JP2524156B2 - High carbon steel tough parts manufacturing method - Google Patents

High carbon steel tough parts manufacturing method

Info

Publication number
JP2524156B2
JP2524156B2 JP62124944A JP12494487A JP2524156B2 JP 2524156 B2 JP2524156 B2 JP 2524156B2 JP 62124944 A JP62124944 A JP 62124944A JP 12494487 A JP12494487 A JP 12494487A JP 2524156 B2 JP2524156 B2 JP 2524156B2
Authority
JP
Japan
Prior art keywords
austenite
temperature
carbon steel
processing
high carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62124944A
Other languages
Japanese (ja)
Other versions
JPS6452018A (en
Inventor
敦 団野
銑一 山田
利秋 田中
宗久 松井
政敏 澤村
良樹 藤田
正道 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Seiko Co Ltd
Toyota Central R&D Labs Inc
Original Assignee
Koyo Seiko Co Ltd
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Seiko Co Ltd, Toyota Central R&D Labs Inc filed Critical Koyo Seiko Co Ltd
Priority to JP62124944A priority Critical patent/JP2524156B2/en
Publication of JPS6452018A publication Critical patent/JPS6452018A/en
Application granted granted Critical
Publication of JP2524156B2 publication Critical patent/JP2524156B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は高炭素鋼強靭部品を高精度かつ経済的に製造
する方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for producing a high carbon steel tough component with high accuracy and economically.

[従来の技術] 単純形状から比較的複雑な形状の鋼部品を能率よく経
済的に成形する方法として、一般に900℃以上の温度域
で行なう熱間又は亜熱間塑性加工法、600〜850℃の温度
域で行なう温間塑性加工法が古くから知られている。
[Prior Art] As a method for efficiently and economically forming a steel part from a simple shape to a relatively complicated shape, a hot or sub-hot plastic working method generally performed in a temperature range of 900 ° C or higher, 600 to 850 ° C The warm plastic working method performed in the temperature range of is known for a long time.

熱間又は亜熱間温度域では一般に鋼材の変形抵抗が小
さく変形能が大きいため、加工度の高い成形が容易であ
る。しかし、素材表面への酸化膜の生成量が多く、また
金型にかかる熱負荷が大きいため金型が損傷(摩耗、へ
たり、クラック等)しやすく、成形精度は低い。
In the hot or sub-hot temperature range, the deformation resistance of the steel material is generally small and the deformability is large. However, since the amount of oxide film generated on the surface of the material is large and the heat load applied to the mold is large, the mold is easily damaged (wear, set, crack, etc.) and the molding accuracy is low.

これに対し、温間温度域では素材酸化の程度が低く、
金型への熱負荷も低減されるので高精度加工が可能であ
る。しかしながら、変形能は逆に低下し、変形抵抗は増
大する。
In contrast, the degree of material oxidation is low in the warm temperature range,
Since the heat load on the die is also reduced, high precision machining is possible. However, the deformability decreases and the deformation resistance increases.

特に、重量比で0.6%以上の炭素を含有する高炭素鋼
は温間域での変形抵抗が大きく、変形能も充分でないた
め、熱間又は亜熱間域での成形が一般的であるが、上述
した理由から塑性加工法によって高精度な部品を経済的
に得ることは困難であった。
In particular, high-carbon steel containing 0.6% by weight or more of carbon has a large deformation resistance in the warm region and insufficient deformability, so it is generally formed in the hot or sub-hot region. For the reasons described above, it has been difficult to economically obtain highly accurate parts by the plastic working method.

ところで、高炭素鋼部品には成形後、焼入れ、焼戻し
処理によって所望の硬さと強度が与えられる。しかしな
がら、機械的性質、特に塑性や疲労強度は必ずしも充分
とは言い難く、これを改善するために、従来よりいくつ
かの加工熱処理法が提案されている。
By the way, a desired hardness and strength are given to a high carbon steel part by quenching and tempering after forming. However, mechanical properties, particularly plasticity and fatigue strength, are not always sufficient, and several thermomechanical treatment methods have been proposed in order to improve the mechanical properties.

例えば、第9図に示すオースフォーミングでは、過冷
オーステナイト域で強度の温間塑性加工(W.F.)を加え
た後に急冷することによって、強靭なマルテンサイト組
織が得られるとされている。しかし、この方法を例えば
高クロム軸受鋼に適用しようとすると、約300〜400℃程
度の低温で塑性加工する必要があり、このため加工時の
変形抵抗が極めて大きく、変形能も乏しいために塑性加
工は極めて難しい。さらに、得られる部品強度に異方性
が強く、また加工時の温度制御方法にも難点が多い。
For example, in the ausforming shown in FIG. 9, it is said that a tough martensitic structure can be obtained by rapid warming after applying strong warm plastic working (WF) in the supercooled austenite region. However, if this method is applied to high-chromium bearing steel, for example, it is necessary to perform plastic working at a low temperature of about 300 to 400 ° C. Therefore, the deformation resistance during working is extremely large and the deformability is poor. Processing is extremely difficult. Furthermore, the obtained component strength has a strong anisotropy, and there are many difficulties in the temperature control method during processing.

第10図(a)線で示される鍛造焼入れもよく知られて
いる。この方法では、安定オーステナイト状態で熱間塑
性加工(H.F.)されるので材料の加工性は良好である
が、得られる部品精度は低い。また通常の焼入れに比べ
熱エネルギー消費量は節約できるが、強度の向上は充分
ではないこと、焼入れ組織の旧オーステナイト結晶粒の
大きさが熱間加工度の分布の影響を受けて部品内で不均
一になりやすいといった欠点も指摘されている。
Forging and quenching shown by the line (a) in FIG. 10 are also well known. In this method, hot plastic working (HF) is performed in a stable austenite state, so the workability of the material is good, but the obtained part precision is low. In addition, the heat energy consumption can be saved compared to normal quenching, but the improvement in strength is not sufficient, and the size of the former austenite crystal grains in the quenched structure is affected by the distribution of the hot workability, which causes the It has also been pointed out that it tends to be uniform.

この鍛造焼入れを改良した方法として、第10図(b)
線で示す如く、亜共析鋼の素材を1250℃程度の熱間で鍛
造後、鍛造品を720〜620℃もしくは390〜250℃の温度域
に一旦冷却させてオーステナイト組織を実質的に消失さ
せた後、所定の焼入れ温度に再加熱して焼入れることに
より、比較的微細で均一なオーステナイト結晶粒の焼入
れ組織を得、機械的性質を向上させる方法が提案されて
いる(特開昭58−141331号、特開昭58−141333号)。
As an improved method of this forging and quenching, Fig. 10 (b)
As shown by the line, after the material of hypoeutectoid steel is hot forged at about 1250 ° C, the forged product is once cooled to a temperature range of 720 to 620 ° C or 390 to 250 ° C to substantially eliminate the austenite structure. After that, a method for improving the mechanical properties by obtaining a relatively fine and uniform quenched structure of austenite crystal grains by reheating to a predetermined quenching temperature and quenching has been proposed (JP-A-58-58). 141331, JP-A-58-141333).

しかしながら、熱間加工によってオーステナイトに加
えられた塑性加工ひずみは再結晶によってほぼ完全に解
放される。従って、焼入れ温度まで再加熱する際にオー
ステナイト結晶粒の微細化に有効なひずみがほとんど残
留しておらず、得られるオーステナイト結晶粒を大幅に
微細化することは困難である。また、この場合も熱間鍛
造を用いているため、前述した成形精度に関する問題点
は解放されていない。
However, the plastic working strain added to austenite by hot working is almost completely released by recrystallization. Therefore, when reheating to the quenching temperature, almost no strain remains effective for refining the austenite crystal grains, and it is difficult to significantly refine the obtained austenite crystal grains. Further, since hot forging is used in this case as well, the above-mentioned problems concerning the forming accuracy have not been solved.

亜共析鋼及び過共析鋼に対して、第11〜12図に示す如
く、オーステナイト化した後、室温まで冷却し、次いで
温間加工(W.F.)又は冷間加工(C.F.)することにより
焼入れ組織の旧オーステナイト結晶粒の微細化を図る方
法が示されている(特開昭61−210120号、特開昭61−21
0121号、特開昭61−210122号、特開昭61−279620号)。
この方法では、温間加工、又は冷間加工によって変形を
受けたフェライトの粒界にオーステナイトが優先的に核
生成し、最終的に数μmの微細オーステナイトが得られ
るとされている。
For hypo-eutectoid and hyper-eutectoid steels, quenching by austenitizing, cooling to room temperature, and then warm working (WF) or cold working (CF) as shown in Figs. A method for refining the former austenite crystal grains of the structure has been disclosed (JP-A-61-210120 and JP-A-61-21).
0121, JP-A-61-210122, JP-A-61-279620).
According to this method, austenite is preferentially nucleated at grain boundaries of ferrite deformed by warm working or cold working, and finally fine austenite of several μm is obtained.

しかしながら、この方法を高炭素鋼の部品に適用しよ
うとすると、温間域において変形抵抗が大きく、変形能
が小さいことが制約となって加工が困難であり、実用的
方法とはいえない。
However, if this method is applied to high carbon steel parts, the deformation resistance is large and the deformability is small in the warm region, which makes the processing difficult, and is not a practical method.

[発明が解決しようとする問題点] このように、高炭素鋼、特に、未溶解炭化物を含むよ
うな変形抵抗が高く、変形能が比較的乏しい高炭素鋼を
経済的かつ高精度に製造する方法は未だ知られていな
い。また、機械的性質も充分とは言えなかった。
[Problems to be Solved by the Invention] As described above, high-carbon steel, particularly high-carbon steel having high deformation resistance such as containing undissolved carbide and relatively low deformability, is economically and highly accurately manufactured. The method is not yet known. Also, the mechanical properties were not sufficient.

本発明は、上記実情に鑑みてなされたものであり、高
炭素鋼の素材は、塑性加工によって能率よく精密に成形
するとともに、極めて微細な旧オーステナイト結晶粒の
焼入れ組織を有し、靭性の優れた鋼部品を得るための経
済的かつ実用的な方法を提供することを目的とするもの
である。
The present invention has been made in view of the above circumstances, the material of the high carbon steel is efficiently and precisely formed by plastic working, has a quenching structure of extremely fine old austenite crystal grains, excellent toughness The purpose of the invention is to provide an economical and practical method for obtaining steel parts.

[問題点を解決するための手段] 本発明者等は、上記目的を達成するために鋭意検討し
た結果、高炭素鋼の素材を、次の(イ)、(ロ)及び
(ハ)の工程を経て処理することにより高炭素鋼の強靭
部品が得られることを見出した。第1図はその工程を模
式的に示す図である。なお[ ]内は基地組織が過共晶
の場合を示す。
[Means for Solving Problems] As a result of intensive studies to achieve the above-mentioned object, the inventors of the present invention have determined that a high-carbon steel material has the following steps (a), (b) and (c): It has been found that a high carbon steel tough component can be obtained by processing through. FIG. 1 is a diagram schematically showing the process. In addition, [] shows the case where the matrix structure is hypereutectic.

(イ)素材を加熱して基地組織をオーステナイト化す
る。
(A) The base material is heated to austenite.

(ロ)引続いて、基地組織がオーステナイトである熱間
温度域及び基地組織が実質的にフェライトとパーライト
もしくはパーライトである温間温度域の各温度域におい
て、素材にそれぞれ塑性加工を施す。
(B) Subsequently, plastic working is performed on the material in each of the hot temperature range in which the matrix structure is austenite and the warm temperature range in which the matrix structure is substantially ferrite and pearlite or pearlite.

(ハ)引続いて、素材を基地組織のオーステナイト化温
度の直上まで再加熱し、基地組織をオーステナイト化し
た後焼入れを行ない、次いで焼戻しを行なう。
(C) Subsequently, the material is reheated to just above the austenitizing temperature of the base structure to austenite the base structure, followed by quenching and then tempering.

本発明で対象とする高炭素鋼は、重量割合で、炭素を
少なくとも0.6%含有する鋼である。例えば、高炭素ク
ロム軸受鋼、炭素工具鋼等が挙げられ、通常的に焼入
れ、焼戻し処理を施して高硬度(一般にHRC60以上)で
使用されるものが対象となる。
The high carbon steel targeted by the present invention is a steel containing at least 0.6% carbon by weight. For example, high carbon chrome bearing steel, carbon tool steel and the like can be cited, and those that are usually hardened and tempered and used with high hardness (generally H R C60 or more) are targeted.

特に過共析鋼は変形抵抗が高く、その組織中に未溶解
炭化物を含む場合には変形能が極めて低いので、本発明
の効果が高い。
In particular, hyper-eutectoid steel has a high deformation resistance, and when the structure thereof contains undissolved carbides, the deformability is extremely low, so the effect of the present invention is high.

炭素量が0.6%に満たない鋼においては、一般に使用
される際の焼入れ、焼戻し後の硬さはHv300程度以下
で、実用上充分な靭性を備えている場合が多く、また温
間加工や冷間加工が充分可能な変形抵抗と変形能を有し
ているので本発明に供する意義は少ない。
Steel with less than 0.6% carbon has a hardness of about Hv 300 or less after quenching and tempering when it is generally used, and often has practically sufficient toughness. Since it has a deformation resistance and a deformability capable of performing sufficient interworking, it has little significance for the present invention.

(イ)の工程において、加熱温度は、素材の基地組織
がオーステナイト化する温度以上であればよいが、次の
(ロ)の工程において、素材の温度低下を生じた場合で
も実質的にオーステナイト域で塑性加工が行なえる程度
に基地組織のオーステナイト化温度よりやや高めに選定
することが好ましい。
In the step (a), the heating temperature may be higher than the temperature at which the matrix structure of the material is austenitized, but in the next step (b), the heating temperature is substantially austenite even if the temperature of the material is lowered. It is preferable to select a temperature slightly higher than the austenitizing temperature of the matrix structure so that plastic working can be performed.

未溶解炭化物を含む過共析鋼を使用する場合には、加
熱時間と関連して、未溶解炭化物がその部品用途から規
定される量より少なくならない(過度に基地中に固溶し
ない)ように加熱温度の上限が設定される。また、加熱
時に粗大オーステナイト粒の生成を避けるために、上限
は1200℃以下とするのが望ましい。
When using hyper-eutectoid steel containing undissolved carbides, in connection with the heating time, ensure that the amount of undissolved carbides does not fall below the amount specified by the application of the part (excessive solid solution in the matrix). The upper limit of the heating temperature is set. Further, in order to avoid the formation of coarse austenite grains during heating, the upper limit is preferably set to 1200 ° C or lower.

(ロ)の工程において、塑性加工は、転造加工、鍛造
加工等によって行なわれ、最終的な部品の形状に成形さ
れる。
In the step (b), the plastic working is performed by rolling, forging, etc. to form the final shape of the component.

この塑性加工において素材は少なくとも次の2段階の
過程を経て塑性加工される。即ち、第1段階の加工は素
材の基地組織がオーステナイトである状態において行な
われ(第1図中、Fhの時間範囲で示す)、第2段階の加
工は素材の基地組織が実質的にパーライトとフェライト
もしくはパーライトである状態において行なわれる(第
1図中、Fwの時間範囲で示す)。
In this plastic working, the material is plastically worked through at least the following two steps. That is, the first stage processing is performed in the state where the matrix structure of the material is austenite (indicated by the time range of Fh in FIG. 1), and the second stage processing is that the matrix structure of the material is substantially pearlite. It is performed in the state of being ferrite or pearlite (indicated by the time range of Fw in FIG. 1).

ここで、第1図に示すように、FhもしくはFwの時間範
囲において素材温度を連続的に低下させる場合、Fwの前
半の過程で基地組織にオーステナイトが多量に含まれて
いても差支えなく、あるいはFwにおける第2段階の加工
終了時点で少量のオーステナイトが残留していてもよ
い。この場合、第1段階の加工と第2段階の加工を間隔
をおいて行なっても(第1図)、これらの加工を連続し
て行なってもよい(第2図)。また、第1段階及び第2
段階の加工をそれぞれほぼ一定の温度に保持した状態で
行なってもよい(第3図)。
Here, as shown in FIG. 1, when the material temperature is continuously decreased in the time range of Fh or Fw, it does not matter if the matrix structure contains a large amount of austenite in the first half of Fw, or A small amount of austenite may remain at the end of the second stage processing in Fw. In this case, the first-step processing and the second-step processing may be performed at intervals (FIG. 1) or may be continuously performed (FIG. 2). Also, the first stage and the second
The steps of processing may be carried out while maintaining a substantially constant temperature (FIG. 3).

要するに、第1段階の加工をオーステナイトもしくは
オーステナイトと未溶解炭化物の混合組織で行ない、引
続いて第2段階の加工を実質的にフェライトとパーライ
トもしくはパーライト、あるいはこれらと未溶解炭化物
の混合組織で行なえばよい。
In short, the first stage processing can be performed with austenite or a mixed structure of austenite and undissolved carbide, and the second stage processing can be subsequently performed with ferrite and pearlite or pearlite or a mixed structure of these and undissolved carbide. Good.

なお、変形抵抗の増加と変形能の低下をできるだけ少
なくするために、上記第2段階の加工温度の下限は550
℃もしくはそれ以上とするのが望ましい。
In addition, in order to minimize the increase in deformation resistance and the decrease in deformability, the lower limit of the processing temperature in the second step is 550.
It is desirable that the temperature is ℃ or higher.

(ハ)の工程では、上記(ロ)の工程に引続いて素材
の再加熱が行なわれる。再加熱温度は、基地組織の炭素
濃度によって決まるオーステナイト化温度の直上とし、
上限はオーステナイト化温度+150℃、好ましくはオー
ステナイト化温度+100℃である。再加熱温度における
保持時間(第1図〜第3図中、Htで示す)は、オーステ
ナイト変態が完了後、数分間以内とすることが好まし
い。再加熱温度及び保持時間を上記範囲内とすることに
よりオーステナイト等軸晶の成長(粗大化)が防止され
極めて微細かつ均一なオーステナイト等軸晶の組織とな
る。
In the step (c), the material is reheated following the step (b). The reheating temperature is directly above the austenitizing temperature determined by the carbon concentration of the matrix structure,
The upper limit is the austenitizing temperature + 150 ° C, preferably the austenitizing temperature + 100 ° C. The holding time at the reheating temperature (indicated by Ht in FIGS. 1 to 3) is preferably within several minutes after completion of the austenite transformation. By setting the reheating temperature and the holding time within the above ranges, growth (coarsening) of austenite equiaxed crystals is prevented, and an extremely fine and uniform structure of austenite equiaxed crystals is obtained.

再加熱処理に引続いて、通常公知の冷媒を使用して焼
入れを行ない、次いで通常の条件で焼戻しを行なう。
Subsequent to the reheating treatment, quenching is performed using a generally known refrigerant, and then tempering is performed under normal conditions.

なお上記(イ)〜(ハ)の工程のうち、(ハ)の焼入
れまでの処理は時間的に引続いて実施する必要があり、
各々の工程、処理の間に上記した以外の工程や操作を挿
入しない。焼入れ後の焼戻し処理は、必ずしも、焼入れ
に引続いて実施する必要はなく、焼戻し処理の前に任意
の休止時間を設けてもよい。
In addition, among the steps (a) to (c), the process up to the quenching of (c) needs to be continuously performed in terms of time,
Do not insert any steps or operations other than those mentioned above between each step or process. The tempering treatment after quenching does not necessarily have to be performed subsequent to the quenching, and an arbitrary rest time may be provided before the tempering treatment.

[作用] 本発明においては、まず、(イ)の工程で素材の基地
組織がオーステナイト化され、次いでこの状態で(ロ)
第1段階の塑性変形が施される。この状態では素材は低
変形抵抗かつ高変形能を示し、従って低い加工圧力でな
おかつ割れの危険性がない状態で任意に粗加工できる。
[Operation] In the present invention, first, the matrix structure of the material is austenitized in the step (a), and then in this state (b)
The first stage plastic deformation is performed. In this state, the material exhibits low deformation resistance and high deformability, so that it can be arbitrarily rough-processed with a low processing pressure and without the risk of cracking.

次いで(ロ)第2段階において塑性変形が施され、最
終的に所望の部品形状に精密成形される。この第2段階
は温間域加工であるが、第1段階において最終成形形状
に至るために必要な加工度のうちかなりの部分の変形が
完了しているので、この段階における加工度は少なく、
従って金型損傷、材料割れ等の危険性も小さい。
Next, (b) plastic deformation is performed in the second stage, and finally, precision molding is performed into a desired part shape. This second stage is warm zone working, but since a considerable part of the workability required to reach the final molded shape has been deformed in the first stage, the workability at this stage is low,
Therefore, the risk of mold damage, material cracking, etc. is small.

この第2段階では、少なくともフェライトとパーライ
トもしくはパーライトを含む基地組織に塑性ひずみが蓄
積される。この塑性ひずみが蓄積された基地組織は、続
く(ハ)の工程で微細で均一なオーステナイト等軸晶に
変態し、成長前に焼入れすることにより、微細な旧オー
ステナイト粒の焼入れ組織となる。さらに焼戻しにより
焼入れマルテンサイトの靭性を向上できる。
In this second stage, plastic strain is accumulated in the matrix structure containing at least ferrite and pearlite or pearlite. The matrix structure in which the plastic strain is accumulated is transformed into a fine and uniform austenite equiaxed crystal in the subsequent step (C), and is hardened before growth to become a hardened structure of fine prior austenite grains. Further, tempering can improve the toughness of the quenched martensite.

[発明の効果] このように本発明によれば、高変形抵抗で延性の乏し
い高炭素鋼素材を安定に無理なく塑性加工して精密な部
品に成形できると同時に、極めて微細な旧オーステナイ
ト結晶粒の焼入れ組織を有する高靭性部品を得ることが
できる。
[Effects of the Invention] As described above, according to the present invention, a high carbon steel material having high deformation resistance and poor ductility can be stably and reasonably plastically processed into a precise component, and at the same time, extremely fine old austenite crystal grains can be formed. It is possible to obtain a high toughness component having a quenched structure of

さらに上記(イ)の工程〜(ハ)の焼入れ処理までが
時間的に連続して実施されるので、これらの処理を分け
て実施する従来法に比べて熱エネルギーの制約が図れ
る。また、精密加工が可能であるので、切削、研削加工
等の後加工での材料の無駄が少なく、加工所要時間も短
縮できるなど、極めて経済的かつ実用的な方法である。
Further, since the process of (a) to the quenching process of (c) are carried out continuously in terms of time, the heat energy can be restricted as compared with the conventional method in which these processes are carried out separately. In addition, since precision processing is possible, there is little waste of material in post-processing such as cutting and grinding, and the processing time can be shortened, which is an extremely economical and practical method.

[実施例] 以下、本発明を実施例により詳細に説明するが、本発
明はその要旨を超えない限り、以下の実施例に限定され
るものではない。
[Examples] Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited to the following Examples as long as the gist thereof is not exceeded.

(1−A)素材としてJIS高炭素クロム軸受鋼SUJ2(0.9
5〜1.10%C,0.15〜0.35%Si,<0.5%Mn,<0.025%P,<
0.025%S,1.30〜1.60%Cr)を用いて、リング製品の転
造加工を実施した。
(1-A) JIS high carbon chrome bearing steel SUJ2 (0.9
5 to 1.10% C, 0.15 to 0.35% Si, <0.5% Mn, <0.025% P, <
0.025% S, 1.30 to 1.60% Cr) was used to roll the ring product.

素材は外径44mm,内径24mm,幅20mmのリングである。 The material is a ring with an outer diameter of 44 mm, an inner diameter of 24 mm, and a width of 20 mm.

このリング素材を850℃の電気炉中で20分間加熱して
基地組織をオーステナイト化した。この時、未溶解炭化
物がオーステナイト中に存在しており、オーステナイト
中の炭素濃度が約0.5〜0.6%となるように加熱時間を選
定した。この場合の基地組織のオーステナイト化温度は
状態図より約750〜760℃と推定される。この素材をマン
ドレルと円筒形ローラの間で転造加工し、外径72.5mm、
内径62.5mm,幅20.2mmのリング製品に成形した。加工開
始温度は830〜840℃、加工完了温度は690〜710℃であ
り、この間に連続して転造加工を行なった。
This ring material was heated in an electric furnace at 850 ° C for 20 minutes to austenite the matrix structure. At this time, the undissolved carbide was present in the austenite, and the heating time was selected so that the carbon concentration in the austenite was about 0.5 to 0.6%. The austenitizing temperature of the matrix structure in this case is estimated to be about 750 to 760 ° C from the phase diagram. This material is rolled between a mandrel and a cylindrical roller, the outer diameter is 72.5 mm,
It was molded into a ring product with an inner diameter of 62.5 mm and a width of 20.2 mm. The processing start temperature was 830 to 840 ° C, and the processing completion temperature was 690 to 710 ° C, during which rolling was continuously performed.

なお、ローラ押込み速度は素材1回転当り0.13mm、加
工所要時間は約7秒であった。
The roller pushing speed was 0.13 mm per revolution of the material, and the processing time was about 7 seconds.

転造加工完了後、直ちに成形品を850℃の電気炉中に
挿入し、基地組織がオーステナイトに変態後(変態は77
0℃で生じた)、1〜3分間炉中に保持してから油冷し
た。次いで160℃で2時間保持した後、水冷することに
より焼戻し処理を施した。
Immediately after the rolling process was completed, the molded product was inserted into an electric furnace at 850 ° C and the matrix structure was transformed into austenite (transformation was
(Occurred at 0 ° C.), held in oven for 1-3 minutes and then oil cooled. Then, after holding at 160 ° C. for 2 hours, it was tempered by cooling with water.

得られたリング製品の寸法精度は直径誤差±0.2mm
(真円度誤差を含む)、幅誤差±0.1mmであった。表面
仕上りは平滑で割れ等の欠陥は全く発生しておらず、そ
のままで研削仕上げが充分可能であった。成形品の硬さ
はHv760〜790であり、焼入組織は未溶解炭化物とマルテ
ンサイトの基地からなっていた。
The dimensional accuracy of the obtained ring product is ± 0.2 mm in diameter error.
(Including roundness error), width error was ± 0.1 mm. The surface finish was smooth and there were no defects such as cracks, and it was possible to finish the grinding as it was. The hardness of the molded product was Hv760-790, and the quenched structure consisted of undissolved carbide and martensite matrix.

再加熱工程におけるオーステナイト変態後の保持時間
と旧オーステナイト結晶粒の大きさを第4図Aに示す。
保持時間4分以内では4〜7μmの微細粒が得られた。
この旧オーステナイト粒は等軸晶的で場所によらず極め
て均一であった。
The holding time after the austenite transformation and the size of the former austenite crystal grains in the reheating step are shown in FIG. 4A.
Fine particles of 4 to 7 μm were obtained within a holding time of 4 minutes.
The former austenite grains were equiaxed and extremely uniform regardless of location.

(1−B)一方、上記リング製品と同寸法のリングを上
記素材と同材質の丸棒から切削加工し、これを850℃の
炉中で20分加熱してオーステナイト化した後、油焼入れ
し、160℃で2時間の焼戻しを施したものの旧オーステ
ナイト結晶粒の大きさを測定し、第4図Bとして示し
た。この通常熱処理品(硬さHv784)の未溶解炭化物量
は上記Aの場合と同等であった。図に明らかなように、
通常熱処理品に比し、本発明品が極めて微細な旧オース
テナイト粒を有することがわかる。
(1-B) On the other hand, a ring of the same size as the above ring product is cut from a round bar of the same material as the above material, heated in a furnace at 850 ° C for 20 minutes to austenite, and then oil quenched. The size of the former austenite crystal grains was measured after tempering at 160 ° C. for 2 hours, and the result is shown in FIG. 4B. The amount of undissolved carbides in this normal heat-treated product (hardness Hv784) was the same as in the case of A above. As you can see in the figure,
It can be seen that the product of the present invention has extremely fine prior austenite grains as compared with the normally heat-treated product.

次いで、上記A、Bで得られたリング製品の圧壊試験
を行なった。第5図に示すように一部を切り欠いたリン
グ製品(1)を材料試験機によって上下の平板(2,3)
の間で30mm/minの速度で圧縮し、C部で破懐を生じるま
でのリングのたわみ量Δlとその時の荷重(圧壊荷重)
を測定した。結果を第6図に示す。本発明品Aの圧懐値
とたわみ量は通常熱処理品Bに比べて著しく大きく、強
靭化されていることがわかる。また、強度においても優
れている。
Next, the crush test of the ring products obtained in the above A and B was performed. As shown in Fig. 5, a ring product (1) with a part cut away is used to test the upper and lower flat plates (2, 3) by a material testing machine.
The amount of ring deflection Δl and the load at that time (crushing load), which is compressed at a speed of 30 mm / min between
Was measured. Results are shown in FIG. It can be seen that the product A of the present invention has a significantly larger compression value and deflection than the heat-treated product B and is toughened. It is also excellent in strength.

また、第7図において、本発明品Aの圧壊荷重は再加
熱工程でのオーステナイト化後の保持時間が増すと低下
し、保持時間を数分以上とすると、圧壊荷重は通常熱処
理品Bと大差なくなる。これは前述したように、オース
テナイト化後の保持時間が増すとオーステナイト結晶粒
が粗大化することに主に起因している。
Further, in FIG. 7, the crushing load of the product A of the present invention decreases as the holding time after austenitizing in the reheating step increases, and when the holding time is several minutes or more, the crushing load greatly differs from that of the normally heat-treated product B. Disappear. This is mainly due to the coarsening of austenite crystal grains as the holding time after austenitization increases, as described above.

上記リング製品A、Bの側面を研削仕上げし、その面
について森式(スラスト型)軸受鋼耐久試験機を用いて
転動疲労試験を行なった。応力くり返し速度は1800cp
m、潤滑油は#60スピンドル油(浸漬)とし、直径5/16
インチの鋼球を用いて、作用面圧(ヘルツ圧)ρmaxは5
34kgf/mm2で行なった。結果を第8図に示す。本発明品
Aのリングの転動寿命は通常熱処理品Bに比べ約2倍に
向上している。
The side surfaces of the ring products A and B were ground and finished, and the surfaces were subjected to a rolling fatigue test using a Mori type (thrust type) bearing steel durability tester. Stress repetition rate is 1800cp
m, lubricating oil is # 60 spindle oil (immersion), diameter 5/16
Using an inch steel ball, the working surface pressure (Hertz pressure) ρmax is 5
It was performed at 34 kgf / mm 2 . The results are shown in Fig. 8. The rolling life of the ring of the product A of the present invention is about twice as long as that of the product B of the normal heat treatment.

(2)(1−A)と同様の素材を使用し、920℃で20分
加熱してオーステナイト化した後、同様にして連続転造
加工を行なった。加工開始温度は820〜880℃、加工終了
温度は610〜720℃とした。
(2) A material similar to that of (1-A) was used, heated at 920 ° C. for 20 minutes to form austenite, and then continuously rolled in the same manner. The processing start temperature was 820 to 880 ° C, and the processing end temperature was 610 to 720 ° C.

ここで、転造加工終了後に油焼入れを行なって、その
時の硬さを調べた。転造終了温度が690℃以下のものはH
v360〜425で明らかにパーライト変態が生じていたが、
転造終了温度が700℃以上のものはHv800程度で転造加工
が実質的にオーステナイト状態で完了したことを示して
いた。
Here, after the rolling process was completed, oil quenching was performed to examine the hardness at that time. H if the rolling end temperature is 690 ° C or lower
There was obviously a pearlite transformation in v360-425,
When the rolling end temperature was 700 ° C or higher, it was shown that the rolling process was substantially completed in the austenite state at about Hv800.

転造加工終了後、成形品を直ちに800℃及び920℃の炉
中に入れ、オーステナイト化後、1〜3分で油焼入れを
行なった。得られた焼入れ組織について旧オーステナイ
ト粒の大きさを調べたところ、再加熱温度が800℃の場
合には、転造終了温度が690℃以下のものは粒度No.12〜
14で充分微細であったが、転造終了温度が700℃以上の
もの(本発明(ロ)の工程を満たしていないもの)は粒
度No.11以下で微細化が不充分であった。また再加熱温
度が920℃の場合には、いずれの場合も粒度No.11以下で
あった。
After completion of the rolling process, the molded product was immediately put in a furnace at 800 ° C. and 920 ° C., austenitized, and then oil-quenched in 1 to 3 minutes. When the size of old austenite grains was examined for the obtained quenched structure, when the reheating temperature was 800 ° C, the grain size No. 12 to
No. 14 was fine, but those with a rolling end temperature of 700 ° C. or higher (those not satisfying the process of the present invention (b)) had grain size No. 11 or less and were insufficient in fineness. When the reheating temperature was 920 ° C, the particle size was No. 11 or less in all cases.

ここで、本実験では転造加工前のオーステナイト化温
度が(1−A)より高いため、未溶解炭化物の量は(1
−A)より少ない。従って基地組織中の炭素量は0.5〜
0.6%より多く、これに伴い再加熱時の基地組織のオー
ステナイト化温度は750〜760℃より低いと考えられ、上
記結果から、再加熱温度が基地組織のオーステナイト化
温度よりかなり高い場合には、充分微細なオーステナイ
ト粒の組織が得られないことがわかる。
Here, in this experiment, since the austenitizing temperature before rolling was higher than (1-A), the amount of undissolved carbide was (1
-Less than A). Therefore, the carbon content in the base organization is 0.5-
More than 0.6%, it is considered that the austenitizing temperature of the base structure upon reheating is lower than 750 to 760 ° C, and from the above results, when the reheating temperature is considerably higher than the austenitizing temperature of the base structure, It can be seen that a sufficiently fine austenite grain structure cannot be obtained.

(3)炭素含有量0.7〜0.8%の炭素鋼のリング素材を用
いて、(1−A)同様に転造加工を行なった。転造加工
前のオーステナイト化は高周波誘導加熱により1125〜12
00℃まで加熱することによって行ない、加工開始温度は
910〜920℃、加工終了温度は560〜800℃とした。加工終
了温度は転造加工を数回に分けて間欠的にくり返して行
なうことによって、加工開始から加工終了までの時間を
変えて調節した。
(3) Using a carbon steel ring material having a carbon content of 0.7 to 0.8%, rolling was performed in the same manner as (1-A). The austenite formation before rolling is 1125 to 12 by high frequency induction heating.
This is done by heating to 00 ° C, and the processing start temperature is
The temperature was 910 to 920 ° C, and the finishing temperature was 560 to 800 ° C. The processing end temperature was adjusted by changing the time from the processing start to the processing end by intermittently repeating the rolling process several times.

転造加工終了後、直ちに高周波誘導加熱により成形品
を800〜860℃まで約30秒再加熱して直ちに油冷した。
Immediately after the rolling process was completed, the molded product was reheated to 800 to 860 ° C for about 30 seconds by high frequency induction heating and immediately cooled with oil.

得られた成形品に割れはなく、焼入組織の硬さはいず
れもHv800〜850であったが、旧オーステナイト粒は、加
工終了温度が560、605、635℃のものは粒度No.11.5〜1
3.5であり、780、800℃のものは粒度No.11以下であっ
た。なお、この鋼のオーステナイト化温度は約730℃で
あった。
There was no crack in the obtained molded product, and the hardness of the quenched structure was Hv 800 to 850 in all, but the former austenite grains have the grain size No. 11.5 to 605 at 560, 605 and 635 ° C. 1
The particle size was 3.5, and those of 780 and 800 ° C had a particle size of No. 11 or less. The austenitizing temperature of this steel was about 730 ° C.

(4)(1−A)と同様の素材を使用し、ナックル・ジ
ョイント・プレスによって素材幅方向(軸方向)に圧縮
加工を行なった。まず、素材を850℃の炉中で20分間加
熱することによって未溶解炭化物とオーステナイトの混
合組織とした。引続いて800℃で加工率50%の圧縮加工
を行ない、次いで650〜700℃でさらに加工率30%の圧縮
加工を行なった。その後、直ちに850℃の炉中で基地組
織をオーステナイト化し、2〜4分保持して油焼入れし
た。
(4) Using the same material as in (1-A), compression processing was performed in the material width direction (axial direction) by a knuckle joint press. First, the material was heated in a furnace at 850 ° C for 20 minutes to form a mixed structure of undissolved carbide and austenite. Subsequently, compression processing with a processing rate of 50% was performed at 800 ° C, and then compression processing with a processing rate of 30% was further performed at 650-700 ° C. Immediately thereafter, the matrix structure was austenitized in a furnace at 850 ° C., held for 2 to 4 minutes and oil-quenched.

得られた成形品に割れはなく、粒度No.11.5〜12.5の
旧オーステナイト焼入組織となった。
The obtained molded product had no cracks and had a former austenite quenched structure with grain size Nos. 11.5 to 12.5.

【図面の簡単な説明】[Brief description of drawings]

第1図〜第3図は本発明の工程説明図、第4図は本実施
例におけるオーステナイト化後の保持時間と粒径の関係
を示す図、第5図は本実施例における圧壊試験方法を示
す図、第6図〜第7図は本実施例における圧壊試験結果
を示す図、第8図は本実施例における転動寿命試験結果
を示す図、第9図〜第12図は従来の加工熱処理法の工程
説明図である。
1 to 3 are process explanatory diagrams of the present invention, FIG. 4 is a diagram showing the relationship between the holding time after austenitization and the particle size in this example, and FIG. 5 is the crushing test method in this example. Fig. 6 to Fig. 7 show the results of the crushing test in this example, Fig. 8 shows the result of the rolling life test in this example, and Figs. 9 to 12 show the conventional machining. It is a process explanatory view of a heat treatment method.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田中 利秋 愛知県愛知郡長久手町大字長湫字横道41 番地の1 株式会社豊田中央研究所内 (72)発明者 松井 宗久 愛知県愛知郡長久手町大字長湫字横道41 番地の1 株式会社豊田中央研究所内 (72)発明者 澤村 政敏 愛知県愛知郡長久手町大字長湫字横道41 番地の1 株式会社豊田中央研究所内 (72)発明者 藤田 良樹 大阪府大阪市南区鰻谷西之町2番地 光 洋精工株式会社内 (72)発明者 柴田 正道 大阪府大阪市南区鰻谷西之町2番地 光 洋精工株式会社内 (56)参考文献 特公 昭50−31530(JP,B1) 特公 昭50−31529(JP,B1) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshiaki Tanaka Nagakute-cho, Aichi-gun, Aichi Prefecture, Nagachoji 1 No. 41 Yokomichi, Toyota Central Research Institute Co., Ltd. No. 41 Yokomichi, Toyota Central Research Institute Co., Ltd. (72) Inventor Masatoshi Sawamura, Nagakute-cho, Aichi-gun, Aichi Prefecture, long letter No. 41 Yokomichi Toyota Central Research Institute, No. 1 (72) Inventor Yoshiki Fujita Minami, Osaka, Osaka (2) Koyo Seiko Co., Ltd., Nishinomachi, Nishinoya-ku, Ku (72) Masamichi Shibata, Nishinocho-cho, Unagiya, Minami-ku, Osaka-shi, Osaka (56) Reference (Japanese Patent Publication No. 50-31530) JP, B1) JP-B-50-31529 (JP, B1)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】高炭素鋼の素材を次の(イ)、(ロ)及び
(ハ)の工程を経て処理することを特徴とする高炭素鋼
強靭部品の製造方法。 (イ)素材を加熱して基地組織をオーステナイト化す
る。 (ロ)引続いて、基地組織がオーステナイトである熱間
温度域及び基地組織が実質的にフェライトとパーライト
もしくはパーライトである温間温度域の各温度域におい
て、素材にそれぞれ塑性加工を施す。 (ハ)引続いて、素材を基地組織のオーステナイト化温
度の直上まで再加熱し、基地組織をオーステナイト化し
た後焼入れを行ない、次いで焼戻しを行なう。
1. A method for producing a high carbon steel tough component, which comprises treating a high carbon steel material through the following steps (a), (b) and (c). (A) The base material is heated to austenite. (B) Subsequently, plastic working is performed on the material in each of the hot temperature range in which the matrix structure is austenite and the warm temperature range in which the matrix structure is substantially ferrite and pearlite or pearlite. (C) Subsequently, the material is reheated to just above the austenitizing temperature of the base structure to austenite the base structure, followed by quenching and then tempering.
【請求項2】上記高炭素鋼が過共析鋼である特許請求の
範囲第1項記載の製造方法。
2. The method according to claim 1, wherein the high carbon steel is hypereutectoid steel.
【請求項3】上記(ロ)の工程において、塑性加工は転
造加工あるいは鍛造加工のいずれかである特許請求の範
囲第1項記載の製造方法。
3. The manufacturing method according to claim 1, wherein in the step (b), the plastic working is either rolling or forging.
JP62124944A 1987-05-18 1987-05-21 High carbon steel tough parts manufacturing method Expired - Lifetime JP2524156B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62124944A JP2524156B2 (en) 1987-05-18 1987-05-21 High carbon steel tough parts manufacturing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP12092587 1987-05-18
JP62124944A JP2524156B2 (en) 1987-05-18 1987-05-21 High carbon steel tough parts manufacturing method
JP62-120925 1987-08-06

Publications (2)

Publication Number Publication Date
JPS6452018A JPS6452018A (en) 1989-02-28
JP2524156B2 true JP2524156B2 (en) 1996-08-14

Family

ID=26458410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62124944A Expired - Lifetime JP2524156B2 (en) 1987-05-18 1987-05-21 High carbon steel tough parts manufacturing method

Country Status (1)

Country Link
JP (1) JP2524156B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006098346A1 (en) * 2005-03-16 2006-09-21 Honda Motor Co., Ltd. Method for heat-treating steel material
US11065672B2 (en) * 2017-06-03 2021-07-20 Atulkumar Raghavjibhai SARADVA Process of manufacturing of segments for carbon thrust bearing

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5031529A (en) * 1973-07-26 1975-03-28
JPS5031530A (en) * 1973-07-26 1975-03-28

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006098346A1 (en) * 2005-03-16 2006-09-21 Honda Motor Co., Ltd. Method for heat-treating steel material
US7767044B2 (en) 2005-03-16 2010-08-03 Honda Motor Co., Ltd. Method for heat-treating steel material
US11065672B2 (en) * 2017-06-03 2021-07-20 Atulkumar Raghavjibhai SARADVA Process of manufacturing of segments for carbon thrust bearing

Also Published As

Publication number Publication date
JPS6452018A (en) 1989-02-28

Similar Documents

Publication Publication Date Title
US6620262B1 (en) Method of manufacturing inner and outer races of deep groove ball bearing in continuous annealing furnace
EP2135962B1 (en) Case-hardened steel pipe excellent in workability and process for production thereof
JP4435953B2 (en) Bar wire for cold forging and its manufacturing method
US4077812A (en) Method of working steel machine parts including machining during quench cooling
WO1986001231A1 (en) Controlled rolling process for dual phase steels and application to rod, wire, sheet and other shapes
EP0700739B1 (en) Method for producing a vehicular endless track link
JP5895493B2 (en) Rolling bearing manufacturing method, induction heat treatment apparatus
JPH09176740A (en) Production of bearing ring for ball bearing
JP2001355047A (en) High carbon steel tube excellent in cold workability and induction hardenability and its production method
JPH07112231A (en) Manufacture of sintered gear
JP3372219B2 (en) Manufacturing method of steel parts
EP1183399B2 (en) Method of production of rolling bearing steel having a surface with a lower bainitic structure
JP2524156B2 (en) High carbon steel tough parts manufacturing method
JP2709596B2 (en) Manufacturing method of case hardened steel tough parts
Rudskoi et al. THERMOMECHANICAL PROCESSING OF STEELS AND ALLOYS PHYSICAL FOUNDATIONS, RESOURCE SAVING TECHNIQUE AND MODELLING.
JP4884803B2 (en) Heat treatment method for steel
KR101019628B1 (en) Methods of spheroidizing medium and high carbon steels by severe plastic deformation, apparatus for severe plastic deformation, and spheroidized medium and high carbon steels prepared therefrom
CN116323992A (en) Crankshaft
JPH0730438B2 (en) Carburizing and heat treatment method for high carbon chrome bearing steel
JPH0452247A (en) Pin for track assembly and its manufacture
JPH09143564A (en) Method for heating treating cylindrical work
JP2000176586A (en) Production of high bearing pressure drive resistant part and high bearing pressure drive resistant part
JP3104449B2 (en) Heat treatment of carburized gears
JPH11347673A (en) Roller bearing, and its manufacture
JP2005002366A (en) High hardness steel for induction hardening having excellent cold work properties

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term