JPH0615687B2 - Surface strengthening method - Google Patents

Surface strengthening method

Info

Publication number
JPH0615687B2
JPH0615687B2 JP60165966A JP16596685A JPH0615687B2 JP H0615687 B2 JPH0615687 B2 JP H0615687B2 JP 60165966 A JP60165966 A JP 60165966A JP 16596685 A JP16596685 A JP 16596685A JP H0615687 B2 JPH0615687 B2 JP H0615687B2
Authority
JP
Japan
Prior art keywords
carburizing
forging
steel
gear
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60165966A
Other languages
Japanese (ja)
Other versions
JPS6227515A (en
Inventor
慎二 伏見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP60165966A priority Critical patent/JPH0615687B2/en
Publication of JPS6227515A publication Critical patent/JPS6227515A/en
Publication of JPH0615687B2 publication Critical patent/JPH0615687B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明は、鉄鋼材料や鉄鋼部品(製品)の表面を強化
するのに利用される鉄鋼の表面強化方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION Object of the Invention (Industrial field of application) The present invention relates to a steel surface strengthening method used to strengthen the surfaces of steel materials and steel parts (products). .

(従来の技術) 従来、鉄鋼材料や鉄鋼部品(製品)の表面を強化する方
法としては、浸炭焼入れ,窒化,軟窒化などがよく知ら
れている。
(Prior Art) Carburizing and quenching, nitriding, and nitrocarburizing are well known as methods for strengthening the surfaces of steel materials and steel parts (products).

これらのうち、浸炭焼入れは非常に有効な表面強化方法
であり、全熱処理中の約25%を占め広く普及してい
る。しかしながら、この浸炭焼入れは処理時間が長いと
いう欠点を有しているため、浸炭時間の短縮は古くから
の課題であり、高周波浸炭,真空浸炭などの高温浸炭
(例えば、特開昭48−101328号公報に記載の技
術)が工業化されつつある。しかし、高温浸炭の欠点は
結晶粒の粗大化による靭性の低下にあり、この対策とし
て結晶粒粗大化防止元素であるAl,Nb,Ti,Zr
等を添加した鋼を用いるか、あるいは浸炭後にA変態
点を上下させる処理が必要であり、コストアップの要因
となっている。
Of these, carburizing and quenching is a very effective surface strengthening method, and accounts for about 25% of the total heat treatment and is widely used. However, since this carburizing and quenching has a drawback that the processing time is long, it has long been a problem to shorten the carburizing time, and high-temperature carburizing such as high frequency carburizing and vacuum carburizing (for example, JP-A-48-101328). The technology described in the publication) is being industrialized. However, the disadvantage of high-temperature carburization is that the toughness is lowered due to the coarsening of the crystal grains, and as a countermeasure against this, Al, Nb, Ti, Zr which are crystal grain coarsening preventing elements.
It is necessary to use steel added with the above, or to raise or lower the A 1 transformation point after carburizing, which is a factor of cost increase.

一方、鉄鋼の強靭化技術の一つとして加工熱処理法があ
り、加工を加える時期によって、変態前の加工、変
態途中の加工、変態後の加工の3種類に分けられる。
そして、従来の加工熱処理法において、安定なオーステ
ナイト域温度で塑性加工を加えて焼入れする鍛造焼入れ
(金属学会誌Vol32,No.11(1968)第10
52頁,金属学会誌Vol31,No.2(1967)第
126頁,金属学会誌Vol31,No.4(1967)
第347頁)および準安定オーステナイト域温度で加工
急冷するオースフォーミングならびに徐冷する制御圧延
などは前記の変態前の加工熱処理に属し、パーライト
またはベイナイト変態途中で加工を加えて急冷するアイ
ソフォーミングや、マルテンサイト変態中に加工を加え
るサブゼロ加工などは前記の変態途中の加工熱処理に
属し、パーライトまたはベイナイト変態終了後に加工を
加えるパテンティングや、マルテンサイトに加工を加え
るマルフォームなどは変態後の加工処理に属している。
On the other hand, there is a thermomechanical treatment method as one of steel toughening techniques, and it is classified into three types, that is, pre-transformation machining, mid-transformation machining, and post-transformation machining depending on the timing of the machining.
And, in the conventional thermomechanical treatment method, forging and quenching in which plastic working is applied at a stable austenite region temperature and quenching (Metallurgical Journal Vol 32, No. 11 (1968) No. 10)
52 pages, Journal of the Institute of Metals, Vol 31, No. 2 (1967) 126 pages, Journal of the Institute of Metals, Vol 31, No. 4 (1967)
(Page 347) and ausforming for quenching working at metastable austenite temperature and controlled rolling for slow cooling belong to the above-mentioned thermomechanical treatment before transformation, and isoforming for quenching by working during pearlite or bainite transformation. Sub-zero processing, which adds processing during martensitic transformation, belongs to thermomechanical processing during the above-mentioned transformation, and patenting for processing after completion of pearlite or bainite transformation and marform for processing martensite are processing after transformation. Belong to.

これらのうち、前記の変態前の加工熱処理は、焼入性
の向上,結晶粒および析出物の微細化などにより鉄鋼の
強度および靭性が大幅に向上する処理技術として、板
材,棒材および鍛造粗形材を中心に広く普及している。
Among these, the thermomechanical treatment before transformation is a treatment technique that significantly improves the strength and toughness of steel by improving hardenability and refining crystal grains and precipitates. It is widely used mainly for shape materials.

一方、前記の変態途中の加工熱処理は、サブグレイン
と析出物の微細化で特に靭性の向上が著しい処理法とし
て研究されているが、現在のところまだ実用化に至って
いない。
On the other hand, the thermomechanical treatment during the transformation has been studied as a treatment method in which the toughness is remarkably improved due to the refinement of subgrains and precipitates, but it has not yet been put to practical use at present.

ところで、転造や鍛造によって製作された歯車は、従来
の切削によって製作された歯車に比較して次に示すよう
な利点を有しているといわれている。
By the way, it is said that a gear manufactured by rolling or forging has the following advantages as compared with a gear manufactured by conventional cutting.

(1)歯元にきわめてすぐれたファイバーフローが形成
されているため、負荷能力が増大すること。
(1) The load capacity is increased because a very good fiber flow is formed at the root of the tooth.

(2)歯の側面が容易にクラウニングできて、その結果
負荷条件を改善できること。
(2) The side surface of the tooth can be easily crowned, and as a result, the load condition can be improved.

(3)歯切機械などの機械加工に比べて安価に製作でき
ること。
(3) It can be manufactured at a lower cost than machining such as gear cutting machines.

などである。And so on.

このような利点を有している転造による歯車の製造法は
すでに公知である(例えば、特開昭59−225838
号公報)。また、精密鍛造による歯車の製造法もすでに
公知であり、なかには西ドイツのBLW法や、冷間およ
び温間鍛造法等が公知である。
A method of manufacturing a gear by rolling which has such advantages is already known (for example, Japanese Patent Laid-Open No. 59-225838).
Issue). Further, a method of manufacturing a gear by precision forging is already known, and among them, the BLW method of West Germany, the cold and warm forging method, etc. are known.

これらのうち、BLW方式による歯車の精密鍛造の考え
方は、歯車の歯形を精密鍛造して黒皮のままで使用せん
とするもので、BLW社独目の技術で精密な歯車を鍛造
することに成功したものであり、ベベルギヤ,スパーギ
ヤなどにおいてかなり実用化されている。
Of these, the concept of precision gear forging by the BLW method is to forge the tooth profile of the gear and use it as it is as a black skin, and to forge precision gear with BLW's unique technology. It was successful and has been put to practical use in bevel gears, spur gears, etc.

(発明が解決しようとする問題点) しかしながら、上記の精密鍛造により製作した歯車で
は、黒皮のままで使用しているため、このような歯車で
は耐摩耗性に限界があり、低荷重域でしか使用できない
ため、浸炭焼入れが必要である。それゆえ、この浸炭焼
入れによって熱処理歪が発生して精密鍛造の意味が薄れ
てしまうという問題点がある。
(Problems to be solved by the invention) However, in the gear manufactured by the above precision forging, since it is used as it is as a black skin, such a gear has a limit to wear resistance, and in a low load range Since it can only be used, it requires carburizing and quenching. Therefore, there is a problem that heat treatment strain is generated by the carburizing and quenching, and the meaning of precision forging is diminished.

これに対して、冷間鍛造では精度の良い歯車の製造が可
能であるが、歯面の耐摩耗性および歯元強度を確保する
ため、通常は浸炭焼入れや浸炭・窒化処理等の表面硬化
が必要である。しかしながら、冷間鍛造によって強度に
塑性加工を加えた材料を浸炭温度(920℃前後)に加
熱すると、再結晶により結晶粒の粗大化が起る。このと
き、加工率が一定であれば一定の再結晶粒度になるが、
歯車形状の場合には、歯先から歯元にかけて微妙な加工
率の変化があるため再結晶粒が一定せず、混粒となり、
ピッチング,スコーリング等の発生の原因となるので、
歯車として使用できない場合も生じ、歩留りが低下して
コスト上昇の原因となるという問題点があった。
On the other hand, cold forging can manufacture gears with high accuracy, but in order to secure the wear resistance and root strength of the tooth surface, surface hardening such as carburizing and quenching or carburizing / nitriding is usually required. is necessary. However, when a material that has been plastically processed by cold forging is heated to a carburizing temperature (about 920 ° C.), recrystallization causes coarsening of crystal grains. At this time, if the processing rate is constant, the recrystallized grain size is constant,
In the case of a gear shape, there is a slight change in the processing rate from the tooth tip to the tooth root, so the recrystallized grains are not constant, and they become mixed grains.
As it causes pitching and scoring,
In some cases, it cannot be used as a gear, which causes a decrease in yield and an increase in cost.

さらに、温間鍛造による精密歯車の製造技術はかなり進
み、一部では実用化した例も発表されている。しかし、
この温間鍛造によって製作した歯車においても高荷重域
で使用する場合には浸炭焼入れや浸炭窒化等の表面硬化
処理が必要であり、せっかく高精度で成形した歯車に対
して熱処理歪を与えてしまうという問題点を有してい
た。
Furthermore, the technology for manufacturing precision gears by warm forging has advanced considerably, and some examples of practical applications have been announced. But,
Even in gears manufactured by this warm forging, surface hardening treatment such as carburizing and carbonitriding is necessary when used in a high load range, and heat treatment distortion is applied to gears molded with high precision. Had the problem.

さらに、高強度の歯車を製造する他の考え方として、中
・高炭素鋼(0.4〜0.6%C)を素材としてこれに
歯切加工を施し、次いで浸炭あるいは浸炭窒化処理を行
った後ベイナイト変態温度域(例えば235〜275
℃)に保持するいわゆるオーステンパー処理を行うこと
によって、歯車の芯部をベイナイト組織とし、表面をマ
ルテンサイト組織とする技術が公知である(熱処理技術
協会;第20回学術講演大会予稿集(昭和60年5月2
3日)第49頁)。
Further, as another way of thinking of manufacturing high-strength gears, medium and high carbon steel (0.4 to 0.6% C) was used as a material, which was subjected to gear cutting, and then carburized or carbonitrided. Post bainite transformation temperature range (for example, 235 to 275)
It is known that a so-called austempering treatment for holding the gear at a temperature of ℃) makes the gear core have a bainite structure and the surface has a martensite structure (Heat Treatment Technology Association; Proc. May 60, 2
3) page 49).

しかし、この歯車製造法によれば、歯切加工工程におけ
る素材の切削性が非常に悪く、量産歯車には適用し難い
という問題点を有していた。
However, according to this gear manufacturing method, there is a problem in that the machinability of the material in the gear cutting process is very poor and it is difficult to apply it to mass-produced gears.

この発明は、上述したような従来の問題点に着目してな
されたもので、表面処理効果が大きく、表面硬さが大で
あると共に、心部の靭性が大きく、疲労強度が大であっ
て長期の使用を可能にし、加えて成形性にも著しく優れ
た鉄鋼材料,鉄鋼部分(製品)の表面強化方法を提供す
ることを目的としている。
The present invention has been made by paying attention to the conventional problems as described above, and has a large surface treatment effect, a large surface hardness, a large core toughness, and a large fatigue strength. It is an object of the present invention to provide a steel material and a method for strengthening the surface of a steel part (product) that enables long-term use and is also extremely excellent in formability.

[発明の構成] (問題点を解決するための手段) この発明による鉄鋼の表面強化方法は、前記鉄鋼のA
変態点以上のオーステナイト域温度で浸炭あるいは浸炭
窒化処理を施したのち、当該オーステナイトを少なくと
も一部含む素材に鍛造または転造で加工を加えつつもし
くは加工を加えたのち冷却するようにしたことを特徴と
している。
[Structure of the Invention] (Means for Solving the Problems) The method for strengthening the surface of steel according to the present invention is A 1 of the above-mentioned steel.
After carburizing or carbonitriding at austenite temperature above the transformation point, the material containing at least a portion of the austenite is processed by forging or rolling or while being processed and then cooled. I am trying.

この発明の一実施態様による表面強化方法は、鉄鋼のA
変態点以上のオーステナイト域温度で、高温浸炭,普
通浸炭,浸炭窒化等の表面処理を全体的あるいは部分的
に実施したのち、その熱を利用して前記オーステナイト
に鍛造等の塑性加工を加え、加工を加えたまま、あるい
はその後直ちにMs点以下まで急冷して焼入れする。
The surface strengthening method according to one embodiment of the present invention is
After surface treatment such as high temperature carburization, normal carburization, carbonitriding etc. is carried out wholly or partially at austenite region temperature of 1 transformation point or higher, the austenite is subjected to plastic working such as forging by utilizing the heat, Quenching with or without processing, or immediately thereafter, quenching to below the Ms point.

また、この発明の他の実施態様による表面強化方法は、
鉄鋼のA変態点以上のオーステナイト域温度で、高温
浸炭,普通浸炭,浸炭窒化等の表面処理を全体的あるい
は部分的に実施したのち、400〜700℃程度に急冷
して前記オーステナイトの変態途中で鍛造等の塑性加工
を加え、前記変態が完了する以前より望ましくは50%
変態が終了する以前に急冷する。
Further, a surface strengthening method according to another embodiment of the present invention is
In steel A 1 transformation point or more austenite region temperature, high temperature carburizing, ordinary carburizing, carburizing After whole or partially to surface treatment such as nitriding, the austenite transformation middle by quenching to about 400 to 700 ° C. 50% more than before the transformation is completed by adding plastic working such as forging
Quench before the transformation ends.

この発明のさらに他の実施態様による表面強化方法は、
鉄鋼のA変態点以上のオーステナイト域温度で、高温
浸炭,普通浸炭,浸炭窒化等の表面処理を全体的あるい
は部分的に実施したのち、直ちにもしくは所定の温度ま
で冷却したあと前記オーステナイトに鍛造等の塑性加工
を加え、加工を加えたまま、あるいは加工後にベイナイ
ト温度域に保持してベイナイト変態させたのち、冷却す
る。
A surface strengthening method according to still another embodiment of the present invention is
After surface treatment such as high temperature carburizing, normal carburizing, carbonitriding etc. wholly or partially at austenite temperature above the A 1 transformation point of steel, immediately or after cooling to a predetermined temperature, forging to the austenite The plastic working is applied, and the bainite transformation is carried out while the working is applied or after the working, and then the bainite is transformed, and then cooled.

次に、この発明による表面強化法を第1図の恒温変態図
(T.T.T.図)をもとにさらに詳しく説明する。
Next, the surface strengthening method according to the present invention will be described in more detail based on the isothermal transformation diagram (TTT diagram) of FIG.

第1図はJIS SNCM420H材の恒温変態図であ
る。
FIG. 1 is a diagram of the isothermal transformation of JIS SNCM420H material.

第1図に示すパターンは、鉄鋼部品(製品)等を10
00℃以上(図では約1040℃)に加熱してこの温度
で高温浸炭あるいは高温浸炭窒化を全体的もしくは部分
的に施したのち、加工率50%で鍛造を行い、約900
℃で鍛造を終了したのち急冷(例えば60℃の油中に投
入)して焼入れを行うものである。
The pattern shown in FIG. 1 is used for steel parts (products), etc.
After heating to over 00 ℃ (about 1040 ℃ in the figure) and performing high temperature carburization or high temperature carbonitriding at this temperature wholly or partially, forging is performed at a processing rate of 50% to about 900
After the forging is finished at ℃, it is quenched (for example, put in oil at 60 ℃) and quenched.

また、第1図に示すパターンは、鉄鋼部品(製品)等
を1000℃以上(図では約1040℃)に加熱してこ
の温度で高温浸炭あるいは高温浸炭・窒化を全体的もし
くは部分的に施したのち、500〜700℃程度(図で
は約600℃)の流動層炉あるいは中性塩浴炉等の恒温
保持炉内に装入し、全体が500〜700℃(図では約
600℃)の温度となったときに温間鍛造を行って変態
途中で加工を続け、加工後直ちに急冷(例えば60℃の
油中あるいは水中に投入)して焼入れを行うものであ
る。
In the pattern shown in FIG. 1, steel parts (products) are heated to 1000 ° C. or higher (about 1040 ° C. in the figure) and subjected to high temperature carburizing or high temperature carburizing / nitriding at this temperature in whole or in part. After that, it is charged into a constant temperature holding furnace such as a fluidized bed furnace or a neutral salt bath furnace at about 500 to 700 ° C (about 600 ° C in the figure), and the whole temperature is about 500 to 700 ° C (about 600 ° C in the figure). In this case, warm forging is carried out to continue working during transformation, and immediately after working, quenching is carried out by rapid cooling (for example, in oil or water at 60 ° C.).

さらに、第1図に示すパターンは、鉄鋼部品(製品)
等に対して800〜960℃で普通浸炭あるいは浸炭窒
化を施したのち、パターンと同様に恒温加熱および塑
性加工を行い、次いで急冷するものである。
Furthermore, the pattern shown in FIG. 1 is a steel part (product).
Ordinary carburizing or carbonitriding is performed at 800 to 960 ° C., followed by constant temperature heating and plastic working in the same manner as the pattern, and then rapid cooling.

さらにまた、第1図に示すパータンは、前記パータン
またはと同様にして温間鍛造までを行い、温間鍛造
後に200〜300℃(図では約270℃)のベイナイ
ト変態域に保持したのち急冷して、心部をベイナイト化
するものである。
Furthermore, the pattern shown in FIG. 1 is subjected to warm forging in the same manner as the above pattern or the like, and after warm forging, it is held in a bainite transformation region of 200 to 300 ° C. (about 270 ° C. in the figure) and then rapidly cooled. Then, the core is made into bainite.

この発明による表面強化法は、上述の4つの基本パター
ンに区別されるが、第2図は高温時の加工率と結晶粒度
との関係を示す図であって、第2図に示すように、例え
ば1040℃で浸炭(10〜30分)すると、結晶粒度
はJIS G約2.5に粗大化する。そして、これに加
工率50%の鍛造を行うと、粗大化した結晶粒がJIS
G約6に微細化し、靭性を著しく高めることができる
ようになる。
The surface strengthening method according to the present invention is distinguished into the above-mentioned four basic patterns. FIG. 2 is a diagram showing the relationship between the processing rate and the crystal grain size at high temperature. As shown in FIG. For example, when carburizing (10 to 30 minutes) at 1040 ° C., the crystal grain size is coarsened to JIS G about 2.5. When this is subjected to forging with a working rate of 50%, the coarsened crystal grains become JIS.
G can be refined to about 6 and the toughness can be remarkably enhanced.

この発明による表面強化方法では、浸炭あるいは浸炭窒
化を全体的に行うほか、所要の箇所に部分的に行うこと
も含まれ、また、前記浸炭あるいは浸炭窒化を過剰に行
うことも含まれる。
In the surface strengthening method according to the present invention, in addition to performing carburization or carbonitriding as a whole, it is also possible to partially perform it at a required position and also to perform the carburization or carbonitriding excessively.

また、表面強化される鉄鋼としては、一般的に使用され
るはだ焼用に適する鋼材(S−C材,S−CK材,SN
C材,SNCM材,SCr材,SCM材,SMn材、S
MnC材)が使用されるほか、CD浸炭用鋼や2相浸炭
用鋼を用いることもできる。
In addition, as the steel to be surface-reinforced, steel materials (SC material, SC material, SN material, SN material, and SN that are generally used and suitable for case hardening are used.
C material, SNCM material, SCr material, SCM material, SMn material, S
In addition to the MnC material), CD carburizing steel and two-phase carburizing steel can also be used.

(実施例1) JIS S20C鋼からなるパイプ(外径25mm×内
径15mm)を素材とし、第1図に示したパターンに
従って、第3図に示すように、1040℃で50分の真
空浸炭処理(浸炭深さ1.0mm)を施したのち、平型
回転鍛造機で加工率30%の加工を行った。続いて、約
900℃の温度から60℃の油中に焼入れし、180℃
で焼もどしを施した後片面に0.1mmの研磨仕上を行
ってピストンピンを製作した。
(Example 1) Using a pipe made of JIS S20C steel (outer diameter 25 mm x inner diameter 15 mm) as a material, according to the pattern shown in FIG. 1, as shown in FIG. 3, vacuum carburizing treatment at 1040 ° C. for 50 minutes ( After the carburizing depth of 1.0 mm), the flattened rotary forging machine was used for processing at a processing rate of 30%. Then, quench at about 900 ℃ in oil at 60 ℃, 180 ℃
After being tempered in, a 0.1 mm polishing finish was performed on one surface to manufacture a piston pin.

ここで得られたピストンピンの浸炭硬化深さは0.6m
m,浸炭層の硬さはHv800,芯部の硬さはHv28
0であり、普通焼入品に比較して芯部で約15%,浸炭
層で約50%それぞれ硬さが向上し、高強度のピストン
ピンを得ることができた。
The carburizing depth of the piston pin obtained here is 0.6 m
m, carburized layer hardness is Hv800, core hardness is Hv28
The hardness was 0, and the hardness was improved by about 15% in the core portion and about 50% in the carburized layer as compared with the ordinary quenched product, and a high-strength piston pin could be obtained.

ところで、炭素を約1.0%含む浸炭層と、0.2%C
の芯部の各々1000℃における伸びは同じ約85%,
変形抵抗も同じ約20kgf/mmであり、浸炭層も
芯部もほぼ同じ変形率であることは文献等(例えば、成
形加工論昭和51年10月第53,54頁)で公知であ
る。したがって、仕上り必要浸炭層深さは加工率と研磨
代を考慮してあらかじめ決めておく必要がある。
By the way, a carburized layer containing about 1.0% carbon and 0.2% C
The core of each has the same elongation at 1000 ° C of about 85%,
It is well known in the literature (for example, forming process theory October 1976, pages 53 and 54) that the carburized layer and the core have substantially the same deformation rate as the deformation resistance is also about 20 kgf / mm 2 . Therefore, it is necessary to determine the required carburized layer depth in advance in consideration of the working rate and the polishing allowance.

また、焼入れ焼もどしの際の相変態による寸法変化は避
け難いものであるので、あらかじめ予備実験により鍛造
仕上り寸法を決めておけば問題はない。
Further, since it is difficult to avoid dimensional changes due to phase transformation during quenching and tempering, there is no problem if the forged finished dimensions are determined in advance by preliminary experiments.

(実施例2) JIS SNCM420H鋼からなる丸棒(直径50m
m)を素材とし、第1図に示したパターンに従って、
第4図に示すように、前記丸棒に930℃で5時間の浸
炭処理(深さ1.2mm)を施し、次いで600℃の流
動層炉に投入し、約1分間保持した後、歯形張り出し温
間鍛造法(型温度200℃)で歯車形状に鍛造し、その
後直ちに油冷してモジュール3,歯数17枚の平歯歯車
を製造した。
(Example 2) A round bar made of JIS SNCM420H steel (diameter 50 m
m) as a material and according to the pattern shown in FIG.
As shown in FIG. 4, the round bar was subjected to carburizing treatment (depth 1.2 mm) at 930 ° C. for 5 hours, then placed in a fluidized bed furnace at 600 ° C. and held for about 1 minute, and then tooth profile was overhanged. It was forged into a gear shape by a warm forging method (mold temperature: 200 ° C.), and immediately thereafter was oil-cooled to manufacture a module 3 and a spur gear having 17 teeth.

(実施例3) JIS S20C鋼からなる丸棒(直径50mm)を素
材とし、第1図に示したパターンに従って、第3図に
示すように、前記丸棒に1040℃で25分の高温浸炭
および50分の拡散処理(深さ1.2mm)を施し、次
いで転造用平ダイス(ダイス温度200℃)で歯車形状
に転造した後約900℃から油冷して、モジュール3,
歯数17枚の平歯歯車を製造した。
(Example 3) Using a round bar (diameter 50 mm) made of JIS S20C steel as a material, according to the pattern shown in FIG. 1, as shown in FIG. 3, the round bar was subjected to high temperature carburization at 1040 ° C. for 25 minutes and Diffusion treatment (depth: 1.2 mm) for 50 minutes, rolling with a flat die for rolling (die temperature: 200 ° C) into a gear shape, then oil cooling from about 900 ° C, module 3,
A spur gear having 17 teeth was manufactured.

(実施例4) JIS SCM420H鋼からなる丸棒(直径50m
m)を素材とし、第1図に示したパターンに従って、
第5図に示すように、前記丸棒に1040℃で25分の
高温浸炭および50分の拡散処理(深さ1.2mm)を
施した後、600℃の中性塩浴炉に投入し、約3分保持
したのち転造用丸ダイス(ダイス温度200℃)で歯車
形状に転造し、その後直ちに油冷して、モジュール3,
歯数17枚の平歯歯車を製造した。
(Example 4) A round bar made of JIS SCM420H steel (diameter 50 m
m) as a material and according to the pattern shown in FIG.
As shown in FIG. 5, the round bar was subjected to high temperature carburization at 1040 ° C. for 25 minutes and diffusion treatment for 50 minutes (depth 1.2 mm), and then placed in a neutral salt bath furnace at 600 ° C. After holding it for about 3 minutes, it is rolled into a gear shape with a rolling die (die temperature 200 ° C), then immediately oil cooled, and the module 3,
A spur gear having 17 teeth was manufactured.

(評価例1) 以上の実施例2〜4において製造した各歯車に対し、油
圧式歯車曲げ疲労試験機による試験を行うことによっ
て、各歯車の歯元疲労強度を調べると共に、歯面硬さお
よび歯元芯部硬さを調べた。さらに、同条件で処理した
5Rシャルピー衝撃試験片を用いてシャルピー衝撃値を
測定した。そして、これらの値をガス浸炭および真空浸
炭した場合の特性と比較して表1に示す。
(Evaluation Example 1) The gears manufactured in the above Examples 2 to 4 are subjected to a test by a hydraulic gear bending fatigue tester to examine the root fatigue strength of each gear and the tooth surface hardness and The hardness of the tooth core was examined. Further, the Charpy impact value was measured using a 5R Charpy impact test piece treated under the same conditions. Then, these values are shown in Table 1 in comparison with the characteristics in the case of gas carburizing and vacuum carburizing.

表1に示すように、実施例2〜4において製造した歯車
はいずれも歯車硬さが大で歯面の耐摩耗性に優れたもの
であると共に、歯元疲労強度もかなり大きくなっていて
長期間の使用に耐えうるものであり、衝撃値もかなり増
大していて使用時に加えられた衝撃的な負荷に対しても
十分耐えうるものであることが明らかである。
As shown in Table 1, all of the gears manufactured in Examples 2 to 4 had a large gear hardness and excellent wear resistance on the tooth surface, and the tooth root fatigue strength was considerably large, and It is possible to withstand the use for a certain period of time, and the impact value is considerably increased, and it is clear that it can withstand the impact load applied during use.

また、表面炭素濃度0.9%,有効浸炭層深さ0.6m
mを得る場合におけるエネルギ比較を行ったところ、従
来の表面強化法では、一例において、鍛造加熱が120
0℃で5分、浸炭が930℃で2.5時間の加熱を行う
ため、1kgあたりおよそ0.98KWHの熱源を必要
としたのに対し、本発明法では、一例において、浸炭加
熱が1040℃で25分、拡散が60分であり、鍛造は
この際の熱を利用しているため、1kgあたり0.89
KWHの熱源ですみ、1Kgあたりおよそ90WHの省
エネルギを実現することができた。
The surface carbon concentration is 0.9% and the effective carburized layer depth is 0.6 m.
When energy comparison was performed when m was obtained, in the conventional surface strengthening method, forging heating was 120 in one example.
In order to perform heating at 0 ° C. for 5 minutes and carburizing at 930 ° C. for 2.5 hours, a heat source of about 0.98 KWH was required per 1 kg, whereas in the method of the present invention, in one example, carburizing heating was 1040 ° C. It takes 25 minutes and the diffusion time is 60 minutes. Since the forging uses the heat at this time, 0.89 per kg
Only with the heat source of KWH, it was possible to realize energy saving of about 90WH / Kg.

(実施例5) JIS SCM420H鋼からなる第6図に示す形状の
自動車用差動装置のリングギヤ用プレフォーム1を用い
た。そして、このプレフォーム1に対し、1040℃で
25分の高温浸炭および50分の拡散処理(深さ1.2
mm)を施したのち、鍛造プレスによって第7図に示す
ように歯形2とねじ用下穴3を有する歯車素材4を精密
鍛造成形し、鍛造終了温度900℃でクエンチングプレ
スにより焼入れした。次いで、ねじ用下穴3の部分を高
周波誘導コイルで約1.5mmの深さまでHC20前
後に焼もどし、続いてドリリングで浸炭層を取り除いた
後タップによりネジ切りをして仕上げることによって、
精密でかつ従来品に比較して歯元強度で25%、ピッチ
ング強度で15%上まわる特性の優れたリングギヤを得
た。
(Example 5) A preform 1 for a ring gear of an automotive differential having a shape shown in Fig. 6 and made of JIS SCM420H steel was used. Then, this preform 1 was subjected to high temperature carburization at 1040 ° C. for 25 minutes and diffusion treatment for 50 minutes (depth 1.2).
mm), a gear material 4 having a tooth profile 2 and a screw pilot hole 3 as shown in FIG. 7 was precision forged by a forging press, and quenched by a quenching press at a forging end temperature of 900 ° C. Then, tempering the part of the pilot hole 3 screw back and forth H R C20 to a depth of about 1.5mm at a high frequency induction coil, by finishing with a threaded by subsequently tapped after removing the carburized layer in drilling,
A ring gear was obtained which was more precise and had characteristics of being 25% higher in root strength and 15% higher in pitching strength than conventional products.

(実施例6) 0.55%C,0.26%Si,1.03%Mn,1.
0%Ni,1.0%Cr,0.2%Moを主成分とする
鋼を用い、第1図に示したパターンに従って、第8図
に示すように、930℃で2時間のガス浸炭を行った
後、600℃の流動層炉中に約1分保持し、次いで歯形
張り出し温間鍛造法(型温度200℃)で歯車形状に鍛
造した。その後直ちに230℃の油中に60分間保持し
てベイナイト変態させた後水冷することにより、モジュ
ール3,歯数17枚の平歯歯車を製造した。この歯車
は、全浸炭硬化深さ0.4mm,表面硬さHv800,
芯部硬さHv630であり、また歯面ピッチング寿命は
SCM420浸炭品の約5.5倍に向上した。
(Example 6) 0.55% C, 0.26% Si, 1.03% Mn, 1.
Using steel containing 0% Ni, 1.0% Cr, and 0.2% Mo as main components, according to the pattern shown in FIG. 1, gas carburizing was performed at 930 ° C. for 2 hours as shown in FIG. After that, it was held in a fluidized bed furnace at 600 ° C. for about 1 minute, and then forged into a gear shape by a warm tooth forging method (die temperature 200 ° C.). Immediately thereafter, it was kept in oil at 230 ° C. for 60 minutes to transform it to bainite, and then water-cooled to manufacture a spur gear having three modules and 17 teeth. This gear has a total carburizing hardening depth of 0.4 mm, a surface hardness of Hv800,
The core hardness is Hv630, and the tooth surface pitting life is about 5.5 times longer than that of the SCM420 carburized product.

[発明の効果] 以上説明してきたように、この発明による表面強化方法
では、鉄鋼のA変態点以上のオーステナイト域温度で
浸炭あるいは浸炭窒化処理を施したのち、当該オーステ
ナイトを少なくとも一部含む素材に鍛造または転造で加
工を加えて、Ms点以下まで急冷し、あるいはベイナイ
ト発生温度域に保持したのち急冷する冷却を行うように
したから、表面処理効果が大きく、浸炭あるいは浸炭窒
化による表面硬さが大であると共に心部の硬さおよび靭
性が大きく、疲労強度が大であって長期の負荷使用に耐
えることができると共に、鍛造または転造による加工時
の成形性にも著しく優れた鉄鋼材料および鉄鋼部品(製
品)の表面強化法であり、各種ギヤ,シャフト,ピン,
ロッド,リテーナ,ハブ等々の浸炭あるいは浸炭窒化処
理して使用する機械構造用部品の製造に適用して有効で
あるという著大なる効果がもたらされる。
[Effects of the Invention] As described above, in the surface strengthening method according to the present invention, after the carburizing or carbonitriding treatment is performed at the austenite region temperature of the A 1 transformation point or higher of the steel, the material containing at least a part of the austenite. Is processed by forging or rolling to quench the temperature below the Ms point, or quenching after holding in the bainite generation temperature range, the surface treatment effect is large, and the surface hardening by carburizing or carbonitriding is performed. Steel with a large core and a large core hardness and toughness, large fatigue strength that can withstand long-term use under load, and remarkably excellent formability during processing by forging or rolling. Surface strengthening method for materials and steel parts (products), including various gears, shafts, pins,
It has a great effect that it is effective when applied to the manufacture of machine structural parts used for carburizing or carbonitriding rods, retainers, hubs, etc.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の実施態様を示すSNCM420鋼の
恒温変態図、第2図は結晶粒径に及ぼす鍛造温度と加工
率の影響を示すグラフ、第3図,第4図および第5図は
各々この発明の実施例1,3,実施例2および実施例4
において採用した表面強化工程の説明図、第6図(a)
(b)はこの発明の実施例5において使用したリングギ
ヤ用プレフォームの各々左半正面図および断面図、第7
図(a)(b)はこの発明の実施例5において加工した
歯車素材の各々左半正面図および断面図、第8図はこの
発明の実施例6において採用した表面強化工程の説明図
である。
FIG. 1 is an isothermal transformation diagram of SNCM420 steel showing an embodiment of the present invention, FIG. 2 is a graph showing the effects of forging temperature and working rate on the crystal grain size, and FIGS. 3, 4, and 5 are Examples 1, 3, 2 and 4 of the present invention, respectively
Of the surface strengthening process adopted in Fig. 6, Fig. 6 (a)
FIG. 7B is a left half front view and a sectional view of a ring gear preform used in Embodiment 5 of the present invention.
(A) and (b) are a left half front view and a sectional view of a gear material machined in Example 5 of the invention, and FIG. 8 is an explanatory view of a surface strengthening step adopted in Example 6 of the invention. .

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】鉄鋼のA変態点以上のオーステナイト域
温度で浸炭あるいは浸炭窒化処理を施したのち、当該オ
ーステナイトを少なくとも一部含む素材に鍛造または転
造で加工を加えて冷却することを特徴とする表面強化方
法。
1. A method of carrying out carburizing or carbonitriding at a temperature of austenite above the A 1 transformation point of steel, and then forging or rolling the material containing at least a portion of said austenite and cooling it. And surface strengthening method.
JP60165966A 1985-07-29 1985-07-29 Surface strengthening method Expired - Fee Related JPH0615687B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60165966A JPH0615687B2 (en) 1985-07-29 1985-07-29 Surface strengthening method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60165966A JPH0615687B2 (en) 1985-07-29 1985-07-29 Surface strengthening method

Publications (2)

Publication Number Publication Date
JPS6227515A JPS6227515A (en) 1987-02-05
JPH0615687B2 true JPH0615687B2 (en) 1994-03-02

Family

ID=15822391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60165966A Expired - Fee Related JPH0615687B2 (en) 1985-07-29 1985-07-29 Surface strengthening method

Country Status (1)

Country Link
JP (1) JPH0615687B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0631784U (en) * 1992-10-08 1994-04-26 株式会社共栄商会 Launch ball retrograde prevention device for pachinko machines
CN102703908A (en) * 2012-01-17 2012-10-03 苏州新锐工程工具有限公司 Heat treatment method of impact piston

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3249345B2 (en) * 1995-07-27 2002-01-21 日鍛バルブ株式会社 Bevel gear manufacturing method
US6981324B2 (en) * 2003-03-26 2006-01-03 American Axle & Manufacturing, Inc. Method of manufacturing net-shaped gears for a differential assembly

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5655567A (en) * 1979-10-09 1981-05-16 Daido Steel Co Ltd Surface hardening method of parts

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0631784U (en) * 1992-10-08 1994-04-26 株式会社共栄商会 Launch ball retrograde prevention device for pachinko machines
CN102703908A (en) * 2012-01-17 2012-10-03 苏州新锐工程工具有限公司 Heat treatment method of impact piston

Also Published As

Publication number Publication date
JPS6227515A (en) 1987-02-05

Similar Documents

Publication Publication Date Title
US3860457A (en) A ductile iron and method of making it
US20120160832A1 (en) Gear part and method of producing thereof
JP2000514868A (en) Induction hardened trace alloy steel with high fatigue strength properties
GB2337271A (en) A method of manufacturing hardened steel components
JPH02153018A (en) Production of steel member
US20080095657A1 (en) Optimization Of Steel Metallurgy To Improve Broach Tool Life
JPH04129621A (en) Manufacture of gear member
JPH0615687B2 (en) Surface strengthening method
JP2549039B2 (en) Carbonitriding heat treatment method for high strength gears with small strain
CN109680127A (en) The hardening and tempering process of carbon alloy structure round steel in a kind of big specification
CN108424999B (en) A kind of heat treatment process of shallow-tank separator driving chain components
JP2614653B2 (en) Manufacturing method of carburized parts with little heat treatment distortion
CN116323992A (en) Crankshaft
JPS63195257A (en) Production of high strength member
JP2827592B2 (en) Manufacturing method of steel parts
JPH0570924A (en) Method for carburizing heat treatment of high strength gear small in strain and the gear
JP4526616B2 (en) Gear made of spheroidal graphite cast iron material and manufacturing method thereof
CN115026517B (en) Planetary gear shaft, special material for planetary gear shaft and hot forging forming process of special material
JP3104449B2 (en) Heat treatment of carburized gears
Bugliarello et al. Heat Treat Process for Gears
JPH0572442B2 (en)
SU1135778A1 (en) Method for making heavy duty gears
JPS6383223A (en) Production of surface strengthened high-toughness iron and steel members
JPH01177338A (en) Non-heat treated steel for nitriding
KR100501680B1 (en) Heat treatment method of boron alloys for gear

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees