JPS6227515A - Method for strengthening surface - Google Patents

Method for strengthening surface

Info

Publication number
JPS6227515A
JPS6227515A JP16596685A JP16596685A JPS6227515A JP S6227515 A JPS6227515 A JP S6227515A JP 16596685 A JP16596685 A JP 16596685A JP 16596685 A JP16596685 A JP 16596685A JP S6227515 A JPS6227515 A JP S6227515A
Authority
JP
Japan
Prior art keywords
steel
austenite
temperature
carburizing
forging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16596685A
Other languages
Japanese (ja)
Other versions
JPH0615687B2 (en
Inventor
Shinji Fushimi
伏見 慎二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP60165966A priority Critical patent/JPH0615687B2/en
Publication of JPS6227515A publication Critical patent/JPS6227515A/en
Publication of JPH0615687B2 publication Critical patent/JPH0615687B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To strengthen the surface effectively and to retain the excellent toughness of the core part and the moldability by applying surface treatment at a temp. in the austenite region which is higher than the A1 transformation point of steel, then working the austenite and cooling the austenite. CONSTITUTION:Surface treatment such as high-temp. carburization, ordinary carburization and carbonitriding are applied at a temp. in the austenite region which is higher than the A1 transformation point of steel. The plastic working such as forging is applied to the austenite by utilizing the heat. The worked steel as such or the steel which is cooled to a temp. lower than the Ms point is quenched and hardened. Consequently, the surface of the steel material is effectively strengthened, the hardness of the surface is improved and a material having high toughness of the core part, high fatigue strength, resistance to long-period loaded use and excellent moldability is obtained.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明は、鉄鋼材料や鉄鋼部品(製品)の表面を強化
するのに利用される鉄鋼の表面強化方法に関するもので
ある。
[Detailed Description of the Invention] [Object of the Invention] (Field of Industrial Application) This invention relates to a method for strengthening the surface of steel, which is used to strengthen the surface of steel materials and steel parts (products). .

(従来の技術) 従来、鉄鋼材料や鉄鋼部品(製品)の表面を強化する方
法としては、浸炭焼入れ、窒化、軟窒化などがよく知ら
れている。
(Prior Art) Conventionally, carburizing and quenching, nitriding, nitrocarburizing, and the like are well known as methods for strengthening the surface of steel materials and steel parts (products).

これらのうち、浸炭焼入れは非常に有効な表面強化方法
であり、全熱処理中の約25%を占め広く普及している
。しかしながら、この浸度焼入れは処理時間が長いとい
う欠点を有しているため、浸炭時間の短縮は古くからの
課題であり、高周波浸炭、真空浸炭などの高温浸度(例
えば、特開昭48−101328号公報に記載の技術)
が工業化されつつある。しかし、高温浸炭の欠点は結晶
粒の粗大化による靭性の低下にあり、この対策として結
晶Rffi大化防走化防止元素An、Nb。
Among these, carburizing and quenching is a very effective surface strengthening method and is widely used, accounting for about 25% of all heat treatments. However, this degree-of-immersion hardening has the disadvantage of a long processing time, so shortening the carburizing time has been an issue for a long time. (Technology described in Publication No. 101328)
is being industrialized. However, the drawback of high-temperature carburizing is that the toughness decreases due to coarsening of crystal grains, and as a countermeasure to this problem, anti-corrosion prevention elements An and Nb are used to increase the crystal Rffi.

Ti、Zr等を添加した鋼を用いるか、あるいは浸度後
にA、変態点を上下させる処理が必要であり、コストア
ップの要因となっている。
It is necessary to use steel to which Ti, Zr, etc. are added, or to undergo treatment to raise or lower the A or transformation point after immersion, which is a factor in increasing costs.

一方、鉄鋼の強靭化技術の一つとして加工熱処理法があ
り、加工を加える時期によって、■変態前の加工、■変
態途中の加工、■変態後の加工の3種類に分けられる。
On the other hand, one of the techniques for toughening steel is the heat treatment method, which can be divided into three types depending on the timing of processing: 1) processing before transformation, 2) processing during transformation, and 2) processing after transformation.

そして、従来の加工熱処理法において、安定なオーステ
ナイト域温度で塑性加工を加えて焼入れする鍛造焼入れ
(金属学会誌V o fL32 、 No、 11 (
1968)第1052頁、金属学会誌VoJL3.1 
、No、 2 (1967)第126頁、金属学会誌V
oJ131.No、4(1967)第347頁)および
準安定オーステナイト域温度で加工急冷するオースフォ
ーミングならびに徐冷する制御圧延などは前記■の変態
前の加工熱処理に属し、パーライトまたはベイナイト変
態途中で加工を加えて急冷するアイソフォーミングや、
マルテンサイト変態中に加工を加えるサブゼロ加工など
は前記■の変態途中の加工熱処理に属し、パーライトま
たはベイナイト変態終了後に加工を加えるパテンティン
グや、マルテンサイトに加工を加えるマルフォームなど
は変態後の加工処理に属している。
In the conventional working heat treatment method, forging and quenching (Journal of the Institute of Metals, Vol. 32, No. 11) involves plastic working and quenching at a stable austenite region temperature.
1968) p. 1052, Journal of the Japan Institute of Metals VoJL3.1
, No. 2 (1967) p. 126, Journal of the Japan Institute of Metals V
oJ131. No. 4 (1967) p. 347), ausforming in which the process is rapidly cooled at a temperature in the metastable austenite range, and controlled rolling in which it is gradually cooled belong to the process heat treatment before the transformation described in (2) above, and processing is performed during the pearlite or bainite transformation. isoforming, which rapidly cools the
Sub-zero processing, which involves processing during martensite transformation, belongs to the above-mentioned heat treatment during transformation, while patenting, which involves processing after pearlite or bainite transformation, and marforming, which involves processing martensite, are post-transformation processing. Belongs to processing.

これらのうち、前記■の変態前の加工熱処理は、焼入性
の向上、結晶粒および析出物の微細化などにより鉄鋼の
強度および靭性が大幅に向上する処理技術として、板材
、棒材および鍛造粗形材を中心に広く普及している。
Among these, the processing heat treatment before transformation mentioned above is a processing technology that significantly improves the strength and toughness of steel by improving hardenability and refining crystal grains and precipitates. Widely used mainly for rough shaped materials.

一方、前記■の変態途中の加工熱処理は、サブグレイン
と析出物の微細化で特に靭性の向上が著しい処理法とし
て研究されているが、現在のところまだ実用化に至って
いない。
On the other hand, the above-mentioned processing heat treatment during the transformation has been studied as a treatment method that significantly improves toughness through the refinement of subgrains and precipitates, but it has not yet been put to practical use.

ところで、転造や鍛造によって製作された歯車は、従来
の切削によって製作された歯車に比較して次に示すよう
な利点を有しているといわれている。
By the way, gears manufactured by rolling or forging are said to have the following advantages over gears manufactured by conventional cutting.

(1)歯元にきわめてすぐれたファイバーフローが形成
されているため、負荷能力が増大すること。
(1) Loading capacity is increased because extremely excellent fiber flow is formed at the root of the tooth.

(2つ歯の側面が容易にクラウニングできて、その結果
負荷条件を改善できること。
(The sides of the two teeth can be easily crowned, resulting in improved load conditions.

(3〕歯切機械などの機械加工に比べて安価に製作でき
ること。
(3) It can be manufactured at a lower cost compared to mechanical processing such as gear cutting machines.

などである。etc.

このような利点を有している転造による歯車の製造法は
すでに公知である(例えば、特開昭59−225838
号公報)、また、精密鍛造による歯車の製造法もすでに
公知であり、なかには西ドイツのBLW法や、冷間およ
び温間鍛造法等が公知である。
A method for manufacturing gears by rolling that has such advantages is already known (for example, Japanese Patent Application Laid-Open No. 59-225838
In addition, methods for manufacturing gears by precision forging are already known, including the West German BLW method and cold and warm forging methods.

これらのうち、BLW方式による歯車の精密鍛造の考え
方は、歯車の歯形を精V!Etlj造して黒皮のままで
使用せんとするもので、BLW社独自の技術で精密な歯
車を鍛造することに成功したものでアリ、ベベルギヤ、
スパーギヤなどにおいてかなり実用化されている。
Among these, the concept of precision forging of gears using the BLW method is that the tooth profile of the gear is precisely V! Etlj-made and not to be used as black leather, BLW's unique technology has succeeded in forging precision gears, such as dovetails, bevel gears,
It is widely used in spur gears, etc.

(発明が解決しようとする問題点〕 しかしながら、上記の精密鍛造により製作した歯車では
、黒皮のままで使用しているため、このような歯車では
#摩耗性に限界があり、低荷重域でしか使用できないた
め、浸炭焼入れが必要である。それゆえ、この浸炭焼入
れによって熱処理歪が発生して精密Wi造の意味が薄れ
てしまうという問題点がある。
(Problem to be solved by the invention) However, since the gears manufactured by precision forging described above are used with the black skin intact, such gears have a limited wear resistance and are not suitable for use in low load ranges. Therefore, carburizing and quenching is required.Therefore, there is a problem that heat treatment distortion occurs due to this carburizing and quenching, which diminishes the meaning of precision Wi construction.

これに対して、冷間鍛造では精度の良い歯車の製造が可
能であるが、歯面の耐摩耗性および歯元強度を確保する
ため、通常は浸炭焼入れや浸炭・窒化処理等の表面硬化
が必要である。しかしながら、冷間鍛造によって強度に
塑性加工を加えた材料を浸炭温度(920℃前後)に加
熱すると、再結晶により結晶粒の狙大化が起る。このと
き、加工率が一足であれば一定の再結晶粒度になるが、
歯車形状の場合には、歯先から歯元にかけて微妙な加工
率の変化があるため再結晶粒が一定せず、混粒となり、
ピッチング、スコーリング等の発生の原因となるので、
歯車として使用できない場合も生じ、歩留りが低下して
コスト上昇の原因となるという問題点があった。
On the other hand, cold forging makes it possible to manufacture gears with high precision, but in order to ensure the wear resistance of the tooth surface and the strength of the tooth root, surface hardening such as carburizing and quenching or carburizing/nitriding treatment is usually required. is necessary. However, when a material that has been plastically worked for strength by cold forging is heated to a carburizing temperature (approximately 920° C.), crystal grains are enlarged due to recrystallization. At this time, if the processing rate is one pair, the recrystallized grain size will be constant, but
In the case of a gear shape, there is a slight change in the machining rate from the tooth tip to the tooth root, so the recrystallized grains are not constant and become mixed grains.
This may cause pitching, scoring, etc.
There are cases where it cannot be used as a gear, resulting in lower yields and higher costs.

さらに、温間鍛造による精密歯車の製造技術はかなり進
み、一部では実用化した例も発表されている。しかし、
この温間鍛造によって製作した歯車においても高荷重域
で使用する場合には浸炭焼入れや浸炭窒化等の表面硬化
処理が必要であり、せっかく高精度で成形した歯車に対
して熱処理歪を芋えてしまうという問題点を有していた
Furthermore, the manufacturing technology for precision gears using warm forging has progressed considerably, and some examples of practical use have been announced. but,
Even for gears manufactured by warm forging, surface hardening treatments such as carburizing and quenching or carbonitriding are required when used in a high load range, which can result in heat treatment distortion for gears that have been formed with high precision. There was a problem.

さらに、高強度の歯車を製造する他の考え方として、中
ψ高炭素鋼(0,4〜0.6%C)を素材としてこれに
歯切加工を施し、次いで浸炭あるいは浸炭窒化処理を行
った後ベイナイト変態温度域(例えば235〜275℃
)に保持するいわゆるオーステンパー処理を行うことに
よって、歯車の芯部をベイナイト組織とし、表面をマル
テンサイト組織とする技術が公知である(熱処理技術協
会;第20回字術講演大会予稿集(昭和60年5月23
日)第49頁)。
Furthermore, another way to manufacture high-strength gears is to use medium-ψ high carbon steel (0.4 to 0.6% C) as a material and perform gear cutting, followed by carburizing or carbonitriding. Post-bainite transformation temperature range (e.g. 235-275℃
) is a well-known technology to make the core of the gear a bainite structure and the surface a martensite structure by performing so-called austempering treatment (Heat Treatment Technology Association; Proceedings of the 20th Jijitsu Lecture Conference (Showa)). May 23, 1960
(Japanese) page 49).

しかし、この歯車製造法によれば、歯切加工工程におけ
る素材の切削性が非常に悪く、量産歯車には適用し難い
という問題点を有していた。
However, this gear manufacturing method has a problem in that the machinability of the material in the gear cutting process is very poor, making it difficult to apply to mass-produced gears.

この発明は、上述したような従来の問題点に着目してな
されたもので、表面処理効果が大きく、例えば表面硬さ
が大であると共に、6部の靭性が大きく、疲労強度が大
であって長期の使用を可能にし、加えて成形性にも著し
く潰れた鉄鋼材料。
This invention was made by focusing on the conventional problems as described above, and has a large surface treatment effect, such as a large surface hardness, a large toughness in the 6th part, and a large fatigue strength. A steel material that can be used for a long time and has significantly improved formability.

鉄鋼部品(製品)の表面強化方法を提供することを目的
としている。
The purpose is to provide a method for surface strengthening of steel parts (products).

[発明の構成」 (問題点を解決するための手段) この発明による鉄鋼の表面硬化方法は、前記鉄鋼のA1
変態点以上のオーステナイト域温度で表面処理を施した
のち、当該オーステナイトに加工を加えつつもしくは加
工を加えたのち冷却するようにしたことを特徴としてい
る。
[Structure of the Invention] (Means for Solving the Problems) The method for surface hardening of steel according to the present invention provides
It is characterized in that after surface treatment is performed at an austenite range temperature above the transformation point, the austenite is cooled while being processed or after being processed.

この発明の一実施態様による表面強化方法は、鉄鋼のA
、変態点以上のオーステナイト域温度で、高温浸炭、普
通浸炭、浸炭窒化等の表面処理を全体的あるいは部分的
に実施したのち、その熱を利用して前記オーステナイト
に鍛造等の塑性加工を加え、加工を加えたまま、あるい
はその後直ちにMs点以下まで急冷して焼入れする。
A surface strengthening method according to an embodiment of the present invention is a method for strengthening steel.
, After performing surface treatment such as high temperature carburizing, ordinary carburizing, carbonitriding, etc. on the whole or in part at an austenite range temperature higher than the transformation point, using the heat, plastic working such as forging is applied to the austenite, The material is quenched as it is being processed or immediately thereafter cooled to below the Ms point.

また、この発明の他の実施態様による表面強化方法は、
鉄鋼のA1変態点以上のオーステナイト域温度で、高温
浸炭、普通浸炭、浸炭窒化等の表面処理を全体的あるい
は部分的に実施したのち、400〜700℃程度に急冷
して前記オーステナイトの変態途中で鍛造等の塑性加工
を力aえ、前記変態が完了する以前より望ましくは50
%変態が終了する以前に急冷する。
In addition, a surface strengthening method according to another embodiment of the present invention includes:
After surface treatment such as high-temperature carburizing, ordinary carburizing, carbonitriding, etc. is carried out on the whole or in part at an austenite region temperature higher than the A1 transformation point of steel, the austenite is rapidly cooled to about 400 to 700 ° C. It is preferable that the plastic working such as forging be applied to a temperature of 50% before the transformation is completed.
% Rapid cooling before the metamorphosis is completed.

この発明のさらに他の実施態様による表面強化方法は、
鉄鋼のAl変悪点以上のオーステナイト域温度で、高温
浸度、普通浸炭、浸炭窒化等の表面処理を全体的あるい
は部分的に実施したのち、直ちにもしくは所定の温度ま
で冷却したあと前記オーステナイトに鍛造等の塑性加工
を加え、加工を加えたまま、あるいは加工後にベイナイ
ト温度域に保持してベイナイト変態させたのち、冷却す
る。
A surface strengthening method according to yet another embodiment of the present invention includes:
After surface treatment such as high-temperature soaking, normal carburizing, carbonitriding, etc. is performed in whole or in part at an austenite range temperature higher than the Al deterioration point of steel, the austenite is forged immediately or after cooling to a predetermined temperature. The material is subjected to plastic working such as, and after the processing is performed or after processing, it is held in the bainite temperature range to undergo bainite transformation, and then cooled.

次に、この発明による表面強化法を第1図の恒温変態図
(T、T、T、図)をもとにさらに詳しく説明する。
Next, the surface strengthening method according to the present invention will be explained in more detail based on the isothermal transformation diagram (T, T, T, diagram) shown in FIG.

第1図はJIS  SNCM42OH材の恒温変態図で
ある。
Figure 1 is a isothermal transformation diagram of JIS SNCM42OH material.

第1図に示すパターン■は、鉄鋼部品(製品)等を10
00℃以上(図では約1040°C)に加熱してこの温
度で高温浸炭あるいは高温浸炭窒化を全体的もしくは部
分的に施したのち、加工率50%で鍛造を行い、約90
0℃で鍛造を終了したのち急冷(例えば60℃の油中に
投入)して焼入れを行うものである。
The pattern ■ shown in Figure 1 is for 10 steel parts (products), etc.
After heating to 00°C or higher (approximately 1040°C in the figure) and performing high-temperature carburizing or high-temperature carbonitriding on the whole or in part at this temperature, forging is performed at a processing rate of 50%, resulting in approximately 90%
After forging is completed at 0°C, it is rapidly cooled (for example, placed in oil at 60°C) and quenched.

また、第1図に示すパターン■は、鉄鋼部品(製品〕等
を1000℃以上(図では約1040℃)に加熱してこ
の温度で高温浸度あるいは高温浸炭・窒化を全体的もし
くは部分的に施したのち、500〜700℃程度(図で
は約600’O)の流動層炉あるいは中性塩浴炉等の恒
温保持炉内に装入し、全体が500〜700℃(図では
約600℃)の温度となったときに温間鍛造を行って変
態途中で加工を続け、加工後直ちに急冷(例えば60℃
の油中あるいは水中に投入)して焼入れを行うものであ
る。
In addition, pattern ■ shown in Figure 1 involves heating steel parts (products), etc. to 1000°C or higher (approximately 1040°C in the figure), and applying high-temperature soaking or high-temperature carburizing/nitriding to the whole or part at this temperature. After this, the entire body is placed in a constant temperature holding furnace such as a fluidized bed furnace or a neutral salt bath furnace at a temperature of about 500 to 700°C (about 600°C in the figure). ) when the temperature reaches
The quenching process is performed by placing the steel in oil or water).

さらに、第1図に示すパターン■は、鉄鋼部品(製品)
等に対して800〜960℃で普通浸炭あるいは浸漬窒
化を施したのち、パターン(■と同様に恒温加熱および
塑性加工を行い、次いで急冷するものである。
Furthermore, pattern ■ shown in Figure 1 is a steel part (product)
After normal carburizing or immersion nitriding at 800 to 960° C., pattern (1) is subjected to constant temperature heating and plastic working, and then rapidly cooled.

さらにまた、第1図に示すパータン■は、前記パータン
■または■と同様にして温間鍛造までを行い、温間鍛造
後に200〜300℃(図では約270℃)のベイナイ
ト変態域に保持したのち急冷して、6部をベイナイト化
するものである。
Furthermore, the pattern ■ shown in FIG. It is then rapidly cooled to convert 6 parts into bainite.

この発明による表面強化法は、上述の4つの基本パター
ンに区別されるが、第2図は高温時の加工率と結晶粒度
との関係を示す図であって。
The surface strengthening method according to the present invention is classified into the four basic patterns described above, and FIG. 2 is a diagram showing the relationship between processing rate and crystal grain size at high temperatures.

第2図に示すように、例えば1040℃で浸炭(10〜
30分〕すると、結晶粒度はJISG約2.5に粗大化
する。そして、これに加工率50%の鍛造を行うと、粗
大化した結晶粒がJIS  G約6に微細化し、靭性を
著しく高めることができるようになる。
As shown in Figure 2, for example, carburization at 1040°C (10~
30 minutes], the crystal grain size becomes coarse to about 2.5 JISG. When this is forged at a processing rate of 50%, the coarse grains are refined to about JIS G 6, making it possible to significantly improve toughness.

この発明による表面強化方法では、浸炭あるいは浸炭窒
化を全体的に行うほか、所要の箇所に部分的に行うこと
も含まれ、また、前記浸度あるいは浸炭窒化を過剰に行
うことも含まれる。
The surface strengthening method according to the present invention includes performing carburizing or carbonitriding not only on the entire surface but also partially at required locations, and also including performing the immersion or carbonitriding excessively.

また、表面強化される鉄鋼としては、一般的に使用され
るはだ焼用に適する鋼材(S−C材。
In addition, the steel to be surface strengthened is a commonly used steel material suitable for case hardening (S-C material).

5−GK材、SNC材、SNCM材、SCr材。5-GK material, SNC material, SNCM material, SCr material.

SCM材、SMn材、SMnC材)が使用されるほか、
CD浸炭用鋼や2相浸炭用鋼を用いることもできる。
SCM material, SMn material, SMnC material) are used,
CD carburizing steel or two-phase carburizing steel can also be used.

(実施例1) JIS  520C鋼からなるパイプ(外径25mmX
内径15mm)を素材とし、第1図に示したパターン■
に従って、第3図に示すように、104 CL”Oで5
0分の真空浸炭処理(浸炭深さ1.0mm)を施したの
ち、平型回転鍛造機で加工率30%の加工を行った。続
いて、約900°Cの温度から60℃の油中に焼入れし
、180℃で焼もどしを施した後片面に0.1mmの研
磨仕上を行ってピストンピンを製作した。
(Example 1) Pipe made of JIS 520C steel (outer diameter 25 mm
The pattern shown in Figure 1 is
Accordingly, as shown in Figure 3, 5 with 104 CL"O
After vacuum carburizing for 0 minutes (carburizing depth 1.0 mm), processing was performed using a flat rotary forging machine at a processing rate of 30%. Subsequently, the piston pin was quenched from a temperature of about 900°C to 60°C in oil, tempered at 180°C, and polished to a depth of 0.1 mm on one side to produce a piston pin.

ここで得られたピストンピンの浸炭硬化深さは0.6m
m、浸炭層の硬さはHv800 、芯部の硬さはHv2
80であり、普通焼入品に比較して芯部で約15%、浸
炭層で約50%それぞれ硬さが向上し、高強度のピスト
ンピンを得ることができた。
The carburizing depth of the piston pin obtained here is 0.6 m.
m, the hardness of the carburized layer is Hv800, the hardness of the core is Hv2
80, the hardness was improved by about 15% in the core and about 50% in the carburized layer compared to the normally quenched product, making it possible to obtain a high-strength piston pin.

ところで、炭素を約1.0%含む浸炭層と、0.2%C
の芯部の各々1000℃における伸びは同じ約85%、
変形抵抗も同じ約20kgf/mm’であり、浸炭層も
芯部もほぼ同じ変形率であることは文献等(例えば、成
形加工論昭和51年lO月第53.54頁〕で公知であ
る。したがって、仕上り必要浸度層深さJま加工率と研
磨代を考慮してあらかじめ決めておく必要がある。
By the way, a carburized layer containing about 1.0% carbon and a carburized layer containing about 0.2% C
The elongation at 1000℃ of each core is the same, about 85%,
The deformation resistance is also the same, approximately 20 kgf/mm', and it is known from literature (for example, Molding Processing, 1975, October 1977, page 53.54) that the carburized layer and the core have almost the same deformation rate. Therefore, the required finishing immersion layer depth J must be determined in advance by taking into consideration the machining rate and polishing allowance.

また、焼入れ焼もどしの際の相変態による寸法変化は避
は難いものであるので、あらかじめ予備実験により鍛造
仕上り寸法を決めておけば問題はない。
Further, since dimensional changes due to phase transformation during quenching and tempering are unavoidable, there will be no problem if the finished forging dimensions are determined in advance through preliminary experiments.

(実施例2) JIS  SN0M42OH鋼からなる丸棒(直径50
mm)を素材とし、第1図に示したパターン■に従って
、第4図に示すように、前記丸棒に930℃で5時間の
浸炭処理(深さ1.2mm)を施し、次いで600℃の
流動層炉に投入し、約1分間保持した後、歯形張り出し
温間鍛造法(型温度200℃)で歯車形状に鍛造し、そ
の後直ちに油冷してモジュール3.歯数17枚の平歯歯
車を製造した。
(Example 2) A round bar made of JIS SN0M42OH steel (diameter 50
The round bar was carburized at 930°C for 5 hours (depth 1.2mm) according to the pattern shown in Fig. 1, as shown in Fig. 4, and then carburized at 600°C. After putting it into a fluidized bed furnace and holding it for about 1 minute, it was forged into a gear shape using the tooth profile warm forging method (mold temperature 200°C), and then immediately cooled with oil to form module 3. A spur gear with 17 teeth was manufactured.

(実施例3) JIS  520C鋼からなる丸棒(直径50mm)を
素材とし、r3を図に示したパターン■に従って、第3
図に示すように、前記丸棒に1040℃で25分の高温
浸炭および50分の拡散処理(深さ1.2mm)を施し
、次いで転造用平ダイス(ダイス温度200℃)で歯車
形状に転造した後約900℃から油冷して、モジュール
3、歯数17枚の平歯歯車を製造した。
(Example 3) A round bar (diameter 50 mm) made of JIS 520C steel was used as the material, and r3 was made into a third piece according to the pattern ■ shown in the figure.
As shown in the figure, the round bar was subjected to high-temperature carburization at 1040°C for 25 minutes and diffusion treatment (depth 1.2mm) for 50 minutes, and then shaped into a gear shape using a flat rolling die (dice temperature 200°C). After rolling, it was oil-cooled from about 900°C to produce a spur gear with 3 modules and 17 teeth.

(実施例4) JIS  S0M42OH鋼からなる丸棒(直径50m
m)を素材とし、第1図に示したパターン■に従って、
第5図に示すように、前記丸棒に1040℃で25分の
高温浸炭および50分の拡散処理(深さ1.2mm)を
施した後、600℃の中性塩浴炉に投入し、約3分保持
したのち転造用丸ダイス(ダイス温度200℃)で歯車
形状に転造し、その後直ちに油冷して、モジュール3゜
歯数17枚の平歯歯車を製造した。
(Example 4) A round bar (diameter 50 m) made of JIS S0M42OH steel
m) as the material and according to the pattern ■ shown in Figure 1,
As shown in FIG. 5, the round bar was subjected to high-temperature carburizing at 1040°C for 25 minutes and diffusion treatment (depth 1.2mm) for 50 minutes, and then placed in a neutral salt bath furnace at 600°C. After holding for about 3 minutes, it was rolled into a gear shape using a round rolling die (dice temperature: 200° C.), and immediately cooled in oil to produce a spur gear with a 3° module and 17 teeth.

(評価例1〕 以上の実施例2〜4において製造した各歯車に対し、油
圧式歯車曲げ疲労試験機による試験を行うことによって
、各歯車の歯元疲労強度を調べると共に、歯面硬さおよ
び歯元芯部硬さを調べた。
(Evaluation Example 1) Each of the gears manufactured in Examples 2 to 4 above was tested using a hydraulic gear bending fatigue tester to examine the root fatigue strength of each gear, as well as tooth surface hardness and The hardness of the tooth core was investigated.

さらに、同条件で処理した5Rシヤルピ一衝撃試験片を
用いてシャルピー衝撃値を測定した。そして、これらの
値をガス浸炭および真空浸炭した場合の特性と比較して
表1に示す。
Furthermore, the Charpy impact value was measured using a 5R Charpy impact test piece treated under the same conditions. These values are shown in Table 1 in comparison with the characteristics when gas carburizing and vacuum carburizing were performed.

表1に示すように、実施例2〜4において製造した歯車
はいずれも歯面硬さが大で歯面の耐摩耗性に優れたもの
であると共に、歯元疲労強度もかなり大きくなっていて
長期間の使用に耐えうるちのであり、衝撃値もかなり増
大していて使用時に加えられた衝撃的な負荷に対しても
十分耐えうるちのであることが明らかである。
As shown in Table 1, the gears manufactured in Examples 2 to 4 all had high tooth surface hardness and excellent tooth surface wear resistance, and also had considerably high root fatigue strength. It is clear that the material can withstand long-term use, and the impact value has increased considerably, indicating that it can sufficiently withstand the impact load applied during use.

また1表面炭素濃度0.9%、有効浸炭層深さ0.6m
mを得る場合におけるエネルギ比較を行ったところ、従
来の表面強化法では、−例において、鍛造加熱が120
0℃で5分、浸炭゛が930℃で2.5時間の加熱を行
うため、1kgあたりおよそ0.98KWHの熱源を必
要としたのに対し1本発明法では、−例において、浸炭
加熱が1 ’040℃で25分、拡散が60分であり、
鍛造はこの際の熱を利用しているため、1kgあたり0
.89KWHの熱源ですみ、1kgあたりおよそ90W
Hの省エネルギを実現することができた。
Also, the surface carbon concentration is 0.9%, and the effective carburized layer depth is 0.6m.
When comparing the energies when obtaining m, it was found that in the conventional surface strengthening method, in - example, forging heating is 120
In order to perform heating at 0°C for 5 minutes and carburizing at 930°C for 2.5 hours, a heat source of approximately 0.98 KWH per 1 kg was required. 1'040℃ for 25 minutes, diffusion for 60 minutes,
Because forging uses the heat generated during this process, 0 per kg
.. Only requires a heat source of 89KWH, approximately 90W per kg
We were able to achieve energy savings of H.

(実施例5) JIS  30M42OH鋼からなる第6図に示す形状
の自動車用差動装置のりングギャ用プレフォーム1を用
いた。そして、このプレフォーム1に対し、1040℃
で25分の高温浸炭および50分の拡散処理(深さ1.
2mm)を施したのち、鍛造プレスによって第7図に示
すように歯形2とねじ用下穴3を有する歯車素材4を精
密鍛造成形し、鍛造終了温度900℃でクエンチンググ
レスにより焼入れした0次いで、ねじ用下穴3の部分を
高周波誘導コイルで約1.5mmの深さまでHRC20
前後に焼もどし、続いてドリリングで浸炭層を取り除い
た後タップによりネジ切りをして仕上げることによって
、精密でかつ従来品に比較して歯元強度で25%、ピッ
チング強度で15%上まわる特性の憤れたりングギャを
得た。
(Example 5) A preform 1 for a ring gear of an automobile differential device made of JIS 30M42OH steel and having the shape shown in FIG. 6 was used. Then, for this preform 1, 1040°C
High temperature carburizing for 25 minutes and diffusion treatment for 50 minutes (depth 1.
2 mm), the gear material 4 having the tooth profile 2 and the pilot hole 3 for the screw is precision forged as shown in FIG. , HRC20 in the pilot hole 3 for the screw to a depth of approximately 1.5 mm using a high frequency induction coil.
By tempering the front and back, followed by drilling to remove the carburized layer, and then tapping and finishing the product, it has the characteristics of precision and 25% higher root strength and 15% higher pitting strength than conventional products. I got angry and angry.

(実施例6) 0.55%C,0,28%Si、1.03%Mn、1.
0%Ni、1.0%Cr、0.2%MOを主成分とする
鋼を用い、第1図に示したパターン■に従って、第8図
に示すように、930°Cで2時間のガス浸炭を行った
後、600℃の流動層炉中に約1分保持し、次いで歯形
張り出し温間鍛造法(型温度200℃)で歯車形状に鍛
造した。その後直ちに230℃の油中に60分間保持し
てベイナイト変態させた後水冷することにより、モジュ
ール3.歯数17枚の平歯歯車を製造した。この歯車は
、全浸度硬化深さ0.4mm。
(Example 6) 0.55%C, 0.28%Si, 1.03%Mn, 1.
Using steel whose main components are 0% Ni, 1.0% Cr, and 0.2% MO, gas was heated at 930°C for 2 hours as shown in Figure 8 according to the pattern ■ shown in Figure 1. After carburizing, it was kept in a fluidized bed furnace at 600°C for about 1 minute, and then forged into a gear shape using a tooth profile warm forging method (mold temperature 200°C). Immediately thereafter, module 3. A spur gear with 17 teeth was manufactured. This gear has a total immersion hardening depth of 0.4 mm.

表面硬さHv800 、芯部硬さHv630であり、ま
た歯面ピッチング寿命はS CM420浸炭品の約5.
5倍に向上した。
The surface hardness is Hv800, the core hardness is Hv630, and the tooth surface pitting life is about 5.
Improved by 5 times.

し発明の効果コ 以上説明してきたように、この発明による表面強化方法
では、鉄鋼のA、変態点以上のオーステナイト域温度で
表面処理を施したのち、当該オーステナイトに加工を加
えて、Ms点以下まで急冷し、あるいはベイナイト発生
温度域に保持したのち急冷する冷却を行うようにしたか
ら、表面処理効果が大きく、例えば浸炭あるいは浸度窒
化による表面硬さが大であると共に6部の硬さおよび靭
性が大きく、疲労強度が大であって長期の負荷使用に耐
えることができると共に、加工時の成形性にも著しく優
れた鉄鋼材料および鉄鋼部品(製品)の表面強化法であ
り、各種ギヤ、シャフト、ビン、ロッド、リテーナ、ハ
ブ等々の表面処理して使用する機械構造用部品の製造に
適用して有効であるという著大なる効果がもたらされる
Effects of the Invention As explained above, in the surface strengthening method according to the present invention, after surface treatment is performed at a temperature in the austenite region above the A, transformation point of steel, the austenite is processed to a temperature below the Ms point. The surface treatment effect is great, for example, the surface hardness due to carburization or immersion nitriding is large, and the hardness of 6 parts and It is a surface strengthening method for steel materials and steel parts (products) that have high toughness and fatigue strength, can withstand long-term load use, and has excellent formability during processing. A significant effect is brought about when it is applied to the manufacture of mechanical structural parts such as shafts, bottles, rods, retainers, hubs, etc., which are used after surface treatment.

4、図面の11illlJな説明 第1図はこの発明の実施態様を示すSN0M420鋼の
恒温変態図、第2図は結晶粒径に及ぼす鍛造温度と加工
率の影響を示すグラフ、第3図、第4図および第5図は
各々この発明の実施例1.3.%施例2および実施例4
において採用した表面強化工程の説明図、第6図(IL
)  (b)はこの発明の実施例5において使用したり
ングギャ用プレフォームの各々左半正面図および断面図
、第7図(fiL)  (b)はこの発明の実施例5に
おいて加工した歯車素材の各々左半正面図および断面図
、第8図はこの発明の実施例6において採用した表面強
化工程の説明図である。
4. Explanation of the drawings Fig. 1 is a isothermal transformation diagram of SN0M420 steel showing an embodiment of the present invention, Fig. 2 is a graph showing the influence of forging temperature and processing rate on grain size, Fig. 3, Fig. 4 and 5 respectively show embodiments 1.3. of the present invention. % Example 2 and Example 4
An explanatory diagram of the surface strengthening process adopted in Figure 6 (IL
) (b) is a left half front view and a cross-sectional view of the preform for the ring gear used in Example 5 of this invention, and FIG. 7 (fiL) (b) is a gear material processed in Example 5 of this invention FIG. 8 is an explanatory view of the surface strengthening process employed in Example 6 of the present invention.

第1図 F3力F=’l (SeO) 力り工率 シグFigure 1 F3 force F=’l (SeO) Force labor rate Sig

Claims (1)

【特許請求の範囲】[Claims] (1)鉄鋼のA_1変態点以上のオーステナイト域温度
で表面処理を施したのち、当該オーステナイトに加工を
加えて冷却することを特徴とする表面強化方法。
(1) A surface strengthening method characterized by performing surface treatment at an austenite range temperature of steel A_1 transformation point or higher, and then processing the austenite and cooling it.
JP60165966A 1985-07-29 1985-07-29 Surface strengthening method Expired - Fee Related JPH0615687B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60165966A JPH0615687B2 (en) 1985-07-29 1985-07-29 Surface strengthening method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60165966A JPH0615687B2 (en) 1985-07-29 1985-07-29 Surface strengthening method

Publications (2)

Publication Number Publication Date
JPS6227515A true JPS6227515A (en) 1987-02-05
JPH0615687B2 JPH0615687B2 (en) 1994-03-02

Family

ID=15822391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60165966A Expired - Fee Related JPH0615687B2 (en) 1985-07-29 1985-07-29 Surface strengthening method

Country Status (1)

Country Link
JP (1) JPH0615687B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5718774A (en) * 1995-07-27 1998-02-17 Nissan Motor Co., Ltd. Method of producing bevel gear
US6981324B2 (en) * 2003-03-26 2006-01-03 American Axle & Manufacturing, Inc. Method of manufacturing net-shaped gears for a differential assembly

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0631784U (en) * 1992-10-08 1994-04-26 株式会社共栄商会 Launch ball retrograde prevention device for pachinko machines
CN102703908A (en) * 2012-01-17 2012-10-03 苏州新锐工程工具有限公司 Heat treatment method of impact piston

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5655567A (en) * 1979-10-09 1981-05-16 Daido Steel Co Ltd Surface hardening method of parts

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5655567A (en) * 1979-10-09 1981-05-16 Daido Steel Co Ltd Surface hardening method of parts

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5718774A (en) * 1995-07-27 1998-02-17 Nissan Motor Co., Ltd. Method of producing bevel gear
US6981324B2 (en) * 2003-03-26 2006-01-03 American Axle & Manufacturing, Inc. Method of manufacturing net-shaped gears for a differential assembly

Also Published As

Publication number Publication date
JPH0615687B2 (en) 1994-03-02

Similar Documents

Publication Publication Date Title
US3860457A (en) A ductile iron and method of making it
JP5535922B2 (en) Heat treatment process for steel
EP3378963B1 (en) Steel component, gear component, and method for manufacturing steel component
JPWO2006118242A1 (en) Steel member and heat treatment method thereof
JP2000514868A (en) Induction hardened trace alloy steel with high fatigue strength properties
US4077812A (en) Method of working steel machine parts including machining during quench cooling
CN102859023A (en) Steel for high frequency hardening, roughly molded material for high frequency hardening and process for production thereof, and high-frequency-hardened steel member
GB2337271A (en) A method of manufacturing hardened steel components
JP2549039B2 (en) Carbonitriding heat treatment method for high strength gears with small strain
JPS6227515A (en) Method for strengthening surface
JP2549038B2 (en) Method for carburizing heat treatment of high-strength gear with small strain and its gear
JPH10226817A (en) Production of steel for soft-nitriding and soft-nitrided parts using this steel
JPS63195257A (en) Production of high strength member
CN108424999B (en) A kind of heat treatment process of shallow-tank separator driving chain components
KR101185060B1 (en) Ann's gear automatic transmission with heat treatment
JPS6145686B2 (en)
CN115026517B (en) Planetary gear shaft, special material for planetary gear shaft and hot forging forming process of special material
JP4526616B2 (en) Gear made of spheroidal graphite cast iron material and manufacturing method thereof
JPS62139812A (en) Manufacture of high strength and toughness cast steel
JPH02240249A (en) Production of carburized parts reduced in heat treatment strain
JPH0572442B2 (en)
Bugliarello et al. Heat Treat Process for Gears
JP6394844B1 (en) Shaft member
Dossett et al. Heat Treatment Problems Associated with Design and Steel Selection
JPS6383223A (en) Production of surface strengthened high-toughness iron and steel members

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees