JP2017077547A - Denitration method in incineration facility and system thereof - Google Patents

Denitration method in incineration facility and system thereof Download PDF

Info

Publication number
JP2017077547A
JP2017077547A JP2015207913A JP2015207913A JP2017077547A JP 2017077547 A JP2017077547 A JP 2017077547A JP 2015207913 A JP2015207913 A JP 2015207913A JP 2015207913 A JP2015207913 A JP 2015207913A JP 2017077547 A JP2017077547 A JP 2017077547A
Authority
JP
Japan
Prior art keywords
denitration
ammonia
hydrogen
ash
incinerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015207913A
Other languages
Japanese (ja)
Other versions
JP6506673B2 (en
Inventor
宗治 藤川
Muneharu Fujikawa
宗治 藤川
拓也 奥村
Takuya Okumura
拓也 奥村
典生 前田
Norio Maeda
典生 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma Co Ltd
Original Assignee
Takuma Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma Co Ltd filed Critical Takuma Co Ltd
Priority to JP2015207913A priority Critical patent/JP6506673B2/en
Publication of JP2017077547A publication Critical patent/JP2017077547A/en
Application granted granted Critical
Publication of JP6506673B2 publication Critical patent/JP6506673B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Chimneys And Flues (AREA)
  • Incineration Of Waste (AREA)
  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a denitration method in an incineration facility which can use hydrogen generated from incineration ash as a valuable substance, and can greatly reduce or can dispense with a purchasing expense of a medicine such as ammonia required for a denitration treatment, and to provide a system thereof.SOLUTION: There is provided a denitration system that includes: an ash cooling device 11 having a treatment tank having a role as a water tank for storing cooling water for cooling incineration ash from an incinerator 2 and a role as a hydrogen gas generating tank for generating hydrogen by reaction of the incineration ash and the cooling water; and an ammonia synthetic device 12 for synthesizing ammonia gas from hydrogen gas generated in a treatment tank in the ash cooling device 11 and nitrogen gas purified from air, where ammonia gas synthesized by the ammonia synthetic device 12 is sprayed into the incinerator 2 to subject the ammonia gas to a denitration treatment or supplying the ammonia to a denitration catalyst 8 as a reducer to subject the ammonia to the denitration treatment.SELECTED DRAWING: Figure 1

Description

本発明は、一般廃棄物や産業廃棄物を焼却処理する焼却施設における脱硝方法およびそのシステムに関するものである。   The present invention relates to a denitration method and a system thereof in an incineration facility for incinerating general waste and industrial waste.

従来、この種の焼却施設においては、例えば、液化アンモニアガスボンベなどからアンモニアガスを焼却炉内または脱硝触媒に供給したり、尿素水を焼却炉内または脱硝触媒に供給したりして、排ガス中の窒素酸化物(NOx)を除去するようにした脱硝方法が実施されている。   Conventionally, in this type of incineration facility, for example, ammonia gas is supplied from a liquefied ammonia gas cylinder or the like to the incinerator or the denitration catalyst, or urea water is supplied to the incinerator or the denitration catalyst, A denitration method for removing nitrogen oxides (NOx) has been implemented.

一方、都市ごみ等の焼却に伴って生成される焼却灰は、水と接触すると水酸化物イオンを生成してアルカリ性を示す傾向にあり、また焼却灰には、金属アルミニウムが含有されていることから、焼却灰の冷却工程などにおいて、焼却灰中の金属アルミニウムがアルカリ条件で水と反応し、水素が発生することが知られている(例えば、特許文献1,2参照)。なお、焼却灰から回収した水素ガスは燃料として用いることが考えられている。   On the other hand, incineration ash generated with incineration of municipal waste, etc., tends to show alkalinity by generating hydroxide ions when in contact with water, and the incineration ash must contain metallic aluminum From the above, it is known that metal aluminum in the incineration ash reacts with water under alkaline conditions to generate hydrogen in the incineration ash cooling step or the like (see, for example, Patent Documents 1 and 2). It is considered that hydrogen gas recovered from incineration ash is used as fuel.

特開平4−265188号公報JP-A-4-265188 特開平11−141849号公報JP 11-141849 A

しかしながら、上記の脱硝方法では、アンモニアガスまたは尿素水を別途購入しなければならないため、アンモニアガスまたは尿素水の購入費用が嵩むという問題点がある。   However, in the above denitration method, ammonia gas or urea water must be purchased separately, and thus there is a problem that the purchase cost of ammonia gas or urea water increases.

一方、アルカリ条件での水との反応にて焼却灰から発生する水素ガス量は、所定の実験条件(8〜45L/kg−灰/20日間、40℃、振とう:200rpm、L/S(水/焼却灰の重量比):5)で、1日0.4〜2.5L/kg−灰程度(ごみ処理量100t/日規模で焼却灰の発生量が10t/日と仮定すると水素発生量は4〜25m/日)であり、回収して燃料として用いる場合、わずかな熱量しか得られないという問題点がある。
現状は、焼却灰から発生した水素は有効な用途がなく、灰冷却装置内や灰ピット内に滞留すると爆発事故が起こる危険性があるため、排ガス処理施設や焼却炉に排気処理している。
On the other hand, the amount of hydrogen gas generated from the incinerated ash by reaction with water under alkaline conditions is determined under predetermined experimental conditions (8 to 45 L / kg-ash / 20 days, 40 ° C., shaking: 200 rpm, L / S ( Water / incineration ash weight ratio): 5), about 0.4 to 2.5L / kg-ash per day (waste generation amount is assumed to be 10t / day on a scale of 100t / day of waste treatment) The amount is 4 to 25 m 3 / day), and when recovered and used as fuel, there is a problem that only a small amount of heat can be obtained.
At present, hydrogen generated from incineration ash has no effective use, and if it stays in the ash cooler or ash pit, there is a risk of an explosion accident, so it is exhausted to an exhaust gas treatment facility or incinerator.

本発明は、前述のような問題点に鑑みてなされたもので、焼却灰から発生した水素を有価物として利用することができ、脱硝処理に必要とされるアンモニア等の薬剤の購入費用を大幅に低減もしくは不要にすることができる焼却施設における脱硝方法およびそのシステムを提供することを目的とするものである。   The present invention has been made in view of the above-mentioned problems, and hydrogen generated from incineration ash can be used as a valuable material, greatly increasing the purchase cost of chemicals such as ammonia required for denitration treatment. It is an object of the present invention to provide a denitration method and system in an incineration facility that can be reduced or eliminated.

前記目的を達成するために、第1発明による焼却施設における脱硝方法は、
廃棄物を焼却炉で焼却するに伴い発生する焼却灰とその焼却灰を冷却するための冷却水との反応で水素を発生させ、発生させた水素と空気中の窒素とからアンモニアを合成し、合成したアンモニアを、前記焼却炉内に噴霧して脱硝処理する、あるいは前記焼却炉からの排ガスの流れ経路途中に設置されるアンモニアを還元剤とする脱硝触媒に供給して脱硝処理することを特徴とするものである。
In order to achieve the object, the denitration method in the incineration facility according to the first invention is:
Hydrogen is generated by the reaction of the incineration ash generated when incinerators are incinerated with cooling water for cooling the incineration ash, and ammonia is synthesized from the generated hydrogen and nitrogen in the air, The synthesized ammonia is sprayed into the incinerator for denitration treatment, or supplied to a denitration catalyst that uses ammonia as a reducing agent installed in the middle of the flow path of exhaust gas from the incinerator for denitration treatment. It is what.

また、第2発明による焼却施設における脱硝方法は、
廃棄物を焼却炉で焼却するに伴い発生する焼却灰とその焼却灰を冷却するための冷却水との反応で水素を発生させ、発生させた水素を、前記焼却炉からの排ガスの流れ経路途中に設置される水素を還元剤とする脱硝触媒に供給して脱硝処理することを特徴とするものである。
The denitration method in the incineration facility according to the second invention is as follows:
Hydrogen is generated by the reaction of the incineration ash generated when the waste is incinerated with the cooling water for cooling the incineration ash, and the generated hydrogen is in the middle of the flow path of the exhaust gas from the incinerator. The denitration treatment is performed by supplying hydrogen to a denitration catalyst using hydrogen as a reducing agent.

次に、第3発明による焼却施設における脱硝システムは、
廃棄物を焼却炉で焼却するに伴い発生する焼却灰を冷却するための冷却水を収容し前記焼却灰と前記冷却水との反応で水素を発生させる水素ガス発生槽と、この水素ガス発生槽で発生させた水素と空気中の窒素とからアンモニアを合成するアンモニア合成装置とを備え、
前記アンモニア合成装置によって合成されたアンモニアを、前記焼却炉内に噴霧して脱硝処理する、あるいは前記焼却炉からの排ガスの流れ経路途中に設置されるアンモニアを還元剤とする脱硝触媒に供給して脱硝処理することを特徴とするものである。
Next, the denitration system in the incineration facility according to the third invention is:
A hydrogen gas generation tank that contains cooling water for cooling the incineration ash generated when incinerator waste is incinerated and generates hydrogen by the reaction of the incineration ash and the cooling water, and the hydrogen gas generation tank An ammonia synthesizer that synthesizes ammonia from hydrogen generated in the air and nitrogen in the air,
Ammonia synthesized by the ammonia synthesizer is sprayed into the incinerator for denitration treatment, or supplied to a denitration catalyst using ammonia as a reducing agent installed in the flow path of exhaust gas from the incinerator. It is characterized by denitration treatment.

また、第4発明による焼却施設における脱硝システムは、
廃棄物を焼却炉で焼却するに伴い発生する焼却灰を冷却するための冷却水を収容し前記焼却灰と前記冷却水との反応で水素を発生させる水素ガス発生槽を備え、
前記水素ガス発生槽で発生させた水素を、前記焼却炉からの排ガスの流れ経路途中に設置される水素を還元剤とする脱硝触媒に供給して脱硝処理することを特徴とするものである。
Moreover, the denitration system in the incineration facility according to the fourth invention is:
Comprising a hydrogen gas generation tank that contains cooling water for cooling the incinerated ash generated when the waste is incinerated in an incinerator and generates hydrogen by the reaction of the incinerated ash and the cooling water;
The hydrogen generated in the hydrogen gas generation tank is supplied to a denitration catalyst using hydrogen as a reducing agent installed in the middle of the flow path of the exhaust gas from the incinerator to perform a denitration process.

第1発明および第3発明によれば、焼却灰と冷却水との反応で発生させた水素と空気中の窒素とからアンモニアが合成され、合成されたアンモニアが、焼却炉内に噴霧されることによって脱硝処理が行われる、あるいは焼却炉からの排ガスの流れ経路途中に設置されるアンモニアを還元剤とする脱硝触媒に供給されることによって脱硝処理が行われるので、焼却灰から発生した水素を有価物として利用することができ、脱硝処理に必要とされるアンモニア等の薬剤の購入費用を大幅に低減もしくは不要にすることができる。   According to 1st invention and 3rd invention, ammonia is synthesize | combined from the hydrogen generated by reaction of incineration ash and cooling water, and nitrogen in air, and the synthesized ammonia is sprayed in an incinerator. The denitration process is performed by the denitration process, or the denitration process is performed by supplying ammonia to the denitration catalyst that uses ammonia as the reducing agent, which is installed in the middle of the flow path of the exhaust gas from the incinerator. The purchase cost of chemicals such as ammonia required for the denitration treatment can be greatly reduced or eliminated.

第2発明および第4発明によれば、焼却灰と冷却水との反応で発生させた水素が、焼却炉からの排ガスの流れ経路途中に設置される水素を還元剤とする脱硝触媒に供給されることによって脱硝処理が行われるので、第1発明および第3発明と同様の作用効果を得ることができるのは勿論のこと、第1発明および第3発明と比べて脱硝処理の工程やシステムを簡素化することができる。   According to the second and fourth inventions, the hydrogen generated by the reaction between the incineration ash and the cooling water is supplied to the denitration catalyst using hydrogen as a reducing agent installed in the flow path of the exhaust gas from the incinerator. Therefore, the denitration process is performed, so that the same effects as those of the first invention and the third invention can be obtained, and the denitration process and system are compared with those of the first invention and the third invention. It can be simplified.

図1は、本発明の第1の実施形態に係る脱硝システムを具備する廃棄物焼却施設の概略システム構成図である。FIG. 1 is a schematic system configuration diagram of a waste incineration facility equipped with a denitration system according to the first embodiment of the present invention. 図2は、本発明の第2実施形態に係る脱硝システムを具備する廃棄物焼却施設の概略システム構成図である。FIG. 2 is a schematic system configuration diagram of a waste incineration facility equipped with a denitration system according to the second embodiment of the present invention.

次に、本発明による焼却施設における脱硝方法およびそのシステムの具体的な実施の形態について、図面を参照しつつ説明する。   Next, a specific embodiment of a denitration method and its system in an incineration facility according to the present invention will be described with reference to the drawings.

〔第1の実施形態〕
<焼却施設の概略説明>
図1に示される焼却施設1において、都市ごみ等の廃棄物は、焼却炉2で燃焼される。焼却炉2での廃棄物の燃焼に伴い発生する排ガスは、ボイラ3での熱交換に供されるとともに、エコノマイザ4でのボイラ3への給水の加熱に供された後に、減温塔5で所定温度まで冷却されてからバグフィルタを用いた集塵装置6に送られる。この集塵装置6でダストが除去された排ガスは、排ガス加熱装置7で加熱された後に触媒脱硝装置8に送られる。この触媒脱硝装置8で脱硝処理された排ガスは、誘引通風機(図示省略)により、煙突9を介して系外に排出される。
[First Embodiment]
<Overview of incineration facilities>
In the incineration facility 1 shown in FIG. 1, waste such as municipal waste is burned in an incinerator 2. The exhaust gas generated by the combustion of the waste in the incinerator 2 is used for heat exchange in the boiler 3, and is used for heating water supply to the boiler 3 in the economizer 4, and then in the temperature reducing tower 5. After being cooled to a predetermined temperature, it is sent to a dust collector 6 using a bag filter. The exhaust gas from which dust has been removed by the dust collector 6 is heated by the exhaust gas heating device 7 and then sent to the catalyst denitration device 8. The exhaust gas denitrated by the catalyst denitration device 8 is discharged out of the system through a chimney 9 by an induction fan (not shown).

触媒脱硝装置8としては、アンモニア(NH)を還元剤とする脱硝触媒(成分:酸化チタン、バナジウムなど)上でアンモニアとNOxとの反応を起こさせ、NOxをNとHOに分解する形式のものが使用される。 As the catalyst denitration device 8, a reaction between ammonia and NOx is caused on a denitration catalyst (component: titanium oxide, vanadium, etc.) using ammonia (NH 3 ) as a reducing agent, and NOx is decomposed into N 2 and H 2 O. The format to be used is used.

一方、焼却炉2での廃棄物の焼却に伴い発生した焼却灰は、焼却炉2からの焼却灰を冷却するための冷却水を収容する水槽としての役目と、焼却灰と冷却水とを反応させて水素を発生させる水素ガス発生槽としての役目を兼ねる処理槽を備える灰冷却装置11に導入される。   On the other hand, the incineration ash generated by the incineration of waste in the incinerator 2 reacts with the incineration ash and the cooling water, serving as a water tank for storing the cooling water for cooling the incineration ash from the incinerator 2. And introduced into the ash cooling device 11 including a treatment tank that also serves as a hydrogen gas generation tank for generating hydrogen.

灰冷却装置11としては、湿式のものと半湿式のものとがある。湿式のものは、焼却炉2からの焼却灰を処理槽内の冷却水で冷却し、冷却した焼却灰を処理槽の底部に設置された灰コンベヤで灰ピットへと搬出する方式のものである。一方、半湿式のものは、焼却炉2からの焼却灰を処理槽内の冷却水で冷却し、冷却した焼却灰を例えば油圧式のプッシャーを備えてなる灰押し装置で水切りを行いながら灰ピットへと搬出する方式のものである。   The ash cooling device 11 includes a wet type and a semi-wet type. In the wet type, the incineration ash from the incinerator 2 is cooled with cooling water in the treatment tank, and the cooled incineration ash is carried out to the ash pit by an ash conveyor installed at the bottom of the treatment tank. . On the other hand, in the semi-wet type, the incineration ash from the incinerator 2 is cooled with cooling water in the treatment tank, and the incinerated ash is drained with an ash pusher equipped with, for example, a hydraulic pusher while removing the ash pit. It is a method of carrying out to

灰冷却装置11において、処理槽内に投入された焼却灰は、冷却水と接触すると水酸化物イオンを生成してアルカリ性を示す傾向にあり、また焼却灰には、金属アルミニウムが含有されていることから、焼却灰を冷却水で冷却する際に、焼却灰に含まれる金属アルミニウムと冷却水とがアルカリ条件(pH>12)で反応して水素ガスが発生する。   In the ash cooler 11, the incinerated ash charged into the treatment tank tends to show alkalinity by generating hydroxide ions when in contact with the cooling water, and the incinerated ash contains metallic aluminum. For this reason, when the incineration ash is cooled with cooling water, metal aluminum contained in the incineration ash and the cooling water react under alkaline conditions (pH> 12) to generate hydrogen gas.

灰冷却装置11の下流側には、アンモニア合成装置12が設置され、このアンモニア合成装置12には、灰冷却装置11で発生した水素ガスと、窒素ガス発生装置13で空気から精製した窒素ガスとが導入される。
ここで、アンモニア合成装置12としては、一般的に、鉄を主体とした触媒上で水素と窒素とを、圧力20〜35MPa程度、温度500℃程度の高温高圧条件で反応させる、いわゆるハーバーボッシュ法によりアンモニアを合成する形式のものが使用されるが、省エネルギー・低コスト化の観点から、水素と窒素とをルテニウム担持エレクトライド触媒による常圧300℃域で反応させてアンモニアを合成する形式のものを採用してもよい。
また、窒素ガス発生装置13としては、例えば分子篩炭等の吸着剤を使用し、空気中の窒素と酸素の分子の大きさの違いによる吸着速度差を利用して空気中から高純度の窒素を分離して精製する形式のものが好適である。
An ammonia synthesizer 12 is installed downstream of the ash cooler 11. The ammonia synthesizer 12 includes hydrogen gas generated by the ash cooler 11 and nitrogen gas purified from air by the nitrogen gas generator 13. Is introduced.
Here, as the ammonia synthesizer 12, generally, a so-called Harbor Bosch method in which hydrogen and nitrogen are reacted on a catalyst mainly composed of iron under a high temperature and high pressure condition of a pressure of about 20 to 35 MPa and a temperature of about 500 ° C. A type that synthesizes ammonia is used, but from the viewpoint of energy saving and cost reduction, a type that synthesizes ammonia by reacting hydrogen and nitrogen in a normal pressure of 300 ° C with a ruthenium-supported electride catalyst. May be adopted.
Further, as the nitrogen gas generator 13, for example, an adsorbent such as molecular sieve charcoal is used, and high-purity nitrogen is generated from the air by utilizing the difference in adsorption speed due to the difference in the size of nitrogen and oxygen molecules in the air. A type of separation and purification is preferred.

なお、ごみ処理量100t/日規模の焼却施設に必要な還元剤(アンモニア)の量を一例として求める。
脱硝処理前80ppm 脱硝処理後30ppm、ガス量24000m −dry/hとすると、
脱硝反応 4NO+4NH+O→4N+6H
アンモニア合成 N+3H→2NH
であるから、必要なアンモニア量は、(80−30)/1000000×24000×24≒28.8m/日となる。
アンモニア合成の転化率を50%と仮定すると、必要な水素量は28.8÷2×3÷0.5=86.4m/日となる。
Note that the amount of reducing agent (ammonia) necessary for an incineration facility with a waste disposal amount of 100 t / day is determined as an example.
Denitration pre 80ppm denitration after 30 ppm, when the amount of gas 24000m 3 N -dry / h,
Denitration reaction 4NO + 4NH 3 + O 2 → 4N 2 + 6H 2 O
Ammonia synthesis N 2 + 3H 2 → 2NH 3
Therefore, the required amount of ammonia is (80-30) /1000000×24000×24≈28.8 m 3 / day.
Assuming that the conversion rate of ammonia synthesis is 50%, the required amount of hydrogen is 28.8 ÷ 2 × 3 ÷ 0.5 = 86.4 m 3 / day.

前述のように焼却灰を冷却水に浸しただけでは水素ガスの発生量は少なく、上記の例では場内で使用するアンモニア製造に必要な水素量(86.4m/日)に満たない。しかし、焼却灰中には金属アルミニウムが平均4mass%程度含まれていることが知られており、特許文献1のようにアルカリ剤を添加するなどして焼却灰に含まれる金属アルミニウム全量を水素ガス発生に用いた場合には、下記の反応式より10tの焼却灰から500mの水素ガスが発生する。したがって、必要に応じて水素ガスの発生量を増加させ、アンモニア製造に必要な水素ガス全量を焼却灰から発生させることが可能である。
2Al+3HO→Al+3H
2Al+4HO→2AlO(OH)+3H
2Al+6HO→2Al(OH)+3H
ここで、Al:1mol=27g→H:1.5mol=33.6L発生の場合、10t×4%÷27g×33.6L≒500m−Hとなる。
As described above, the amount of hydrogen gas generated is small by just immersing the incinerated ash in the cooling water, and in the above example, it does not reach the amount of hydrogen (86.4 m 3 / day) necessary for producing ammonia used in the field. However, it is known that incinerated ash contains about 4 mass% of metallic aluminum on average, and the total amount of metallic aluminum contained in the incinerated ash is added to hydrogen gas by adding an alkali agent as in Patent Document 1. When used for generation, 500 m 3 of hydrogen gas is generated from 10 t of incineration ash according to the following reaction formula. Therefore, it is possible to increase the generation amount of hydrogen gas as required, and to generate the entire amount of hydrogen gas necessary for ammonia production from the incinerated ash.
2Al + 3H 2 O → Al 2 O 3 + 3H 2
2Al + 4H 2 O → 2AlO (OH) + 3H 2
2Al + 6H 2 O → 2Al (OH) 3 + 3H 2
Here, when Al: 1 mol = 27 g → H 2 : 1.5 mol = 33.6 L is generated, 10 t × 4% ÷ 27 g × 33.6 L≈500 m 3 −H 2

アンモニア合成装置12で合成されたアンモニアガスは、焼却炉2内に噴霧される、あるいは触媒脱硝装置8に供給されることによって脱硝処理が行われる。こうして、焼却灰から発生した水素を有価物として利用することができ、脱硝処理に必要とされるアンモニア等の薬剤の購入費用を大幅に低減もしくは不要にすることができる。   The ammonia gas synthesized by the ammonia synthesizer 12 is sprayed into the incinerator 2 or supplied to the catalyst denitration device 8 for denitration treatment. In this way, hydrogen generated from the incineration ash can be used as a valuable material, and the purchase cost of chemicals such as ammonia required for the denitration treatment can be greatly reduced or eliminated.

〔第2の実施形態〕
図2には、本発明の第2実施形態に係る脱硝システムを具備する廃棄物焼却施設の概略システム構成図が示されている。なお、本実施形態において、先の第1の実施形態と同一または同様のものについては図に同一符号を付すに留めてその詳細な説明を省略することとし、以下においては、本実施形態に特有の部分を中心に説明することとする。
[Second Embodiment]
FIG. 2 shows a schematic system configuration diagram of a waste incineration facility equipped with a denitration system according to a second embodiment of the present invention. In the present embodiment, the same or similar parts as those of the first embodiment will be denoted by the same reference numerals in the drawings, and detailed description thereof will be omitted. The following description is specific to the present embodiment. The description will focus on this part.

第1の実施形態においては、灰冷却装置11で発生した水素ガスと、窒素ガス発生装置13で空気から精製した窒素ガスとをアンモニア合成装置12に導入してアンモニアガスを合成し、合成したアンモニアガスを焼却炉2内に噴霧する、あるいはアンモニアを還元剤とする触媒脱硝装置8に供給することによって脱硝処理を行うようにされている。
これに対し、本実施形態においては、第1の実施形態におけるアンモニアを還元剤とする触媒脱硝装置8に代えて、水素を還元剤とする脱硝触媒(成分:白金、パラジウムなど)上で反応を起こさせてNOxを分解・除去する形式の触媒脱硝装置8Aを採用し、この触媒脱硝装置8Aに灰冷却装置11からの水素ガスを直接供給することによって脱硝処理を行うようにされている。
In the first embodiment, hydrogen gas generated by the ash cooler 11 and nitrogen gas purified from air by the nitrogen gas generator 13 are introduced into the ammonia synthesizer 12 to synthesize ammonia gas, and the synthesized ammonia. Denitration treatment is performed by spraying gas into the incinerator 2 or by supplying the catalyst to a catalyst denitration apparatus 8 using ammonia as a reducing agent.
In contrast, in this embodiment, instead of the catalyst denitration device 8 using ammonia as a reducing agent in the first embodiment, the reaction is performed on a denitration catalyst (component: platinum, palladium, etc.) using hydrogen as a reducing agent. A catalytic denitration device 8A of the type that causes NOx to be decomposed and removed is employed, and denitration treatment is performed by directly supplying hydrogen gas from the ash cooling device 11 to the catalytic denitration device 8A.

なお、前述と同様に必要な還元剤(水素)の量を一例として求める。
脱硝反応 2NO+2H→2HO+N
であるから、必要な水素量は28.8m/日、必要なH/NO=4とすると28.8×4=115.2m/日となる。
従来の脱硝触媒では、水素は酸素が共存すると還元剤としては効果がないことが知られているが、近年、白金やパラジウムを主成分とし、酸素が共存していても水素を還元剤として用いることができる触媒の開発が進められている。現状では触媒コストが非常に高価であるが、還元性能が向上すれば触媒使用量は低減するので経済的にも成り立つシステムとなる。
The amount of necessary reducing agent (hydrogen) is obtained as an example in the same manner as described above.
Denitration reaction 2NO + 2H 2 → 2H 2 O + N 2
Therefore, if the required amount of hydrogen is 28.8 m 3 / day and the required H 2 / NO = 4, then 28.8 × 4 = 15.2 m 3 / day.
In conventional denitration catalysts, hydrogen is known to have no effect as a reducing agent when oxygen coexists, but in recent years, platinum and palladium are the main components, and hydrogen is used as a reducing agent even in the presence of oxygen. The development of catalysts that can do this is underway. At present, the catalyst cost is very high, but if the reduction performance is improved, the amount of catalyst used is reduced, so that the system is economically valid.

本実施形態によれば、第1の実施形態と同様の作用効果を得ることができるのは勿論のこと、第1の実施形態では必要とされるアンモニア合成装置12や窒素ガス発生装置13が不要になるので、第1の実施形態と比べて脱硝処理のシステムを簡素化することができる。   According to this embodiment, the same effects as those of the first embodiment can be obtained, and the ammonia synthesizer 12 and the nitrogen gas generator 13 required in the first embodiment are not necessary. Therefore, the denitration system can be simplified as compared with the first embodiment.

以上、本発明の焼却施設における脱硝方法およびそのシステムについて、複数の実施形態に基づいて説明したが、本発明は上記実施形態に記載した構成に限定されるものではなく、各実施形態に記載した構成を適宜組み合わせる等、その趣旨を逸脱しない範囲において適宜その構成を変更することができるものである。   As mentioned above, although the denitration method and its system in the incineration facility of this invention were demonstrated based on several embodiment, this invention is not limited to the structure described in the said embodiment, It described in each embodiment. The configuration can be changed as appropriate within a range not departing from the gist, such as appropriately combining the configurations.

本発明の焼却施設における脱硝方法およびそのシステムは、焼却灰から発生した水素を有価物として利用することができ、脱硝処理に必要とされるアンモニア等の薬剤の購入費用を大幅に低減もしくは不要にすることができるという特性を有していることから、一般廃棄物や産業廃棄物を焼却処理する焼却施設におけるNOx除去の用途に好適に用いることができ、産業上の利用可能性が大である。   The denitration method and system thereof in the incineration facility of the present invention can use hydrogen generated from incineration ash as a valuable material, greatly reducing or eliminating the purchase cost of chemicals such as ammonia required for denitration treatment. Therefore, it can be suitably used for NOx removal in an incineration facility that incinerates general waste and industrial waste, and has great industrial applicability. .

1,1A 焼却施設
2 焼却炉
8,8A 触媒脱硝装
11 灰冷却装置(水素ガス発生槽)
12 アンモニア合成装置
13 窒素ガス発生装置

1, 1A Incineration facility 2 Incinerator 8, 8A Catalyst denitration equipment 11 Ash cooling device (hydrogen gas generation tank)
12 Ammonia synthesizer 13 Nitrogen gas generator

Claims (4)

廃棄物を焼却炉で焼却するに伴い発生する焼却灰とその焼却灰を冷却するための冷却水との反応で水素を発生させ、発生させた水素と空気中の窒素とからアンモニアを合成し、合成したアンモニアを、前記焼却炉内に噴霧して脱硝処理する、あるいは前記焼却炉からの排ガスの流れ経路途中に設置されるアンモニアを還元剤とする脱硝触媒に供給して脱硝処理することを特徴とする焼却施設における脱硝方法。   Hydrogen is generated by the reaction of the incineration ash generated when incinerators are incinerated with cooling water for cooling the incineration ash, and ammonia is synthesized from the generated hydrogen and nitrogen in the air, The synthesized ammonia is sprayed into the incinerator for denitration treatment, or supplied to a denitration catalyst that uses ammonia as a reducing agent installed in the middle of the flow path of exhaust gas from the incinerator for denitration treatment. Denitration method in an incineration facility. 廃棄物を焼却炉で焼却するに伴い発生する焼却灰とその焼却灰を冷却するための冷却水との反応で水素を発生させ、発生させた水素を、前記焼却炉からの排ガスの流れ経路途中に設置される水素を還元剤とする脱硝触媒に供給して脱硝処理することを特徴とする焼却施設における脱硝方法。   Hydrogen is generated by the reaction of the incineration ash generated when the waste is incinerated with the cooling water for cooling the incineration ash, and the generated hydrogen is in the middle of the flow path of the exhaust gas from the incinerator. A denitration method in an incineration facility, characterized in that denitration treatment is performed by supplying hydrogen to a denitration catalyst using hydrogen as a reducing agent. 廃棄物を焼却炉で焼却するに伴い発生する焼却灰を冷却するための冷却水を収容し前記焼却灰と前記冷却水との反応で水素を発生させる水素ガス発生槽と、この水素ガス発生槽で発生させた水素と空気中の窒素とからアンモニアを合成するアンモニア合成装置とを備え、
前記アンモニア合成装置によって合成されたアンモニアを、前記焼却炉内に噴霧して脱硝処理する、あるいは前記焼却炉からの排ガスの流れ経路途中に設置されるアンモニアを還元剤とする脱硝触媒に供給して脱硝処理することを特徴とする焼却施設における脱硝システム。
A hydrogen gas generation tank that contains cooling water for cooling the incineration ash generated when incinerator waste is incinerated and generates hydrogen by the reaction of the incineration ash and the cooling water, and the hydrogen gas generation tank An ammonia synthesizer that synthesizes ammonia from hydrogen generated in the air and nitrogen in the air,
Ammonia synthesized by the ammonia synthesizer is sprayed into the incinerator for denitration treatment, or supplied to a denitration catalyst using ammonia as a reducing agent installed in the flow path of exhaust gas from the incinerator. A denitration system in an incineration facility characterized by denitration treatment.
廃棄物を焼却炉で焼却するに伴い発生する焼却灰を冷却するための冷却水を収容し前記焼却灰と前記冷却水との反応で水素を発生させる水素ガス発生槽を備え、
前記水素ガス発生槽で発生させた水素を、前記焼却炉からの排ガスの流れ経路途中に設置される水素を還元剤とする脱硝触媒に供給して脱硝処理することを特徴とする焼却施設における脱硝システム。

Comprising a hydrogen gas generation tank that contains cooling water for cooling the incinerated ash generated when the waste is incinerated in an incinerator and generates hydrogen by the reaction of the incinerated ash and the cooling water;
Denitration in an incineration facility characterized in that hydrogen generated in the hydrogen gas generation tank is supplied to a denitration catalyst using hydrogen as a reducing agent installed in the middle of the flow path of exhaust gas from the incinerator for denitration treatment system.

JP2015207913A 2015-10-22 2015-10-22 Method and system for NOx removal in incineration plant Active JP6506673B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015207913A JP6506673B2 (en) 2015-10-22 2015-10-22 Method and system for NOx removal in incineration plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015207913A JP6506673B2 (en) 2015-10-22 2015-10-22 Method and system for NOx removal in incineration plant

Publications (2)

Publication Number Publication Date
JP2017077547A true JP2017077547A (en) 2017-04-27
JP6506673B2 JP6506673B2 (en) 2019-04-24

Family

ID=58665662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015207913A Active JP6506673B2 (en) 2015-10-22 2015-10-22 Method and system for NOx removal in incineration plant

Country Status (1)

Country Link
JP (1) JP6506673B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111450682A (en) * 2020-04-14 2020-07-28 安徽工业大学 Deep denitration process for supercritical carbon dioxide coal-fired boiler

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04265188A (en) * 1991-02-21 1992-09-21 Ebara Corp Treatment of incineration ash
JPH06114235A (en) * 1992-08-19 1994-04-26 Hitachi Zosen Corp Flue gas dentrification method using on-site ammonia
JP2002326016A (en) * 2001-05-08 2002-11-12 Ebara Corp Denitrating method and denitrating apparatus in gasifying melting furnace facility
JP2006021154A (en) * 2004-07-09 2006-01-26 Oji Paper Co Ltd Method for stabilizing combustion ash, stabilized combustion ash and method for manufacturing hydrogen
JP2006223987A (en) * 2005-02-17 2006-08-31 Takuma Co Ltd Reforming treatment method for incineration ash and incineration ash reforming mechanical stoker type incinerator
US20070079737A1 (en) * 2005-10-12 2007-04-12 Breen Bernard P Method to decrease emissions of nitrogen oxides and mercury through in-situ gasification of carbon/water slurries
JP2009079539A (en) * 2007-09-26 2009-04-16 Mitsubishi Heavy Ind Ltd Exhaust emission control system and exhaust gas cleaning method
JP2011115684A (en) * 2009-12-01 2011-06-16 Sumitomo Heavy Ind Ltd Exhaust gas treatment device, combustion furnace and exhaust gas treatment method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04265188A (en) * 1991-02-21 1992-09-21 Ebara Corp Treatment of incineration ash
JPH06114235A (en) * 1992-08-19 1994-04-26 Hitachi Zosen Corp Flue gas dentrification method using on-site ammonia
JP2002326016A (en) * 2001-05-08 2002-11-12 Ebara Corp Denitrating method and denitrating apparatus in gasifying melting furnace facility
JP2006021154A (en) * 2004-07-09 2006-01-26 Oji Paper Co Ltd Method for stabilizing combustion ash, stabilized combustion ash and method for manufacturing hydrogen
JP2006223987A (en) * 2005-02-17 2006-08-31 Takuma Co Ltd Reforming treatment method for incineration ash and incineration ash reforming mechanical stoker type incinerator
US20070079737A1 (en) * 2005-10-12 2007-04-12 Breen Bernard P Method to decrease emissions of nitrogen oxides and mercury through in-situ gasification of carbon/water slurries
JP2009079539A (en) * 2007-09-26 2009-04-16 Mitsubishi Heavy Ind Ltd Exhaust emission control system and exhaust gas cleaning method
JP2011115684A (en) * 2009-12-01 2011-06-16 Sumitomo Heavy Ind Ltd Exhaust gas treatment device, combustion furnace and exhaust gas treatment method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111450682A (en) * 2020-04-14 2020-07-28 安徽工业大学 Deep denitration process for supercritical carbon dioxide coal-fired boiler

Also Published As

Publication number Publication date
JP6506673B2 (en) 2019-04-24

Similar Documents

Publication Publication Date Title
US20210156560A1 (en) Method for removing nitrogen oxides from combustion fumes with on-site generation of ammonia
JP4512238B2 (en) Method for removing nitrogen oxides from a waste gas stream
KR102021983B1 (en) Integrated condenser capable of recovering latent heat and removing pollutants of exhaust gas and power generation system using pressurized oxygen combustion comprising the same
EA021314B1 (en) Combined treatment of waste gas streams containing ammonia and nitrogen oxides in industrial plants
KR102093799B1 (en) Integrated apparatus for treating exhaust gas using metal filter
JP2017006813A (en) Denitration apparatus and treatment method of nitrogen oxide
JP2601612B2 (en) Incinerator exhaust gas treatment method
KR20190142348A (en) Method and system for removing harmful compounds from flue gas using SCR catalyst
JP6506673B2 (en) Method and system for NOx removal in incineration plant
JP2013094765A (en) Method for removing nitrogen oxide
JP2003267725A (en) Method of manufacturing ammonia, its apparatus and flue gas denitrification using the manufactured ammonia
JP2007301524A (en) Method and apparatus for denitrification
JP4467872B2 (en) COS processing apparatus and method for gasification gas
JP2012021138A (en) Dry-gas purification equipment and coal gasification-combined electric power plant
JP3366417B2 (en) Prevention method of ammonium sulfate precipitation in selective reduction denitration method
UA112909C2 (en) THE APPLICATION OF THE PRODUCT GAS SYNTHESIS IN THE METHOD OF AMMONIA AND UREA SYNTHESIS ON ONE INSTALLATION AND INSTALLATION FOR THE IMPLEMENTATION OF THIS METHOD
JP2009240983A (en) Treatment method of incinerator flue gas
JP5879091B2 (en) Combined thermal power generation system
JP2007229544A (en) Denitrification process and denitrification facility
KR20230062088A (en) Simultaneous process of removing nitrogen oxides in flue gas and producing high-purity hydrogen
JP2011116614A (en) Apparatus for absorbing carbon dioxide and depositing carbon
JPH02140412A (en) Exhaust gas purification device for hydrogen engine
JPH11293261A (en) Power generation process responsive to power consumption and at least using garbage as raw material and power generation apparatus used therefor
JPH0994437A (en) Removal method of nitrogen oxides in waste gas and flue gas denitrification device
JPH01180221A (en) Denitrification device for combustion exhaust gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180521

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190329

R150 Certificate of patent or registration of utility model

Ref document number: 6506673

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250