、該加工品に仕上げ加工を行うことを特徴とする
輪郭焼入れ部品の製造方法。
3. The method for producing a contour-quenched part according to claim 1, wherein the workpiece is finished after the contour-quenching treatment and / or after the plastic working in at least the warm region.
JP4286966A 1992-09-30 1992-09-30 Manufacture of contour quenching parts Pending JPH06116628A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4286966A JPH06116628A (en) 1992-09-30 1992-09-30 Manufacture of contour quenching parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4286966A JPH06116628A (en) 1992-09-30 1992-09-30 Manufacture of contour quenching parts

Publications (1)

Publication Number Publication Date
JPH06116628A true JPH06116628A (en) 1994-04-26

Family

ID=17711266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4286966A Pending JPH06116628A (en) 1992-09-30 1992-09-30 Manufacture of contour quenching parts

Country Status (1)

Country Link
JP (1) JPH06116628A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006009145A (en) * 2004-05-24 2006-01-12 Komatsu Ltd Rolling member and production method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006009145A (en) * 2004-05-24 2006-01-12 Komatsu Ltd Rolling member and production method thereof

Similar Documents

Publication Publication Date Title
EP2135962B1 (en) Case-hardened steel pipe excellent in workability and process for production thereof
JP6772499B2 (en) Steel parts and their manufacturing methods
JPH02153018A (en) Production of steel member
JPH07112231A (en) Manufacture of sintered gear
JP5405325B2 (en) Differential gear and manufacturing method thereof
JPS5967365A (en) Production of machine parts
JP2709596B2 (en) Manufacturing method of case hardened steel tough parts
JP2000063935A (en) Production of nitrided part
JP2007146233A (en) Method for manufacturing structural parts for automobile made from steel
JP4884803B2 (en) Heat treatment method for steel
JP2549039B2 (en) Carbonitriding heat treatment method for high strength gears with small strain
JP3093123B2 (en) Manufacturing method of cast iron gear
JP2549038B2 (en) Method for carburizing heat treatment of high-strength gear with small strain and its gear
JPH0535203B2 (en)
JPH10226817A (en) Production of steel for soft-nitriding and soft-nitrided parts using this steel
JPH10147814A (en) Production of case hardening steel product small in heat treating strain
JPH06116628A (en) Manufacture of contour quenching parts
JPH09242763A (en) Manufacture of rolling bearing
JP2614653B2 (en) Manufacturing method of carburized parts with little heat treatment distortion
JP2706940B2 (en) Manufacturing method of non-heat treated steel for nitriding
JPS62139812A (en) Manufacture of high strength and toughness cast steel
JP2004169178A (en) Method for manufacturing member formed of hardened steel, in particular, member formed of rolling bearing steel
JPS6227515A (en) Method for strengthening surface
CN115026517B (en) Planetary gear shaft, special material for planetary gear shaft and hot forging forming process of special material
JP2524156B2 (en) High carbon steel tough parts manufacturing method