JPH06116623A - Method for smelting high purity dead soft steel - Google Patents

Method for smelting high purity dead soft steel

Info

Publication number
JPH06116623A
JPH06116623A JP26571392A JP26571392A JPH06116623A JP H06116623 A JPH06116623 A JP H06116623A JP 26571392 A JP26571392 A JP 26571392A JP 26571392 A JP26571392 A JP 26571392A JP H06116623 A JPH06116623 A JP H06116623A
Authority
JP
Japan
Prior art keywords
treatment
slag
added
reflux
decarburization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26571392A
Other languages
Japanese (ja)
Other versions
JP3253138B2 (en
Inventor
Kimiharu Yamaguchi
公治 山口
Hideji Takeuchi
秀次 竹内
Kenichi Tanmachi
健一 反町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP26571392A priority Critical patent/JP3253138B2/en
Publication of JPH06116623A publication Critical patent/JPH06116623A/en
Application granted granted Critical
Publication of JP3253138B2 publication Critical patent/JP3253138B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide a method for smelting a high purity dead soft steel by an RH circulating type degassing apparatus. CONSTITUTION:In the smelting method for the dead soft steel executing decarburizing treatment after decarburizing unoxidized molten steel by the RH circulating type degassing apparatus, before the treatment by the RH apparatus, metallic Al-containing material is added into slag in a ladle to reduce lower oxide in the ladle slag. Thereafter, the flux mainly containing MgO is immediately added into the RH degassing vessel after starting the circulation in the RH apparatus and the decarburizing treatment is successively executed till coming to the aimed carbon concn. or lower. Further, by adding a deoxidizing alloy to execute the deoxidizing treatment, the high purity dead soft steel can be smelted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高清浄度極低炭素鋼の
溶製方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing high cleanliness ultra-low carbon steel.

【0002】[0002]

【従来の技術】従来、極低炭素鋼を溶製するには、転炉
で溶製された低炭素濃度の未脱酸溶鋼を、RH環流式脱
ガス装置を用いて脱炭処理し、その後Alなどの脱酸用合
金を添加して脱酸処理を行う。
2. Description of the Related Art Conventionally, for producing extremely low carbon steel, undeoxidized molten steel having a low carbon concentration produced in a converter is decarburized by using an RH reflux type degassing device, and then A deoxidizing alloy such as Al is added to perform deoxidizing treatment.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、該RH
環流式脱ガス装置での取鍋中のスラグは、該転炉からの
流出スラグが混入することから、酸化鉄などの低級酸化
物の濃度が高いため、Alなどの脱酸用合金を添加して脱
酸処理を行う際に、溶鋼中に溶解した脱酸元素がスラグ
からの酸素により酸化されて非金属介在物が生成し、溶
鋼の清浄度を向上できないという問題があった。
[Problems to be Solved by the Invention] However, the RH
The slag in the ladle in the reflux degasser is mixed with the slag flowing out from the converter, so the concentration of lower oxides such as iron oxide is high, so a deoxidizing alloy such as Al is added. When performing deoxidation treatment by means of oxygen, the deoxidizing element dissolved in the molten steel is oxidized by oxygen from the slag to form non-metallic inclusions, and there is a problem that the cleanliness of the molten steel cannot be improved.

【0004】溶鋼の清浄度を向上させる方法としては、
例えば特開平2 − 30711号公報に開示されているよう
に、AlあるいはAl滓を取鍋スラグに添加して取鍋スラグ
中の酸化鉄を還元した後、RH環流式脱ガス装置で脱炭
処理を行い引き続きAl脱酸を行う方法が行われている。
このような方法で溶鋼中の全酸素濃度[T.O] が20ppm 以
下の極低炭素鋼を溶製するには、脱酸処理後のスラグ中
の[T.Fe]を少なくとも2%以下、望ましくは1%以下に
低減させる必要があるが、転炉流出スラグ量のバラツキ
や、脱炭処理中のスラグ中酸化鉄濃度の上昇を考慮する
と、RHによる処理後のスラグ中の[T.Fe]を安定して低
下させるためには、スラグの脱酸処理を行う際に溶鋼1
t当たり0.5 〜1.0kg の金属Alを取鍋に添加して、Alが
過剰となるようにする操業が必要であった。
As a method for improving the cleanliness of molten steel,
For example, as disclosed in Japanese Patent Application Laid-Open No. 2-30711, Al or Al slag is added to ladle slag to reduce iron oxide in the ladle slag, and then decarburization treatment is carried out by an RH reflux type degasser. Then, a method of performing Al deoxidation is performed.
In order to produce ultra-low carbon steel with a total oxygen concentration [TO] of 20 ppm or less in molten steel by such a method, [T.Fe] in the slag after deoxidation treatment should be at least 2% or less, preferably It is necessary to reduce it to 1% or less, but considering variations in the amount of slag discharged from the converter and an increase in iron oxide concentration in slag during decarburization, [T.Fe] in slag after treatment by RH is considered. In order to reduce the slag in a stable manner, molten steel 1 should be used when deoxidizing slag.
It was necessary to add 0.5 to 1.0 kg of metallic Al per ton to the ladle so that the amount of Al was excessive.

【0005】しかしながら、脱炭処理時にこのような過
剰なAlが存在すると、Alが溶鋼中の溶存酸素と反応する
ため、溶鋼の酸素濃度が低下するとともに、脱炭速度が
大幅に低下する問題があった。スラグの還元処理を脱炭
処理後に行う方法も考えられるが、この方法では還元用
フラックスからの炭素ピックアップがあることと、RH
による処理後ではスラグの反応性が低下しているため、
スラグの還元促進用の攪拌装置が必要となること、およ
びスラグの還元処理後再びRHを用いて脱酸処理を行う
必要があるため1バッチあたりのRHによる処理時間が
長くなり、RH処理鋼の生産性が大幅に低下するなどの
問題があった。
However, when such excess Al is present during decarburization, Al reacts with dissolved oxygen in the molten steel, so that the oxygen concentration in the molten steel is reduced and the decarburization rate is significantly reduced. there were. A method of performing the slag reduction treatment after the decarburization treatment is also conceivable, but this method requires that carbon be picked up from the reducing flux and
Since the reactivity of slag has decreased after the treatment with
Since a stirrer for accelerating the reduction of slag is required and it is necessary to perform deoxidation treatment using RH again after the reduction treatment of slag, the processing time by RH per batch becomes long, and There were problems such as a significant drop in productivity.

【0006】本発明は、前記問題点を解決した高清浄度
極低炭素鋼の溶製方法を提供することを目的とするもの
である。
It is an object of the present invention to provide a method for melting a high cleanliness ultra-low carbon steel which solves the above problems.

【0007】[0007]

【課題を解決するための手段】本発明は、未脱酸溶鋼を
RH環流式脱ガス装置により脱炭した後、脱酸処理を行
う極低炭素鋼の溶製方法において、RH環流式脱ガス装
置による処理以前に取鍋スラグに金属Al含有物質を添加
して、取鍋スラグ中のFeO,MnO などの低級酸化物を還元
し、その後RH環流式脱ガス装置において環流開始後直
ちにMgO が主たる成分であるフラックスをRH脱ガス槽
内に添加した後、目標炭素濃度以下となるまで引き続き
脱炭処理を行い、更に脱酸用合金を添加して脱酸処理を
行うことを特徴とする高清浄度極低炭素鋼の溶製方法で
ある。
The present invention relates to an RH reflux degassing method for melting ultra-low carbon steel, in which undeoxidized molten steel is decarburized by an RH reflux degasser and then deoxidized. Before treatment with the equipment, a metal Al-containing substance is added to the ladle slag to reduce lower oxides such as FeO and MnO in the ladle slag, and then MgO is mainly contained in the RH reflux degasser immediately after the start of reflux. After adding the flux, which is a component, into the RH degassing tank, decarburizing treatment is continued until the target carbon concentration falls below the target carbon concentration, and further deoxidizing alloy is added to perform deoxidizing treatment. It is a method of melting ultra low carbon steel.

【0008】[0008]

【作用】本発明によれば、取鍋スラグを金属Al含有物質
により還元処理した後、RHによる脱炭処理を行う際
に、RH環流開始後直ちにMgO が主たる成分であるフラ
ックスをRH脱ガス槽内に添加することにより、未脱酸
溶鋼と未反応金属Alの富化層との間にMgO 富化層を形成
し、未反応金属Alの溶鋼中への巻き込みを抑制すること
により、金属Al含有物質を過剰に添加して未反応金属Al
が多量に存在する場合でも、脱炭初期の脱炭速度低下を
防止できる。
According to the present invention, when the ladle slag is reduced by the metal Al-containing substance and then decarburized by RH, the flux containing MgO as a main component is immediately removed from the RH degassing tank immediately after the start of RH reflux. By adding it to the inside, a MgO enriched layer is formed between the undeoxidized molten steel and the unreacted metal Al-enriched layer, and the entrainment of the unreacted metal Al into the molten steel is suppressed, whereby the metallic Al Unreacted metal Al
Even if a large amount of carbon is present, it is possible to prevent the decarburization rate from decreasing at the initial stage of decarburization.

【0009】また、未反応の金属Alが存在しない場合に
は、従来の方法では、脱炭処理中に溶鋼中からの酸素の
移動によるスラグ中酸化鉄濃度の上昇が見られる。しか
し、本発明では、MgO 添加の効果によりスラグ中酸化鉄
濃度の上昇が大幅に抑制され、脱炭処理に引き続き行う
脱酸処理中のスラグ中酸化鉄濃度を低下させることがで
きるため、より清浄度の高い極低炭素鋼を溶製すること
ができる。
In the case where there is no unreacted metallic Al, the conventional method shows an increase in the iron oxide concentration in the slag due to the movement of oxygen from the molten steel during the decarburization treatment. However, in the present invention, the increase in iron oxide concentration in the slag is significantly suppressed by the effect of MgO addition, and the iron oxide concentration in the slag during the deoxidation treatment that is performed subsequent to the decarburization treatment can be reduced, so that it is cleaner. It is possible to melt extremely low carbon steel.

【0010】このように本発明では、例えば転炉出鋼ス
ラグ中酸化鉄濃度や転炉流出スラグ量のバラツキによ
り、取鍋スラグの還元の程度や未反応金属Alの残留の程
度が異なる場合でも脱炭反応を阻害することなく、脱酸
処理のスラグ中酸化鉄濃度を低下させることができるた
め、より清浄度の高い極低炭素鋼が、効率よく安定して
溶製できるようになった。
As described above, according to the present invention, even when the degree of reduction of the ladle slag and the degree of residual unreacted metal Al differ depending on, for example, variations in the iron oxide concentration in the converter tap steel slag and the converter outflow slag amount. Since the iron oxide concentration in the deoxidizing slag can be reduced without inhibiting the decarburization reaction, ultra-low carbon steel with higher cleanliness can be efficiently and stably melted.

【0011】取鍋に金属Alを投入する際の金属Alの添加
量は、溶鋼1t当たり0.3 〜1kg/tの範囲がよい。0.3kg
/t 未満ではスラグ中酸化鉄の還元が不充分である場合
があり、1kg/t 以上では、未反応金属Alの残留量が増大
するため効率的でない。またRH処理開始時に添加するMg
O 系フラックスの添加量としては、溶鋼1t当たりMgO
1 〜4kg/t の範囲がよい。MgO 1kg/t 未満では未反応金
属Alと溶鋼の遮断効果が充分でなく、取鍋スラグに添加
する金属Al量が1kg/tを超えると、脱炭初期の脱炭阻害
が見られる。また取鍋スラグへのMgO 添加量が4kg/t を
超えると、脱酸処理中の脱酸速度が低下する傾向があ
り、アルミナ系介在物のスラグ中への吸収速度が低下し
ているものと考えられる。
When the metallic Al is charged into the ladle, the amount of the metallic Al added is preferably in the range of 0.3 to 1 kg / t per ton of molten steel. 0.3 kg
If it is less than / t, the reduction of iron oxide in the slag may be insufficient, and if it is more than 1 kg / t, it is not efficient because the residual amount of unreacted metal Al increases. Mg added at the start of RH treatment
The amount of O 2 -based flux added is MgO per ton of molten steel.
The range of 1 to 4 kg / t is good. If the MgO content is less than 1 kg / t, the barrier effect between unreacted metallic Al and molten steel is not sufficient, and if the amount of metallic Al added to the ladle slag exceeds 1 kg / t, decarburization inhibition at the initial stage of decarburization is observed. If the amount of MgO added to the ladle slag exceeds 4 kg / t, the deoxidation rate during deoxidation treatment tends to decrease, and the absorption rate of alumina inclusions into the slag decreases. Conceivable.

【0012】[0012]

【実施例】溶鋼量260t規模のRHにおいて、本発明法を
実施した結果を以下に説明する。転炉で炭素濃度0.04%
程度まで脱炭した未脱酸溶鋼を取鍋へ出鋼直後に、金属
Al純分50% のAl滓を取鍋スラグ上に添加した後、鍋底に
設けたポーラス羽口よりArガス300Nl /分を吹き込んで
3分間攪拌を行いスラグの還元を行った。その後図1に
示すようなRHを用いて真空脱炭処理を行ったが、真空
排気開始後約30秒後の環流を開始した時点でMgO 純分95
% 以上のMgO クリンカを添加した。脱炭処理初期には、
真空槽内で酸素ガスの上吹きを30Nm3 /分の吹き込み速
度で約3分間行った。目標炭素濃度25ppm 以下となるま
で脱炭処理を行った後、金属Alを添加して溶鋼中Al濃度
を0.04〜0.05% の範囲に調節し、Alを添加後10分間脱酸
処理を行った。
EXAMPLES The results of carrying out the method of the present invention in an RH having a molten steel amount of 260 tons are described below. 0.04% carbon concentration in converter
Immediately after tapping the undeoxidized molten steel that has been decarburized to the ladle,
After adding an Al slag with a pure Al content of 50% to the ladle slag, 300 Nl / min of Ar gas was blown from the porous tuyere provided at the bottom of the pot and stirred for 3 minutes to reduce the slag. After that, vacuum decarburization treatment was performed using RH as shown in Fig. 1. About 30 seconds after the evacuation was started, the reflux was started.
% Or more of MgO clinker was added. At the beginning of decarburization,
Top blowing of oxygen gas was performed in the vacuum chamber at a blowing rate of 30 Nm 3 / min for about 3 minutes. After carrying out decarburization until the target carbon concentration became 25 ppm or less, metallic Al was added to adjust the Al concentration in the molten steel within the range of 0.04 to 0.05%, and deoxidation was performed for 10 minutes after adding Al.

【0013】RHによる処理開始時のMgO 添加量が2kg/
t の場合の取鍋スラグの還元処理用金属Alの原単位と脱
酸処理後の溶鋼中全酸素濃度[T.O] との関係を図2に示
す。金属Alの原単位を0.4kg/t 以上にすると、溶鋼中全
酸素濃度[T.O] を安定して30ppm 以下に低下させること
ができる。また金属Alの原単位を1kg/t 以上にしても、
未反応分が増加するだけで、溶鋼の清浄化への効果は小
さいことがわかる。
The amount of MgO added at the start of RH treatment is 2 kg /
Figure 2 shows the relationship between the basic unit of metal Al for reduction treatment of ladle slag and the total oxygen concentration [TO] in molten steel after deoxidation in the case of t. When the basic unit of metal Al is 0.4 kg / t or more, the total oxygen concentration [TO] in molten steel can be stably reduced to 30 ppm or less. Moreover, even if the basic unit of metal Al is 1 kg / t or more,
It can be seen that the effect on the cleaning of the molten steel is small only by increasing the unreacted content.

【0014】取鍋スラグの還元処理用金属Alの原単位と
脱炭処理時間との関係と、これに及ぼすMgO 添加の影響
を図3に示す。MgO を2kg/t 添加することにより、金属
Alを多量に添加した場合でも、MgO を添加しない従来法
に比較して脱炭速度に及ぼす悪影響は小さくなってい
る。取鍋スラグの還元処理用金属Alの原単位が1.0kg/t
の場合におけるRHによる処理開始時のMgO 添加量と脱
炭処理時間の関係を図4に示す。MgO を添加する本発明
法では、MgO を添加しない従来法に比較して脱炭時間が
大幅に短縮されており、MgO 原単位を1.0kg/t 以上とす
れば、Al滓添加による脱炭阻害は防止できることがわか
る。
FIG. 3 shows the relationship between the basic unit of metal Al for the reduction treatment of ladle slag and the decarburization treatment time and the effect of addition of MgO on the relation. By adding 2 kg / t of MgO,
Even when a large amount of Al is added, the adverse effect on the decarburization rate is smaller than that in the conventional method in which MgO is not added. The basic unit of metal Al for reducing ladle slag is 1.0 kg / t
Fig. 4 shows the relationship between the amount of MgO added and the decarburizing treatment time at the start of the treatment with RH in the case of. In the method of the present invention in which MgO is added, the decarburization time is significantly shortened as compared with the conventional method in which MgO is not added.If the MgO basic unit is 1.0 kg / t or more, decarburization inhibition by addition of Al slag is observed. Can be prevented.

【0015】取鍋スラグ還元用の金属Al原単位が1.0kg/
t の場合におけるRHによる処理開始時のMgO 添加量と
[T.O] の関係を図5に示す。MgO を添加しない従来法に
比べて、MgO を添加する本発明法では、若干[T.O] が低
下する傾向にあり、脱炭処理中のスラグの再酸化が抑制
されているものと考えられる。しかし、MgO 添加量をさ
らに増して4kg/t 以上とすると[T.O] は上昇する傾向に
あり、アルミナ系介在物のスラグ中への吸収速度が低下
するためと考えられる。
Metal Al unit consumption for ladle slag reduction is 1.0 kg /
the amount of MgO added at the start of treatment with RH in the case of t
The relationship of [TO] is shown in Fig. 5. Compared with the conventional method in which MgO is not added, in the method of the present invention in which MgO is added, [TO] tends to be slightly reduced, and it is considered that reoxidation of slag during decarburization is suppressed. However, when the amount of MgO added is further increased to 4 kg / t or more, [TO] tends to increase, which is considered to be because the absorption rate of alumina inclusions in the slag decreases.

【0016】[0016]

【発明の効果】以上説明したように、本発明により極低
炭素鋼の脱炭処理時の脱炭阻害を引き起こすことなく溶
鋼の清浄度を向上した高清浄度極低炭素鋼の溶製が可能
となる。
As described above, according to the present invention, it is possible to produce a high-cleanliness ultra-low carbon steel with improved cleanliness of the molten steel without inhibiting decarburization during the decarburization treatment of the ultra-low carbon steel. Becomes

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を実施するための装置を示す概略図であ
る。
FIG. 1 is a schematic diagram showing an apparatus for carrying out the present invention.

【図2】取鍋スラグ還元処理用の金属Al原単位と脱酸処
理後[T.O] との関係を示す特性図である。
FIG. 2 is a characteristic diagram showing a relationship between a metal Al unit for ladle slag reduction treatment and [TO] after deoxidation treatment.

【図3】取鍋スラグ還元処理用の金属Al原単位と脱炭処
理時間との関係を示す特性図である。
FIG. 3 is a characteristic diagram showing a relationship between a metal Al unit for ladle slag reduction treatment and decarburization treatment time.

【図4】RHによる処理開始時のMgO 添加量と脱炭処理
時間との関係特性図である。
FIG. 4 is a relational characteristic diagram between the amount of MgO added at the start of RH treatment and the decarburization treatment time.

【図5】RHによる処理開始時のMgO 添加量と[T.O] と
の関係を示す図である。
FIG. 5 is a graph showing the relationship between [TO] and the amount of MgO added at the start of RH treatment.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 未脱酸溶鋼をRH環流式脱ガス装置によ
り脱炭した後、脱酸処理を行う極低炭素鋼の溶製方法に
おいて、RH環流式脱ガス装置による処理以前に取鍋ス
ラグに金属Al含有物質を添加して、取鍋スラグ中のFeO,
MnO などの低級酸化物を還元し、その後RH環流式脱ガ
ス装置において環流開始後直ちにMgOが主たる成分であ
るフラックスをRH脱ガス槽内に添加した後、目標炭素
濃度以下となるまで引き続き脱炭処理を行い、更に脱酸
用合金を添加して脱酸処理を行うことを特徴とする高清
浄度極低炭素鋼の溶製方法。
1. A method for melting ultra-low carbon steel in which undeoxidized molten steel is decarburized by an RH reflux degasser and then deoxidized, in which ladle slag is added before treatment by the RH reflux degasser. Addition of metallic Al-containing substance to FeO in ladle slag,
After reducing low-grade oxides such as MnO, and then adding flux containing MgO as a main component to the RH degassing tank immediately after the start of reflux in the RH reflux degasser, decarburization is continued until the carbon concentration falls below the target level. A process for producing a high cleanliness ultra-low carbon steel, which comprises performing a deoxidizing treatment by adding a deoxidizing alloy.
JP26571392A 1992-10-05 1992-10-05 Melting method of high cleanness ultra low carbon steel Expired - Fee Related JP3253138B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26571392A JP3253138B2 (en) 1992-10-05 1992-10-05 Melting method of high cleanness ultra low carbon steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26571392A JP3253138B2 (en) 1992-10-05 1992-10-05 Melting method of high cleanness ultra low carbon steel

Publications (2)

Publication Number Publication Date
JPH06116623A true JPH06116623A (en) 1994-04-26
JP3253138B2 JP3253138B2 (en) 2002-02-04

Family

ID=17420981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26571392A Expired - Fee Related JP3253138B2 (en) 1992-10-05 1992-10-05 Melting method of high cleanness ultra low carbon steel

Country Status (1)

Country Link
JP (1) JP3253138B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101412565B1 (en) * 2012-07-31 2014-07-02 현대제철 주식회사 Improvement method for rh decarburizing efficiency on manufacturing of ultralow carbon steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101412565B1 (en) * 2012-07-31 2014-07-02 현대제철 주식회사 Improvement method for rh decarburizing efficiency on manufacturing of ultralow carbon steel

Also Published As

Publication number Publication date
JP3253138B2 (en) 2002-02-04

Similar Documents

Publication Publication Date Title
JP2575827B2 (en) Manufacturing method of ultra low carbon steel for continuous casting with excellent cleanliness
CN113774277A (en) Ultra-low carbon and ultra-low manganese industrial pure iron and preparation method thereof
JP3903580B2 (en) Method of melting high cleanliness steel
JP4057942B2 (en) Method for producing ultra-low Ti molten steel
JP2776118B2 (en) Melting method for non-oriented electrical steel sheet
JP4687103B2 (en) Melting method of low carbon aluminum killed steel
JPH0734117A (en) Production of extra-low carbon steel having excellent cleanliness
JP3002593B2 (en) Melting method of ultra low carbon steel
JP3172550B2 (en) Manufacturing method of high cleanliness steel
JPH09235611A (en) Production of extra-low sulfur pure iron having high cleanliness
KR101045972B1 (en) Refining method of highly clean ultra low carbon steel for soft two-piece can
JPH06116623A (en) Method for smelting high purity dead soft steel
JP3220233B2 (en) Refining method of ultra-low carbon / ultra low sulfur chromium-containing molten steel
JP3002599B2 (en) Melting method for ultra low carbon steel with high cleanliness
JPH10140227A (en) Production of high alloy steel by joining two molten steels
JPH11106823A (en) Method for refining extra-low carbon and extra-low nitrogen stainless steel
JP4534734B2 (en) Melting method of low carbon high manganese steel
JP2976855B2 (en) Method of deoxidizing molten steel
JPH04318118A (en) Production of steel with extremely low carbon and extremely low sulfur
JP3390478B2 (en) Melting method of high cleanliness steel
JP2897639B2 (en) Refining method for extremely low sulfur steel
JPH11140530A (en) Production of ultra-low nitrogen stainless steel
JP2003155517A (en) Method for producing low carbon and high manganese steel
JPH05239537A (en) Method for melting cleanliness and extreme-low carbon steel
RU2124569C1 (en) Method of producing carbon steel

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20071122

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081122

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091122

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees