JPS59184468A - Fuel cell power generating device - Google Patents

Fuel cell power generating device

Info

Publication number
JPS59184468A
JPS59184468A JP58057019A JP5701983A JPS59184468A JP S59184468 A JPS59184468 A JP S59184468A JP 58057019 A JP58057019 A JP 58057019A JP 5701983 A JP5701983 A JP 5701983A JP S59184468 A JPS59184468 A JP S59184468A
Authority
JP
Japan
Prior art keywords
fuel
fuel cell
main body
carbon dioxide
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58057019A
Other languages
Japanese (ja)
Inventor
Seiichi Tanabe
清一 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP58057019A priority Critical patent/JPS59184468A/en
Publication of JPS59184468A publication Critical patent/JPS59184468A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To increase utilization of fuel by removing carbon dioxide gas by introducing fuel gas exhausted from a fuel cell main body to a carbon dioxide remover and by supplying it again to the fuel body main body as fuel. CONSTITUTION:A fuel cell power generating device consists of a fuel cell main body 101, an electric power converter 102 in which electric energy generated in the fuel cell main body 101 is converted in electric power, and a fuel reformer 103 which supplies hydrogen gas obtained from fossil fuel to the fuel cell main body. Gas supplied from a fuel tank 110 is reformed in a reformer 108 and transferred to a CO modifier 109 through a piping line 112 and ratio of CO is reduced there. Then the gas is supplied to a hydrogen electrode 104 of the fuel cell main body 101 through a fuel supply piping line 113. A carbon dioxide remover 116 is installed in the fuel reformer 103. Exhaust gas after reaction in the hydrogen electrode 104 is introduced to the carbon dioxide remover 116 through an exhaust gas flow piping line 117 and CO2 is removed there to use it as fuel repeatedly. Thereby, utilization of fuel is increased.

Description

【発明の詳細な説明】 本発明は、例えば燃料としての水素ガスおよび酸化剤と
しての空気を導入してその電気化学反応によシミ気エネ
ルギを発生させ電力を得る燃料電池発電装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fuel cell power generation device that generates electric power by introducing, for example, hydrogen gas as a fuel and air as an oxidizing agent to generate stain energy through an electrochemical reaction.

第1図を参照して従来例を説明する。第1図は燃料電池
発電装置の概略構成を示す図である。
A conventional example will be explained with reference to FIG. FIG. 1 is a diagram showing a schematic configuration of a fuel cell power generation device.

図中符号ムは燃料電池本体を示し、燃料電池発電装置は
この燃料電池本体りと、燃料電池本体天然ガヌ、プロi
Zンガス、ナフサ、重油9石炭等の化石燃料から得られ
る水素ガ゛スを供給する燃料改質装置1等から構成され
ている。上記燃料電池本体りには水素極4および酸素極
5が設けられておシ、この酸素極5には酸化剤としての
空気が酸化剤流入管6を介して供給され、その排ガスは
酸化剤流出管7を介して流出する構成である。一方前記
燃料改質装置互には改質部8およびCO変性部9が設け
られている。そ−して別に設けられた燃料タンクIO内
に貯蔵されている化石燃料のガスが配管11を介して上
記改質部8に供給される。供給されたガスは改質部8で
改質され配管12f介して前記CO変性部9に送られ、
ここでCOの割合を低減させて燃料供給配管13f介し
て前記燃料電池本体上の水素極4に供給される構成であ
る。上記改質部8における改質反応は高温下(例えば7
00℃〜900℃)での吸熱反応であシ、その為前記燃
料タンクlO内に貯蔵されている化石燃料の一部と、水
素極4で反応した後の排ガスをそれぞれ配管14および
15f弁して導入し、バーナ(図示せず)で燃焼させて
、上記高温を得ている。なお図中符号16は電力変換装
置でに設けられたインバータを示す。
The symbol M in the figure indicates the fuel cell main body, and the fuel cell power generation device consists of this fuel cell main body, the fuel cell main body natural gas, and the fuel cell main body.
The fuel reformer 1 is configured to supply hydrogen gas obtained from fossil fuels such as Z gas, naphtha, heavy oil, and coal. The fuel cell main body is provided with a hydrogen electrode 4 and an oxygen electrode 5.Air as an oxidizer is supplied to the oxygen electrode 5 via an oxidizer inlet pipe 6, and the exhaust gas flows out from the oxidizer. It is configured to flow out through a pipe 7. On the other hand, a reforming section 8 and a CO modification section 9 are provided between the fuel reformers. Fossil fuel gas stored in a separately provided fuel tank IO is then supplied to the reforming section 8 via a pipe 11. The supplied gas is reformed in the reforming section 8 and sent to the CO modification section 9 via the piping 12f,
Here, the proportion of CO is reduced and the CO is supplied to the hydrogen electrode 4 on the fuel cell main body via the fuel supply pipe 13f. The reforming reaction in the reforming section 8 is carried out at a high temperature (e.g.
This is an endothermic reaction at a temperature of 00°C to 900°C). Therefore, a part of the fossil fuel stored in the fuel tank 1O and the exhaust gas after reacting at the hydrogen electrode 4 are connected to pipes 14 and 15f, respectively, through valves. The above-mentioned high temperature is obtained by introducing the gas into the gas and burning it in a burner (not shown). Note that the reference numeral 16 in the figure indicates an inverter provided in the power converter.

以上の構成によると、燃料゛電池本体ムに供給される水
素ガスおよび空気(反応するのはこの内の酸素)は、有
効成分の分圧の関係から笑際に反応に供するのは約50
〜90%であシ、残シーは反応することなく燃料電池本
体り外に流出し、前述したように例えば水素は改質部8
での燃焼用として使用されている。このように燃料電池
本体上に供給される水素ガスの利用率は高いものとはい
えず、これを燃焼熱で評価するとその効率は50〜80
%であり、発電用?イラ効率上好ましいことではない。
According to the above configuration, the hydrogen gas and air (of which oxygen is reacted) supplied to the fuel cell main body are approximately 50% reacted due to the partial pressure of the active ingredient.
~90%, the remaining seawater flows out of the fuel cell body without reacting, and as mentioned above, for example, hydrogen is
It is used for combustion in In this way, the utilization rate of hydrogen gas supplied onto the fuel cell main body cannot be said to be high, and when evaluated in terms of combustion heat, the efficiency is 50 to 80.
% and for power generation? This is not a good thing in terms of efficiency.

本発明は以上の点にもとづいてなされたものでその目的
とするところは、燃料の利用率を高めることによシ、燃
料電池本体はもちろんのこと発電プラント全体の効率を
高めることが可能な燃料電池発電装置を提供することに
ある。
The present invention has been made based on the above-mentioned points, and its purpose is to provide fuel that can increase the efficiency of not only the fuel cell itself but also the entire power generation plant by increasing the fuel utilization rate. The object of the present invention is to provide a battery power generation device.

すなわち本発明による燃料電池発電装置は、燃料および
酸化剤を導入してその電気化学反応によシミ気エネルギ
を発生する燃料電池本体と、この燃料電池本体から発生
した電気エネルギを電力に変換する電力変換装置と、上
記燃料電池本体に燃料を供給する燃料改質装置とを備え
た燃料電池発電装置において、上記燃料改質装置に炭酸
ガス除去装置を設け、燃料電池本体からの燃料排ガスを
上記炭酸ガス除去装置に導入して炭酸ガスを除去し、再
度燃料として燃料電池本体に供給する構成である。
That is, the fuel cell power generation device according to the present invention includes a fuel cell main body that introduces fuel and an oxidizer and generates stain energy through an electrochemical reaction thereof, and a power generator that converts the electrical energy generated from the fuel cell main body into electric power. In a fuel cell power generation device including a conversion device and a fuel reformer that supplies fuel to the fuel cell main body, the fuel reformer is provided with a carbon dioxide removal device, and the fuel exhaust gas from the fuel cell main body is converted into the carbon dioxide. The fuel is introduced into a gas removal device to remove carbon dioxide gas, and is again supplied to the fuel cell body as fuel.

したがって従来例えば改質部の燃焼に使用していた燃料
排ガスを炭酸−f−ス除去装置を通すことによシ炭酸ガ
スを除去して再度燃料として使用できるので燃料の利用
率が向上し、燃料電池本体はもとよシ発電プラント全体
の効率を高めることができる。
Therefore, by passing the fuel exhaust gas, which was conventionally used for combustion in the reforming section, through a carbon dioxide removal device, the carbon dioxide gas can be removed and the fuel can be used again as fuel, improving the fuel utilization rate. It can improve the efficiency of not only the battery itself but also the entire power plant.

以下第2図を参照して本発明の一実施例を説明する。第
2図は本実施例による燃料電池発電装置の概略構成を示
す図である。図中符号101は燃料電池本体を示し、燃
料電池発電装置はこの燃料電池本体101と、燃料電池
本体Inユで発生した電気エネルギを電力に変換する電
力変換装置102および燃料電池本体に燃料例えば天然
ガス、グロノ七ンガス、ナフサ、重油1石炭等の化石燃
料から得られる水素ガスを供給する燃料改質装置103
等から構成されている。
An embodiment of the present invention will be described below with reference to FIG. FIG. 2 is a diagram showing a schematic configuration of the fuel cell power generation device according to this embodiment. Reference numeral 101 in the figure indicates a fuel cell main body, and the fuel cell power generation device includes this fuel cell main body 101, a power conversion device 102 that converts electrical energy generated in the fuel cell main body into electric power, and a fuel cell main body that uses a fuel such as natural gas. A fuel reformer 103 that supplies hydrogen gas obtained from fossil fuels such as gas, gas, naphtha, heavy oil, and coal.
It is composed of etc.

上記燃料電池本体101には水素極104および酸素極
105が設けられてお9、この酸素極tOSには酸化剤
として−の空気が酸化剤流入管106f介して供給され
、その排ガスは酸化剤流出管107を介して流出する構
成である。一方前記燃料改質装置1 ’D Jには改質
部108およびCO変性部109が設けられている。そ
して別に設けられた燃料タンク110内に貯蔵されてい
る化石燃料のガス配管111を介して上記改質部10B
に供給される。供給されたガスは改質部10Bで改質さ
れ配管Z12f介して前記CO変性部ノ09に送られ、
ここでCOの割合を低減させて燃料供給配管J J 3
f介して前記燃料電池本体101の水素極104に供給
される構成である。上記改質部10&における改質反応
は高温下(例えは700℃〜900℃)での吸熱反応で
オ)、その為前記燃料タンク110内に貯蔵されている
化石燃料の一部を配管114を介して導入し、バーナ(
図示せず)で燃焼させて、上記高温を得ている。なお図
中符号11&は電力変換装置102に設けられたインバ
ータを示す。
The fuel cell main body 101 is provided with a hydrogen electrode 104 and an oxygen electrode 105. Air as an oxidizing agent is supplied to the oxygen electrode tOS through an oxidizing agent inflow pipe 106f, and the exhaust gas flows out from the oxidizing agent. It is configured to flow out through a pipe 107. On the other hand, the fuel reformer 1'DJ is provided with a reforming section 108 and a CO modification section 109. The reforming unit 10B is then connected to the reforming unit 10B via a fossil fuel gas pipe 111 stored in a separately provided fuel tank 110.
supplied to The supplied gas is reformed in the reforming section 10B and sent to the CO modification section No. 09 via the pipe Z12f,
Here, the proportion of CO is reduced and the fuel supply pipe J J 3
This configuration is such that the hydrogen is supplied to the hydrogen electrode 104 of the fuel cell main body 101 through the fuel cell main body 101. The reforming reaction in the reforming section 10& is an endothermic reaction at a high temperature (for example, 700°C to 900°C), so a part of the fossil fuel stored in the fuel tank 110 is transferred to the pipe 114. Introduced through the burner (
(not shown) to obtain the above-mentioned high temperature. Note that the reference numeral 11& in the figure indicates an inverter provided in the power conversion device 102.

上記燃料改質装置103には炭酸ガス除去装置116が
設けられており、この炭酸ガス除去装置116には前記
水素極104にて反応した後の排ガスが排ガス流出管−
117を介して導入される。導入された排ガスは炭酸ガ
ス除去装置116にて二酸化炭素(CO2)を除去され
前記燃料供給配管113f介して再度燃料電池本体10
1の水素極104に供給される構成である。
The fuel reformer 103 is provided with a carbon dioxide removal device 116, and the exhaust gas after reacting at the hydrogen electrode 104 is passed through the exhaust gas outlet pipe to the carbon dioxide removal device 116.
117. The introduced exhaust gas has carbon dioxide (CO2) removed by the carbon dioxide removal device 116, and is then returned to the fuel cell main body 10 via the fuel supply pipe 113f.
This is a configuration in which the hydrogen is supplied to the hydrogen electrode 104 of No. 1.

すなわち従来改質部10Bの燃焼用として使用していた
水素極104からの排ガスを、炭酸ガス除去装置116
によjl) CO2k除去し、て再度燃料として使用し
、燃料の利用率を高めようとする構成である。上記炭酸
ガス除去装置116における炭酸ガス除去方法としては
、次のような方法がある。
That is, the exhaust gas from the hydrogen electrode 104, which was conventionally used for combustion in the reforming section 10B, is transferred to the carbon dioxide removal device 116.
This is a configuration that attempts to increase the fuel utilization rate by removing CO2k and reusing it as fuel. As a method for removing carbon dioxide gas in the carbon dioxide removal device 116, there are the following methods.

■:水、メタノールあるいはn−メチルピロリドンに物
理的に吸収させる方法。
(2): Physical absorption method in water, methanol or n-methylpyrrolidone.

■ニジインプロパノールアミン+スルフオラン溶液に物
理的および化学的に吸収させる方法。
■Method of physically and chemically absorbing the diimpropanolamine + sulforane solution.

”11:1〜6%77%=7’水、3〜1゜%NaOH
水溶液、モノエタノールアミン、ジェタノールアミン、
アルカノールアミン水溶液、ポリエチレングリコールジ
メチルエーテル、約30%に2CO3+ 2〜8係アミ
ン溶液、約30 % K2CO3+数チアルカノールア
ミンはう酸塩、あるいは約30チに2CO3+約150
11/11 AS203溶液に化学的に吸収させる方法
"11: 1-6% 77% = 7' water, 3-1°% NaOH
Aqueous solution, monoethanolamine, jetanolamine,
Alkanolamine aqueous solution, polyethylene glycol dimethyl ether, about 30% 2CO3 + 2-8 amine solution, about 30% K2CO3 + several thialkanolamine borate, or about 30% 2CO3 + about 150%
11/11 Method of chemically absorbing into AS203 solution.

そこでこれらの内熱炭酸力’) (K2CO3)法によ
る炭酸ガス除去システムの詳細を第3図を参照して説明
する。第3図は熱炭酸力!J (K2CO3)による炭
W!、ガス除去装置116の概略構成を示す図である。
Therefore, the details of the carbon dioxide removal system using the internal heat carbonation force') (K2CO3) method will be explained with reference to FIG. Figure 3 shows thermal carbonic power! Charcoal W by J (K2CO3)! , is a diagram showing a schematic configuration of a gas removal device 116.

図中符号120は吸収塔を示し、また121は再生塔を
示す。上記吸収塔120の直 塔W1.5xzohには前記排ガス流出管rtvおよび
昇圧コンプレッサー22f介して排ガスが約7 kgy
cnI2gに昇圧されて送シ込まれる。一方吸収塔1−
20の塔頂部120Bにはに2CO,供給管123ヲ介
シテ約30%ノに2C03fa、カ供給すレ吸収塔12
0内を流下する。上記排ガスはこの流下するに2 Co
 5溶液と反応し、CO2が除去される。すなわち に2CO5+ CO2+H20ヰ2KHCO3となる。
In the figure, numeral 120 indicates an absorption tower, and 121 indicates a regeneration tower. Approximately 7 kg of exhaust gas is sent to the straight tower W1.5xzoh of the absorption tower 120 through the exhaust gas outlet pipe rtv and the booster compressor 22f.
The pressure is increased to cnI2g and pumped. On the other hand, absorption tower 1-
2CO is supplied to the top part 120B of the column 20, and 2C03fa is supplied to about 30% of the absorption column 12 through the supply pipe 123.
Flows down within 0. As the above exhaust gas flows down, 2 Co
5 solution and CO2 is removed. That is, 2CO5+ CO2+H20ヰ2KHCO3.

そしてCO2を除去された排ガスは水分分離器124F
cて水分を除去され前記燃料供給配管113内に流入し
、再度燃料ガスとして使用される。一方cozを吸収し
た溶液は移送ポンプ125によシ前記再生塔121の塔
頂部12 JAK移送され再生塔121内を流下する。
The exhaust gas from which CO2 has been removed is sent to a moisture separator 124F.
After moisture is removed, the gas flows into the fuel supply pipe 113 and is used again as fuel gas. On the other hand, the solution that has absorbed coz is transferred to the top 12 of the regeneration tower 121 by a transfer pump 125 and flows down inside the regeneration tower 121.

その際蒸気供給管1261に介してリボイラ121Bに
供給された1 0 kgi/cm2.1500 kli
7hrの蒸気の熱によシ再生されに2co3となシ、K
2CO3供給ボンf127および前記に2CO5供給管
123を介して再度吸収塔120の塔頂部120Bに供
給される。そしてCO2は再生塔121の塔頂部121
によシ排気管12Bを介して排気される。
At that time, 10 kgi/cm2.1500 kli was supplied to the reboiler 121B via the steam supply pipe 1261.
It is regenerated by the heat of steam for 7 hours and becomes 2 CO3, K.
It is again supplied to the top portion 120B of the absorption tower 120 via the 2CO3 supply bomb f127 and the 2CO5 supply pipe 123 mentioned above. And CO2 is removed from the top 121 of the regeneration tower 121.
The air is then exhausted through the exhaust pipe 12B.

なお再生塔121内にて凝縮した蒸気の一部は熱交換器
129にて供給蒸気の一部と熱交換して再度リディラ1
21Bに供給される。
Note that a part of the steam condensed in the regeneration tower 121 is exchanged with a part of the supplied steam in the heat exchanger 129, and is then transferred to the ridilla 1 again.
21B.

以上の構成によると、例え゛ば成分がそれぞれN2が3
0係+CO2が60%、 N2が5%、N20が5%で
ある排ガスを温度が150℃、圧力が3kIl/crn
2(ゲージ圧)流量1000 Nm3/hで供給すると
、N2が80%+ CO2が7%、 N2が13%の精
製ガスを温度50℃、圧力6 ksl/J (ゲージ圧
)。
According to the above configuration, for example, if each component has N2 of 3
Exhaust gas containing 0 coefficient + 60% CO2, 5% N2, and 5% N20 at a temperature of 150°C and a pressure of 3 kIl/crn.
2 (gauge pressure) When supplied at a flow rate of 1000 Nm3/h, purified gas containing 80% N2 + 7% CO2 and 13% N2 was produced at a temperature of 50°C and a pressure of 6 ksl/J (gauge pressure).

流量375 Nm3/bで得ることができる。そしてこ
の精製ガスを再度燃料ガスとして使用することによシ燃
料としての水素ガスの利用率は向上し、それによって燃
料電池本体101ひいては発電プラント全体の効率を高
めることができる。
A flow rate of 375 Nm3/b can be obtained. By using this purified gas again as fuel gas, the utilization rate of hydrogen gas as fuel is improved, thereby increasing the efficiency of the fuel cell main body 101 and the entire power generation plant.

そして本実施例のような第一世代(#)ん酸型)のみな
らず、第二世代(溶融塩型)、第三世代(固体電解質)
の燃料電池発電プラントに適用した場合にも著しい効果
を奏することができる。
Not only the first generation (#) phosphoric acid type as in this example, but also the second generation (molten salt type) and third generation (solid electrolyte)
Even when applied to fuel cell power generation plants, significant effects can be achieved.

以上詳述したように、本発明による燃料電池発電装置は
、燃料および酸化剤を導入してその電気化学反応によシ
ミ気エネルギを発生する燃料電池本体と、この燃料電池
本体から発生した電気エネルギを電力に変換する電力変
換装置と、上記燃料電池本体に燃料を供給する燃料改質
装置とを備えた燃料電池発電装置において、上記燃料改
質装置に炭酸ガス除去装置を設け、燃料電池水体からの
燃料排ガスを上゛記炭酸ガス除去装置 置に導入して炭
酸ガスを除去し、再度燃料として燃料電池本体に供給す
る構成である。
As described in detail above, the fuel cell power generation device according to the present invention includes a fuel cell main body that introduces fuel and an oxidizer and generates stain energy through an electrochemical reaction thereof, and an electric energy generated from the fuel cell main body. In a fuel cell power generation device comprising a power converter that converts water into electric power, and a fuel reformer that supplies fuel to the fuel cell main body, the fuel reformer is provided with a carbon dioxide removal device, and the fuel cell water body is The structure is such that the fuel exhaust gas is introduced into the above-mentioned carbon dioxide removal device to remove carbon dioxide gas, and is again supplied as fuel to the fuel cell main body.

したがって従来、例えば改質部の燃焼に使用していた燃
料排ガスを炭酸ガス除去装置を通すことによシ炭酸ガス
を除去して再度燃料として使用できるので燃料の利用率
が向上し、燃料電池本体はもとより発電プラント全体の
効率を高めることができる。
Therefore, conventionally, for example, the fuel exhaust gas used for combustion in the reforming section can be passed through a carbon dioxide removal device to remove carbon dioxide and be used as fuel again, improving the fuel utilization rate and improving the fuel cell main body. In addition, the efficiency of the entire power plant can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の燃料電池発電装置の概略構成図、第2図
および第3図は不発明の一実施例を示す図で、第2図は
燃料電池発電装置の概略構成図、第3図は炭酸カリ法に
よるco2除去装置の概略構成図である。 10 j ・・・燃料電池本体、102・・・電力変換
装置、103・・・燃料改質装置、l16・・・炭酸ガ
ス除去装置。
FIG. 1 is a schematic configuration diagram of a conventional fuel cell power generation device, FIGS. 2 and 3 are diagrams showing an embodiment of the invention, FIG. 2 is a schematic configuration diagram of a fuel cell power generation device, and FIG. 1 is a schematic configuration diagram of a CO2 removal device using the potassium carbonate method. DESCRIPTION OF SYMBOLS 10j...Fuel cell main body, 102...Power converter, 103...Fuel reformer, l16...Carbon dioxide removal device.

Claims (1)

【特許請求の範囲】[Claims] 燃料および酸化剤を導入してその電気化学反応によシミ
気エネルギを発生する燃料電池本体と、この燃料電池本
体から発生した電気エネルギを電力に変換する電力変換
装置と、上記燃料電池本体に燃料を供給する燃料改質装
置とを備えた燃料電池発電装置において、上記燃料改質
装置に炭酸ガス除去装置を設け、燃料電池本体からの燃
料排ガスを上記炭酸ガス除去装置に導入して炭酸ガスを
除去し、再度燃料として燃料電池本体に供給することを
特徴とする燃料電池発電装置。
A fuel cell body that introduces fuel and an oxidizer and generates stain energy through an electrochemical reaction thereof; a power conversion device that converts the electrical energy generated from the fuel cell body into electric power; In a fuel cell power generation device equipped with a fuel reformer that supplies carbon dioxide, the fuel reformer is provided with a carbon dioxide removal device, and the fuel exhaust gas from the fuel cell main body is introduced into the carbon dioxide removal device to remove carbon dioxide. A fuel cell power generation device characterized in that the fuel is removed and then supplied as fuel to the fuel cell main body again.
JP58057019A 1983-04-01 1983-04-01 Fuel cell power generating device Pending JPS59184468A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58057019A JPS59184468A (en) 1983-04-01 1983-04-01 Fuel cell power generating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58057019A JPS59184468A (en) 1983-04-01 1983-04-01 Fuel cell power generating device

Publications (1)

Publication Number Publication Date
JPS59184468A true JPS59184468A (en) 1984-10-19

Family

ID=13043718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58057019A Pending JPS59184468A (en) 1983-04-01 1983-04-01 Fuel cell power generating device

Country Status (1)

Country Link
JP (1) JPS59184468A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63211571A (en) * 1986-12-08 1988-09-02 インターナショナル フューエル セルズ コーポレーション Power generation plant equipment
JPH053045A (en) * 1991-06-24 1993-01-08 Agency Of Ind Science & Technol Flat plate solid electrolyte type fuel cell
US6686078B1 (en) 2000-09-29 2004-02-03 Plug Power Inc. Method of reformer operation to prevent fuel cell flooding
US6846584B2 (en) 2001-07-12 2005-01-25 Co2 Solution Inc. Process for generating electricity with a hydrogen fuel cell
JP2012022968A (en) * 2010-07-16 2012-02-02 Mitsubishi Heavy Ind Ltd Fuel cell power generation system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63211571A (en) * 1986-12-08 1988-09-02 インターナショナル フューエル セルズ コーポレーション Power generation plant equipment
JPH053045A (en) * 1991-06-24 1993-01-08 Agency Of Ind Science & Technol Flat plate solid electrolyte type fuel cell
US6686078B1 (en) 2000-09-29 2004-02-03 Plug Power Inc. Method of reformer operation to prevent fuel cell flooding
US6846584B2 (en) 2001-07-12 2005-01-25 Co2 Solution Inc. Process for generating electricity with a hydrogen fuel cell
JP2012022968A (en) * 2010-07-16 2012-02-02 Mitsubishi Heavy Ind Ltd Fuel cell power generation system

Similar Documents

Publication Publication Date Title
ES2963067T3 (en) Ammonia cracking
JP3673283B2 (en) Thermal and / or power generation process with mixed conducting membrane reactor
CN106025313B (en) CO before burning can be achieved2The integral coal gasification fuel cell generation of trapping
US20200123006A1 (en) Autothermal ammonia cracking process
JP2005532241A (en) No / low exhaust energy supply station
JP5280343B2 (en) Hydrogen separation type hydrogen production system with carbon dioxide separation and recovery equipment
JP2012530010A (en) Electric production apparatus and method for LNG carrier
JP5496494B2 (en) Power generation system
JPH0364866A (en) Fuel cell system
CZ20004883A3 (en) Process for producing electric power, steam and carbon dioxide from hydrocarbon starting products
CN109301283A (en) A kind of band CO2The integral coal gasification fuel cell system of trapping
JP3911540B2 (en) Fuel cell power generation system using waste gasification gas
CN106381174A (en) Poly-generation system based on pre-combustion CO2 collecting
JPH1126004A (en) Power generating system
JPH03200734A (en) Synthesis of methanol
JPS59184468A (en) Fuel cell power generating device
JPS5736784A (en) Method of effectively utilizing exhaust gas in fuel-cell power generation device, and system for that
JPH06333589A (en) Method for utilizing exhaust gas of fuel cell
JPH0487262A (en) Fuel cell power generation system
JPH02170368A (en) Power generating system of fuel battery
JP2012046395A (en) Hydrogen generator and fuel cell system
CN210403912U (en) Household PEMFC (proton exchange Membrane Fuel cell) heat and power cogeneration system based on CO2 recovery
JPH10185170A (en) Combustion apparatus
JPS59224074A (en) Treating method of fuel for full cell
JPH04108A (en) Combustion device