JPH06114235A - Flue gas dentrification method using on-site ammonia - Google Patents

Flue gas dentrification method using on-site ammonia

Info

Publication number
JPH06114235A
JPH06114235A JP5024257A JP2425793A JPH06114235A JP H06114235 A JPH06114235 A JP H06114235A JP 5024257 A JP5024257 A JP 5024257A JP 2425793 A JP2425793 A JP 2425793A JP H06114235 A JPH06114235 A JP H06114235A
Authority
JP
Japan
Prior art keywords
ammonia
hydrogen
nitrogen
flue gas
gas denitration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5024257A
Other languages
Japanese (ja)
Other versions
JP2992666B2 (en
Inventor
Kiichi Nagaya
喜一 長屋
Chikashi Inasumi
近 稲住
Hitoshi Ojiro
仁志 尾白
Rikio Shinohara
力男 篠原
Yoshio Fujimoto
良男 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26361754&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH06114235(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP5024257A priority Critical patent/JP2992666B2/en
Publication of JPH06114235A publication Critical patent/JPH06114235A/en
Application granted granted Critical
Publication of JP2992666B2 publication Critical patent/JP2992666B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To solve problems caused by transport and storage of ammonia in large quantities, to perform flue gas denitrification profitably in cost and to sharply save energy when removing by reduction nitrogen oxide discharged from a fixed generation source by synthesizing ammonia on-site and using it as a reducing agent. CONSTITUTION:Nitrogen obtained by air separation, such as PSA and hydrogen obtained by water electrolysis are reacted under a pressure of <10 atmospheres and at a temperature of 200-400 deg.C to synthesize ammonia. Hydrogen is removed from the synthesized mixture by a membrane removal method of low energy, etc., and the remaining mixed gas of ammonia and nitrogen is used for flue gas denitrification and the separated hydrogen is recirculated through an ammonia synthesis process. And when the nitrogen oxide discharged from a fixed generation source is removed by reduction, ammonia is thus synthesized on-site and used as a reducing agent.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、事業用火力発電所、
コージェネ発電装置、ゴミ焼却炉などの固定発生源から
放出される大量の窒素酸化物(NOx)を除去する排煙
脱硝法に関し、より詳細には、アンモニアを還元剤とし
て用いる接触還元排煙脱硝法に関する。
This invention relates to a commercial thermal power plant,
TECHNICAL FIELD The present invention relates to a flue gas denitration method for removing a large amount of nitrogen oxides (NOx) emitted from a fixed generation source such as a cogeneration power generator and a refuse incinerator, and more specifically, a catalytic reduction flue gas denitration method using ammonia as a reducing agent. Regarding

【0002】[0002]

【従来の技術】上記のような固定発生源から放出される
NOxを除去する排煙脱硝法においては、還元剤アンモ
ニアとして、コストが安いことを第一の理由に、液体ア
ンモニア(ボンベ入り)あるいはアンモニア水(25
%)が使用されている。
2. Description of the Related Art In the flue gas denitration method for removing NOx released from a fixed source as described above, liquid ammonia (with a cylinder) or Ammonia water (25
%) Is used.

【0003】[0003]

【発明が解決しようとする課題】しかし、排煙脱硝法で
は、毒性が強く(許容濃度:50ppm )、しかも臭気の
強いアンモニアガスを大量に輸送、貯蔵する必要があ
る。そのため、これが万一漏れたときには危険性が大き
いことから、特に都市部においては使用が困難になりつ
つある。また、液体アンモニアあるいはアンモニア水
は、コストが高い(130〜150円/kg)という問
題もある。
However, in the flue gas denitration method, it is necessary to transport and store a large amount of ammonia gas, which is highly toxic (allowable concentration: 50 ppm) and has a strong odor. For this reason, it is becoming difficult to use, especially in urban areas because it is highly dangerous if it should leak. Further, liquid ammonia or ammonia water has a problem that the cost is high (130 to 150 yen / kg).

【0004】この発明の目的は、アンモニアの大量輸
送、貯蔵に起因する上記のような問題を克服し、しかも
コスト的に有利に排煙脱硝をなし得る方法を提供するこ
とにある。
An object of the present invention is to provide a method capable of overcoming the above-mentioned problems caused by the mass transportation and storage of ammonia and at the same time effecting flue gas denitration in a cost effective manner.

【0005】[0005]

【課題を解決するための手段】この発明による排煙脱硝
法は、固定発生源から放出される窒素酸化物を還元除去
するに当たり、オンサイトすなわち現場でアンモニアを
合成しこれを還元剤として使用することを特徴とするも
のである。
In the flue gas denitration method according to the present invention, in reducing and removing nitrogen oxides emitted from a fixed source, ammonia is synthesized on-site, that is, in situ, and used as a reducing agent. It is characterized by that.

【0006】この発明の好適な実施態様においては、P
SAなどの空気分離で得た窒素と水の電解で得た水素と
を10気圧未満の圧力、200〜400℃の温度で反応
させてアンモニアを合成し、合成混合物から水素を低エ
ネルギーの膜分離法などにより除去し、残ったアンモニ
アと窒素の混合ガスを排煙脱硝に使用し、分離した水素
をアンモニア合成工程に再循環する。
In a preferred embodiment of the present invention, P
Nitrogen obtained by air separation such as SA and hydrogen obtained by electrolysis of water are reacted at a pressure of less than 10 atm and a temperature of 200 to 400 ° C. to synthesize ammonia, and hydrogen is separated from the synthesis mixture by low energy membrane separation. The remaining mixed gas of ammonia and nitrogen is used for flue gas denitration, and the separated hydrogen is recycled to the ammonia synthesis step.

【0007】この発明のもう1つの好適な実施態様にお
いては、PSAなどの空気分離で得た窒素とメタノール
の改質反応で得た水素とを10気圧未満の圧力、200
〜400℃の温度で反応させてアンモニアを合成し、合
成混合物から水素を除去し、残ったアンモニアと窒素の
混合ガスを排煙脱硝に使用し、分離した水素をアンモニ
ア合成工程に再循環する。
In another preferred embodiment of the present invention, nitrogen obtained by air separation such as PSA and hydrogen obtained by the reforming reaction of methanol are mixed at a pressure of less than 10 atm.
The reaction is carried out at a temperature of ˜400 ° C. to synthesize ammonia, hydrogen is removed from the synthesis mixture, the remaining mixed gas of ammonia and nitrogen is used for flue gas denitration, and the separated hydrogen is recycled to the ammonia synthesis process.

【0008】なお、メタノールの改質反応で得た水素
は、不純物として炭素ガスなどを含むので、PSA、膜
分離などの方法により精製される。
Since hydrogen obtained by the reforming reaction of methanol contains carbon gas and the like as impurities, it is purified by a method such as PSA or membrane separation.

【0009】このアンモニア合成装置はオンサイトで
水、電気というクリーンなエネルギーを使用するもので
ある。
This ammonia synthesizer uses on-site clean energy such as water and electricity.

【0010】また、アンモニア合成に用いる窒素と水素
の比率は、限定はされないが、N2/H2 ≦1/3とす
るのが好ましい。
The ratio of nitrogen to hydrogen used for ammonia synthesis is not limited, but it is preferable that N 2 / H 2 ≦ 1/3.

【0011】[0011]

【実施例】つぎにこの発明の実施例を幾つか挙げる。EXAMPLES Next, some examples of the present invention will be described.

【0012】実施例1 図1のフローシートにおいて、PSAで得た窒素を30
0℃に昇温し(1.9気圧)、水の電解で得た水素を同
じく300℃に昇温し(1.9気圧)、該窒素と水素と
を9気圧に圧縮し、これらをN2 /H2 =1/3で30
0℃で反応させてアンモニアを合成した。合成混合物か
ら水素を膜分離法により除去し、残ったアンモニアと窒
素の混合ガスを脱硝装置に送って排煙脱硝に使用した。
また、分離した水素をアンモニア合成工程に再循環し
た。
Example 1 In the flow sheet of FIG.
The temperature was raised to 0 ° C. (1.9 atm), the hydrogen obtained by electrolysis of water was similarly raised to 300 ° C. (1.9 atm), the nitrogen and hydrogen were compressed to 9 atm, and these were N 2 2 / H 2 = 1/3, 30
Ammonia was synthesized by reacting at 0 ° C. Hydrogen was removed from the synthesis mixture by a membrane separation method, and the remaining mixed gas of ammonia and nitrogen was sent to a denitration device and used for flue gas denitration.
Also, the separated hydrogen was recycled to the ammonia synthesis step.

【0013】実施例2 窒素と水素とをN2 /H2 =1/12で反応させた点を
除いて、実施例1と同じ操作を行った。
Example 2 The same operation as in Example 1 was carried out except that nitrogen and hydrogen were reacted at N 2 / H 2 = 1/12.

【0014】実施例3 窒素と水素とをN2 /H2 =1/48で反応させた点を
除いて、実施例1と同じ操作を行った。
Example 3 The same operation as in Example 1 was carried out except that nitrogen and hydrogen were reacted at N 2 / H 2 = 1/48.

【0015】実施例1〜3のエネルギー比較を表1に示
す。
Table 1 shows the energy comparison of Examples 1 to 3.

【0016】[0016]

【表1】 また、窒素と水素との比N2 /H2 を変化させ、この比
とエネルギーの関係を図2のグラフに示す。
[Table 1] Further, the ratio N 2 / H 2 between nitrogen and hydrogen was changed, and the relationship between this ratio and energy is shown in the graph of FIG.

【0017】実施例4 図3のフローシートにおいて、PSAまたは膜分離で得
た窒素を300℃に昇温し(1.9気圧)、メタノール
の改質反応で得た水素(不純物として炭素ガスなどを含
む)をPSAまたは膜分離で処理して不純物を除き、精
製水素を上記と同じく300℃に昇温し(1.9気
圧)、該窒素と水素とを9気圧に圧縮し、これらをN2
/H2 =1/3で300℃で反応させてアンモニアを合
成した。合成混合物から水素を膜分離法により除去し、
残ったアンモニアと窒素の混合ガスを脱硝装置に送って
排煙脱硝に使用した。また、分離した水素をアンモニア
合成工程に再循環した。
Example 4 In the flow sheet of FIG. 3, PSA or nitrogen obtained by membrane separation was heated to 300 ° C. (1.9 atm) and hydrogen obtained by a reforming reaction of methanol (such as carbon gas as an impurity). Are treated with PSA or membrane separation to remove impurities, the purified hydrogen is heated to 300 ° C. (1.9 atm) in the same manner as above, and the nitrogen and hydrogen are compressed to 9 atm. 2
/ H 2 = 1/3 was reacted at 300 ° C. to synthesize ammonia. Removing hydrogen from the synthesis mixture by a membrane separation method,
The remaining mixed gas of ammonia and nitrogen was sent to a denitration device and used for flue gas denitration. Also, the separated hydrogen was recycled to the ammonia synthesis step.

【0018】実施例5 窒素と水素とをN2 /H2 =1/12で反応させた点を
除いて、実施例4と同じ操作を行った。
Example 5 The same operation as in Example 4 was performed, except that nitrogen and hydrogen were reacted at N 2 / H 2 = 1/12.

【0019】実施例6 窒素と水素とをN2 /H2 =1/48で反応させた点を
除いて、実施例4と同じ操作を行った。
Example 6 The same operation as in Example 4 was carried out except that nitrogen and hydrogen were reacted at N 2 / H 2 = 1/48.

【0020】実施例4〜6のエネルギー比較を表2に示
す。
Table 2 shows the energy comparison of Examples 4 to 6.

【0021】[0021]

【表2】 また、窒素と水素との比N2 /H2 を変化させ、この比
とエネルギーの関係を図4のグラフに示す。
[Table 2] Further, the ratio N 2 / H 2 of nitrogen to hydrogen was changed, and the relationship between this ratio and energy is shown in the graph of FIG.

【0022】[0022]

【発明の効果】この発明によれば、固定発生源から放出
される窒素酸化物を還元除去するに当たり、オンサイト
でアンモニアを合成しこれを還元剤として使用するの
で、この方法はアンモニアの大量輸送、貯蔵を必要とす
る従来法と比較して極めて安全である。
According to the present invention, in reducing and removing nitrogen oxides released from a fixed source, ammonia is synthesized on-site and used as a reducing agent. Therefore, this method is used for mass transport of ammonia. It is extremely safe compared with the conventional method that requires storage.

【0023】また、PSAなどの空気分離で得た窒素と
水の電解またはメタノールの改質反応で得た水素とを反
応させてアンモニアを合成するので、脱硝をコスト的に
極めて有利に実施できる。
Further, since nitrogen is obtained by air separation such as PSA and hydrogen obtained by electrolysis of water or reforming reaction of methanol to synthesize ammonia, denitration can be carried out extremely advantageously in terms of cost.

【0024】また、アンモニア合成反応後の未反応水素
を混合ガスから分離して、残りの窒素混入アンモニアガ
スを還元剤に使用するので、純アンモニアを用いる方法
と比較して大幅な省エネルギー化を図ることができる。
Further, since unreacted hydrogen after the ammonia synthesis reaction is separated from the mixed gas and the remaining nitrogen-containing ammonia gas is used as the reducing agent, a large energy saving is achieved as compared with the method using pure ammonia. be able to.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例1を示すフローシートであ
る。
FIG. 1 is a flow sheet showing a first embodiment of the present invention.

【図2】N2 /H2 比とエネルギーの関係を示すグラフ
である。
FIG. 2 is a graph showing the relationship between N 2 / H 2 ratio and energy.

【図3】この発明の実施例4を示すフローシートであ
る。
FIG. 3 is a flow sheet showing Example 4 of the present invention.

【図4】N2 /H2 比とエネルギーの関係を示すグラフ
である。
FIG. 4 is a graph showing the relationship between N 2 / H 2 ratio and energy.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 篠原 力男 大阪市此花区西九条5丁目3番28号 日立 造船株式会社内 (72)発明者 藤本 良男 大阪市此花区西九条5丁目3番28号 日立 造船株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Rikio Shinohara 5-3-8 Nishi-Kujo, Konohana-ku, Osaka City Hitachi Shipbuilding Co., Ltd. (72) Yoshio Fujimoto 5-28-3, Nishikujo, Konohana-ku, Osaka Issue Hitachi Shipbuilding Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 固定発生源から放出される窒素酸化物を
還元除去するに当たり、オンサイトでアンモニアを合成
しこれを還元剤として使用することを特徴とする排煙脱
硝法。
1. A flue gas denitration method characterized by synthesizing ammonia on-site and using this as a reducing agent in reducing and removing nitrogen oxides released from a fixed generation source.
【請求項2】 空気分離で得た窒素と水の電解で得た水
素とを10気圧未満の圧力、200〜400℃の温度で
反応させてアンモニアを合成し、合成混合物から水素を
除去し、残ったアンモニアと窒素の混合ガスを排煙脱硝
に使用し、分離した水素をアンモニア合成工程に再循環
することを特徴とする請求項1記載の排煙脱硝法。
2. Nitrogen obtained by air separation and hydrogen obtained by electrolysis of water are reacted at a pressure of less than 10 atm and a temperature of 200 to 400 ° C. to synthesize ammonia, and hydrogen is removed from the synthesis mixture, 2. The flue gas denitration method according to claim 1, wherein the residual mixed gas of ammonia and nitrogen is used for flue gas denitration, and the separated hydrogen is recycled to the ammonia synthesis step.
【請求項3】 空気分離で得た窒素とメタノールの改質
反応で得た水素とを10気圧未満の圧力、200〜40
0℃の温度で反応させてアンモニアを合成し、合成混合
物から水素を除去し、残ったアンモニアと窒素の混合ガ
スを排煙脱硝に使用し、分離した水素をアンモニア合成
工程に再循環することを特徴とする請求項1記載の排煙
脱硝法。
3. Nitrogen obtained by air separation and hydrogen obtained by a reforming reaction of methanol are pressurized to a pressure of less than 10 atm and a pressure of 200 to 40.
The reaction is carried out at a temperature of 0 ° C. to synthesize ammonia, hydrogen is removed from the synthesis mixture, the remaining mixed gas of ammonia and nitrogen is used for flue gas denitration, and the separated hydrogen is recycled to the ammonia synthesis process. The flue gas denitration method according to claim 1, which is characterized in that.
【請求項4】 アンモニア合成に用いる窒素と水素の比
率をN2 /H2 ≦1/3とすることを特徴とする請求項
1〜3のうち1記載の排煙脱硝法。
4. The flue gas denitration method according to claim 1, wherein the ratio of nitrogen and hydrogen used for ammonia synthesis is N 2 / H 2 ≦ 1/3.
JP5024257A 1992-08-19 1993-02-12 Flue gas denitration using on-site ammonia Expired - Lifetime JP2992666B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5024257A JP2992666B2 (en) 1992-08-19 1993-02-12 Flue gas denitration using on-site ammonia

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP22043592 1992-08-19
JP4-220435 1992-08-19
JP5024257A JP2992666B2 (en) 1992-08-19 1993-02-12 Flue gas denitration using on-site ammonia

Publications (2)

Publication Number Publication Date
JPH06114235A true JPH06114235A (en) 1994-04-26
JP2992666B2 JP2992666B2 (en) 1999-12-20

Family

ID=26361754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5024257A Expired - Lifetime JP2992666B2 (en) 1992-08-19 1993-02-12 Flue gas denitration using on-site ammonia

Country Status (1)

Country Link
JP (1) JP2992666B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004099076A2 (en) * 2003-05-05 2004-11-18 Eaton Corporation Methods and apparatus for small-scale synthesis of ammonia
WO2007012908A1 (en) * 2004-05-05 2007-02-01 Eaton Corporation Adsorption based ammonia storage and regeneration system
JP2010500362A (en) * 2006-08-10 2010-01-07 ユニバーシティ オブ サザン カリフォルニア Process for producing methanol, dimethyl ether, synthetic hydrocarbons and their products from carbon dioxide and water (steam) in the air as the only raw material
EP2589426A1 (en) * 2011-11-02 2013-05-08 Ammonia Casale S.A. Method for removing nitrogen oxides from combustion fumes with on-site generation of ammonia
WO2016133133A1 (en) * 2015-02-17 2016-08-25 味の素株式会社 Production system and production method for nitrogen-containing products and products selected from fermented/cultured products
JP2017077547A (en) * 2015-10-22 2017-04-27 株式会社タクマ Denitration method in incineration facility and system thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110479255B (en) * 2019-09-17 2020-09-01 山东大学 Rhodium catalyst for nitrogen reduction synthesis of ammonia and preparation method and application thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004099076A2 (en) * 2003-05-05 2004-11-18 Eaton Corporation Methods and apparatus for small-scale synthesis of ammonia
WO2004099076A3 (en) * 2003-05-05 2005-05-12 Eaton Corp Methods and apparatus for small-scale synthesis of ammonia
WO2007012908A1 (en) * 2004-05-05 2007-02-01 Eaton Corporation Adsorption based ammonia storage and regeneration system
JP2010500362A (en) * 2006-08-10 2010-01-07 ユニバーシティ オブ サザン カリフォルニア Process for producing methanol, dimethyl ether, synthetic hydrocarbons and their products from carbon dioxide and water (steam) in the air as the only raw material
EP2589426A1 (en) * 2011-11-02 2013-05-08 Ammonia Casale S.A. Method for removing nitrogen oxides from combustion fumes with on-site generation of ammonia
WO2016133133A1 (en) * 2015-02-17 2016-08-25 味の素株式会社 Production system and production method for nitrogen-containing products and products selected from fermented/cultured products
CN107406266A (en) * 2015-02-17 2017-11-28 味之素株式会社 Production system and production method for the product selected from nitrogenous product and fermented and culture product
US10941427B2 (en) 2015-02-17 2021-03-09 Ajinomoto Co., Inc. Production system and method of production for product selected from nitrogen-containing product and fermented and cultured product
JP2017077547A (en) * 2015-10-22 2017-04-27 株式会社タクマ Denitration method in incineration facility and system thereof

Also Published As

Publication number Publication date
JP2992666B2 (en) 1999-12-20

Similar Documents

Publication Publication Date Title
JP4705752B2 (en) Energy recovery from ammonia from waste treatment
JP2001509877A (en) Power and / or heat generation process with mixed conducting membrane reactor
CA2575537C (en) Process for urea production from ammonia and carbon dioxide
US6845619B2 (en) Integrated system and process for effluent abatement and energy generation
AU7701291A (en) A process for the dentrification of waste gases and recovering hno3
CN85101024B (en) The production method of ammonia synthesis gas and device
JP2992666B2 (en) Flue gas denitration using on-site ammonia
CN217251528U (en) Secondary aluminum ash hydrolysis gas solid resource utilization device
JP2003267725A (en) Method of manufacturing ammonia, its apparatus and flue gas denitrification using the manufactured ammonia
RU2221863C2 (en) Device to produce carbon using biomass
JP3322923B2 (en) Method for producing carbon monoxide and hydrogen
JPH07169495A (en) Chemical power generating system utilizing waste fermentation gas
JP2576684B2 (en) Power generation equipment using waste
JP2000178467A (en) Carbon black-producing apparatus utilizing gas discharged from ammonia-producing process
JPH0261410B2 (en)
JP4800569B2 (en) Fuel gas production apparatus and fuel gas production method
JP2007246305A (en) Hydrogen production system
JP2647582B2 (en) How to generate electricity while producing carbon dioxide and inert gas
JPS59184468A (en) Fuel cell power generating device
JPH10231488A (en) Method for utilizing synthetic clean gas obtained from waste
JPS5818881A (en) Operation of fuel-cell generating system
KR100520101B1 (en) Synthesis clean gas
KR20000011828A (en) Apparatus and method for recycling
JPH08131775A (en) Dry treatment method for exhaust gas
JPH04240101A (en) Production of carbon dioxide in equipment for producing hydrogen from methanol

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990824