JPH06113819A - Culture of euglena - Google Patents

Culture of euglena

Info

Publication number
JPH06113819A
JPH06113819A JP4263734A JP26373492A JPH06113819A JP H06113819 A JPH06113819 A JP H06113819A JP 4263734 A JP4263734 A JP 4263734A JP 26373492 A JP26373492 A JP 26373492A JP H06113819 A JPH06113819 A JP H06113819A
Authority
JP
Japan
Prior art keywords
euglena
culture
medium
paramylon
protein
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4263734A
Other languages
Japanese (ja)
Inventor
Masahiro Hayashi
雅弘 林
Kyoji Toda
享次 戸田
Hiroto Ishiko
裕人 石古
Shozaburo Kitaoka
正三郎 北岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harima Chemical Inc
Original Assignee
Harima Chemical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harima Chemical Inc filed Critical Harima Chemical Inc
Priority to JP4263734A priority Critical patent/JPH06113819A/en
Publication of JPH06113819A publication Critical patent/JPH06113819A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain Euglena cell having high protein content. CONSTITUTION:Euglena cells rich in paramylon in the later stage of the logarithmic phase or in the stationary phase is cultured under specific pH condition in the presence of an assimilable nitrogen compound.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はユーグレナの培養方法特
には蛋白質含量の高いユーグレナの培養方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for culturing Euglena, and more particularly to a method for culturing Euglena having a high protein content.

【0002】[0002]

【従来の技術と問題点】ユーグレナ細胞は優れたアミノ
酸組成のタンパク質を含み、動物の消化酵素で容易に消
化される。また、ビタミンA、C、Eなどを豊富に含む
ためSCP(Single Cell Protein )や飼料タンパク質
として有望視されている。従ってその培養方法はすでに
いろいろ研究され報告されている。例えばユーグレナの
培養方法は従来、フラスコや培養槽で光照射下、あるい
は暗黒下での回分培養方式が通常とられてきた。そして
ユーグレナ細胞に含有されるタンパク質は光照射によっ
て増加することが知られており、これまでも光照射を前
提とする培養方法が検討されてきた。(特開昭61−3
7092、特開昭61−40785)しかしこれらの方
法によると光照射の装置が必要となり、さらに多大な照
射コストがユーグレナの安価な供給を困難なものにす
る。さらに照度のコントロールなど、培養操作は煩雑な
ものであった。
2. Description of the Related Art Euglena cells contain proteins with excellent amino acid composition and are easily digested by animal digestive enzymes. Further, since it is rich in vitamins A, C, E, etc., it is regarded as promising as SCP (Single Cell Protein) and feed protein. Therefore, various methods of culturing have already been studied and reported. For example, as a method for culturing Euglena, conventionally, a batch culture method in which light is irradiated in a flask or a culture tank or in the dark has been usually used. It is known that the protein contained in Euglena cells is increased by light irradiation, and a culture method assuming light irradiation has been studied so far. (JP-A-61-3
7092, JP-A-61-40785). However, these methods require a device for light irradiation, and a large irradiation cost makes it difficult to supply Euglena inexpensively. Furthermore, the culturing operation such as the control of illuminance was complicated.

【0003】[0003]

【問題を解決するための手段】発明者らは研究の結果、
ユーグレナ細胞が対数増殖期後期あるいは定常期におい
て細胞内に蓄積したパラミロン(β−1,3グルカン)
をタンパク質に変換し、その変換効率が特定の培地pH
において良好であることを見いだし、さらに対数増殖期
後期から定常期において培地中の窒素源を枯渇させずに
保っておくとパラミロンからタンパク質への変換が効率
よく行なわれることを見いだし、本発明を完成したもの
である。
[Means for Solving the Problem] As a result of the research conducted by the inventors,
Paramylon (β-1,3 glucan) accumulated in the cells of Euglena cells during the late logarithmic growth phase or stationary phase
Is converted into protein, and its conversion efficiency depends on the specific medium pH
In addition, it was found that the conversion of paramylon to protein was efficiently carried out by keeping the nitrogen source in the medium from being depleted in the late logarithmic growth phase to the stationary phase, and completed the present invention. It was done.

【0004】本発明でいうユーグレナとは、動物学の分
類上でユーグレナ属(ミドリムシ属)に属する原生動物
で、これに属する種、変種、変異種のすべてを含む。代
表的なものとしてはユーグレナ・グラシリス(Euglena
gracilis)、ユーグレナ・グラシリス・バシラリス変種
(Euglena gracilis var. bacillaris)、ユーグレナ・
ビリディス(Euglena viridis )、アスタシア・ロンガ
(Astasia longa )などである。
The Euglena referred to in the present invention is a protozoan belonging to the genus Euglena (genus Euglena) in terms of zoology, and includes all species, variants and mutants belonging to it. A typical example is Euglena gracilis.
gracilis), Euglena gracilis var. bacillaris, Euglena
Examples include Viglidis (Euglena viridis) and Astasia longa.

【0005】これらユーグレナの培養に使用する培地に
は、コーレン・ハットナー培地(ジャーナル・オブ・プ
ロトゾオロジー(Jouenal of Protozoology ) 14巻
(1967年) 増補17頁)や、ハットナー培地(ジ
ャーナル・オブ・プロトゾオロジー(Jouenal of Proto
zoology ) 6巻(1959年) 23頁)等の公知の
培地を使用することができる。また炭素源としてグルコ
ース、澱粉水解物、糖蜜、グルタミン酸、酢酸、エタノ
ール等を使用し、窒素源として硝酸アンモニウム、第2
リン酸アンモニウム、硫酸アンモニウム、アンモニア水
等のような無機窒素源、グルタミン酸、アスパラギン酸
のようなアミノ酸、またはペプトン、カザミノ酸、酵母
エキス、コーンスティープリカー等の有機窒素源を適宜
組合せ、これにカルシウム、マグネシウム、マンガン、
鉄等の無機塩とビタミンB1 およびB12を微量加えたよ
うな培地を使用することもできる。一般的にユーグレナ
の培養温度は20〜35℃が適当であり、初発pHは
2.0〜7.5が適当であるが、細胞の増殖には3.0
〜5.0の範囲が最も好ましい。また、培養時には1分
間あたり50〜250回の振盪、適度の通気攪拌を行な
うことが望ましい。
Examples of the medium used for culturing these Euglena include Kohren-Hattner medium (Journal of Protozoology, Vol. 14 (1967), Supplement 17, page 17) and Hattner medium (Journal of Protozoology). Orology (Jouenal of Proto
zoology) Volume 6 (1959), page 23) and the like can be used. Glucose, starch hydrolyzate, molasses, glutamic acid, acetic acid, ethanol, etc. are used as carbon sources, and ammonium nitrate, second
Ammonium phosphate, ammonium sulfate, inorganic nitrogen sources such as aqueous ammonia, glutamic acid, amino acids such as aspartic acid, or peptone, casamino acid, yeast extract, organic nitrogen sources such as corn steep liquor are appropriately combined, calcium, Magnesium, manganese,
It is also possible to use a medium in which an inorganic salt such as iron and vitamins B 1 and B 12 are added in trace amounts. In general, Euglena culture temperature of 20 to 35 ° C. is suitable, and initial pH of 2.0 to 7.5 is suitable, but it is 3.0 for cell growth.
The most preferable range is from 5.0 to 5.0. In addition, it is desirable that shaking is performed 50 to 250 times per minute and appropriate aeration and stirring during culturing.

【0006】本発明では暗黒下の培養でも従来の光照射
下の培養以上の高タンパク質のユーグレナ細胞が得られ
るが、光照射の有無を限定する必要はない。もちろん光
照射下の培養においても本発明は十分な効果を得ること
ができる。
According to the present invention, Euglena cells having a higher protein than those in the conventional culture under light irradiation can be obtained even in the dark culture, but it is not necessary to limit the presence or absence of the light irradiation. Of course, the present invention can obtain sufficient effects even in culture under light irradiation.

【0007】本発明を実施するについてユーグレナを培
養するには培地の初発pH2.0〜7.5、好ましくは
3.0〜5.0で培養を開始するとよい。その後、ユー
グレナの増殖が対数増殖期後期ないし定常期に達した時
点ではユーグレナ細胞はパラミロンを細胞内に多量に蓄
積し、タンパク質含量は低いものとなっているが、培地
pHを1.5〜3.5、あるいは5.5〜8.0の範囲
に調整し、資化性窒素化合物の存在下でさらに培養を継
続すると細胞中のパラミロンは激減し、タンパク質含量
が増加する。その場合、pH調整後の培養時間は3時間
以上で効果が期待でき、好ましくは6〜48時間培養を
継続する。また、この時のpH調整は硫酸、塩酸、水酸
化ナトリウム溶液、水酸化カリウム溶液、アンモニア水
等、ユーグレナに悪影響を与えない酸・アルカリであれ
ばいかなるものでも使用できる。勿論、pHコントロー
ラー等で一定のpHに維持してもよいがとにかくpH
1.5〜3.5あるいは5.5〜8.0の範囲内に維持
されればよい。
To carry out the present invention, in order to culture Euglena, it is advisable to start the culture at an initial pH of the medium of 2.0 to 7.5, preferably 3.0 to 5.0. After that, when the growth of euglena reaches the late logarithmic growth phase or the stationary phase, euglena cells accumulate a large amount of paramylon in the cell and the protein content is low, but the medium pH is 1.5 to 3 When adjusted to 0.5 or 5.5 to 8.0, and further culturing in the presence of an assimilable nitrogen compound, paramylon in the cell is drastically reduced and the protein content is increased. In that case, the effect can be expected when the culture time after pH adjustment is 3 hours or more, and the culture is preferably continued for 6 to 48 hours. Further, the pH adjustment at this time can be performed using any acid or alkali such as sulfuric acid, hydrochloric acid, a sodium hydroxide solution, a potassium hydroxide solution or aqueous ammonia, as long as it is an acid or alkali that does not adversely affect Euglena. Of course, it may be maintained at a constant pH with a pH controller, etc.
It may be maintained within the range of 1.5 to 3.5 or 5.5 to 8.0.

【0008】ユーグレナを培養すると培養中に培地pH
が低下する。このため初発pHをユーグレナの増殖に適
したpHとしても培養中に変化し、細胞収量の低下を招
くことがある。このため、対数増殖期中期の培地pHを
ユーグレナ細胞の増殖に適した3.0〜5.0に保つこ
とにより細胞収量の低下を防ぐことができる。この時、
培養開始から対数増殖期後期あるいは定常期にpH調整
を行なうまでの期間をつうじてpHを維持することもで
きるし、最も細胞の増殖が盛んな対数増殖期中期のみp
Hを維持してもよい。また、この時のpH維持には硫
酸、塩酸、水酸化ナトリウム溶液、水酸化カリウム溶
液、アンモニア水等、ユーグレナに悪影響を与えない酸
・アルカリであればいかなるものでも使用できる。
When Euglena is cultivated, the medium pH during culturing
Is reduced. Therefore, even if the initial pH is adjusted to a pH suitable for the growth of Euglena, the initial pH may change during the culture, resulting in a decrease in cell yield. Therefore, it is possible to prevent a decrease in cell yield by maintaining the medium pH in the mid-logarithmic growth phase at 3.0 to 5.0, which is suitable for the growth of Euglena cells. At this time,
It is possible to maintain the pH during the period from the start of the culture until the pH is adjusted to the late logarithmic growth phase or the stationary phase, or only in the mid-logarithmic growth phase where the cells grow most actively.
H may be maintained. Further, for maintaining the pH at this time, any acid or alkali such as sulfuric acid, hydrochloric acid, a sodium hydroxide solution, a potassium hydroxide solution, or ammonia water, which does not adversely affect Euglena, can be used.

【0009】このようにして盛んな増殖を継続して行な
えばユーグレナは優に乾物重量で30%を超えるパラミ
ロンを含有するようになる。
[0009] If the vigorous growth is continued in this way, Euglena will easily contain more than 30% paramylon by dry matter weight.

【0010】ユーグレナは増殖にともなって培地中の窒
素源を消費し、対数増殖期の後期から定常期においては
培地中の窒素源は非常に低濃度となる。しかし、窒素は
パラミロンからのタンパク質合成に必須の因子であり、
パラミロンがタンパク質に変換される際、培地中の窒素
源が不足しているとタンパク質への変換は効率よく行な
われ得ない。したがって本発明の方法ではユーグレナの
増殖を、一定水準に維持された資化性窒素源の存在下に
行なわせる。こうすることで効率よく高タンパク質含量
のユーグレナ細胞を得ることができる。添加する窒素源
はユーグレナに悪影響を与えず資化される窒素源であれ
ばいかなるものでもかまわない。代表的なものとして硝
酸アンモニウム、硫酸アンモニウム、第2リン酸アンモ
ニウムあるいはアンモニア水等のような無機窒素源、グ
ルタミン酸、アスパラギン酸のようなアミノ酸、または
ペプトン、カザミノ酸、酵母エキス、コーンスティープ
リカー等の有機窒素源等が使用できる。これらのうちで
アンモニア態窒素とアミノ酸は特に資化され易いようで
好ましい。アンモニア水をアルカリ剤として使用すれば
pHの低下に見合って添加することで培地中の窒素濃度
を測定せずとも実用上充分に必要な資化性窒素化合物の
水準を維持することができ、さらにpHも増殖に適した
範囲に保つことができて好都合である。ユーグレナの資
化性窒素化合物取り込みは強力に行なわれるらしく本発
明の効果がもたらされるその存在量の下限は可成り低
い。すなわち10ppm以下でも本発明効果はもたらさ
れる。しかし、これを越えていれば一層速かに取り込み
が行なわれる。 ユーグレナ培養例 グルコース 120g,硫酸アンモニウム 42g,コ
ーンスティープリカー30g,硫酸マグネシウム 3
g,リン酸一カリウム 3g,エチレンジアミン四酢酸
ナトリウム塩 0.3g,モール塩 0.3g,硫酸亜
鉛 0.15g,硫酸マンガン 0.1g,ビタミンB
1 30mg,ビタミンB12 60μgを水道水6 l
に溶解し、10 l容ジャーファーメンターに仕込ん
で、オートクレーブで滅菌(120℃、20分)した。
これに予め同様の培地で前培養したユーグレナ・グラシ
リス(Euglena grasilis)の培養液600mlを接種
し、28℃で72時間通気培養した。この時、培地のp
HはpHコントローラーを用い、2N 水酸化ナトリウ
ム水溶液で4.5に培養終了まで維持した。なお、用い
たユーグレナは国立環境研究所微生物系統保存施設(茨
城県つくば市小野川16−2)より分譲を受けたユーグ
レナ・グラシリスNIES48であり、同じ株は請求に
より入手できる。
Euglena consumes the nitrogen source in the medium as it grows, and the concentration of the nitrogen source in the medium becomes extremely low in the late logarithmic growth phase to the stationary phase. However, nitrogen is an essential factor for protein synthesis from paramylon,
When paramylon is converted into protein, the conversion to protein cannot be performed efficiently if the nitrogen source in the medium is insufficient. Therefore, in the method of the present invention, the growth of Euglena is carried out in the presence of an assimilable nitrogen source maintained at a constant level. This makes it possible to efficiently obtain Euglena cells having a high protein content. The nitrogen source to be added may be any nitrogen source that can be assimilated without adversely affecting Euglena. Typical examples are inorganic nitrogen sources such as ammonium nitrate, ammonium sulfate, dibasic ammonium phosphate or aqueous ammonia, amino acids such as glutamic acid and aspartic acid, or organic nitrogen such as peptone, casamino acid, yeast extract and corn steep liquor. Source etc. can be used. Of these, ammonia nitrogen and amino acids are preferable because they are likely to be assimilated. If ammonia water is used as an alkaline agent, the level of assimilable nitrogen compounds necessary for practical use can be maintained without measuring the nitrogen concentration in the medium by adding it in proportion to the decrease in pH. It is convenient that the pH can be kept in a range suitable for growth. Euglena seems to take up assimilative nitrogen compounds strongly, and the lower limit of its abundance at which the effect of the present invention is brought about is quite low. That is, the effect of the present invention can be obtained even at 10 ppm or less. However, if it exceeds this, the capture is performed more quickly. Euglena culture example glucose 120 g, ammonium sulfate 42 g, corn steep liquor 30 g, magnesium sulfate 3
g, monopotassium phosphate 3 g, ethylenediaminetetraacetic acid sodium salt 0.3 g, Mohr salt 0.3 g, zinc sulfate 0.15 g, manganese sulfate 0.1 g, vitamin B
1 30 mg, vitamin B 12 60 μg, tap water 6 l
The mixture was dissolved in a jar fermenter and sterilized in an autoclave (120 ° C., 20 minutes).
This was inoculated with 600 ml of a culture solution of Euglena grasilis which had been pre-cultured in the same medium in advance, and subjected to aeration culture at 28 ° C. for 72 hours. At this time, p of the medium
H was maintained at 4.5 with a 2N aqueous sodium hydroxide solution until the end of the culture, using a pH controller. The Euglena used was Euglena gracilis NIES48, which was purchased from the National Institute for Environmental Studies Microorganism Preservation Facility (16-2 Onogawa, Tsukuba, Ibaraki), and the same strain can be obtained upon request.

【0011】培養中、経時的にサンプリングし、培養液
中の細胞密度をトーマ式血球計算盤で計測した。細胞の
増殖は培養48時間で定常期に達し、それ以降増殖は見
られなかった。培養終了後、培養液を遠心分離して細胞
を回収し、培養液1 l当たりの乾燥細胞重量、タンパ
ク質含量、パラミロン含量を測定した。結果は以下に示
す通りパラミロン含量40.9%のユーグレナを得た。
パラミロンの定量は、菌体脂質をアセトンで除去後、ド
デシル硫酸ナトリウム水溶液(1%)で除タンパクし、
得られたグルカンを水酸化ナトリウム(2N)に溶解し
てフェノール硫酸法で定量し、タンパク質の定量はミク
ロケルダール法によった。
During the culture, the cells were sampled with time, and the cell density in the culture solution was measured by a Toma hemocytometer. The cell growth reached a stationary phase at 48 hours of culture, and no further growth was observed thereafter. After the completion of the culture, the culture solution was centrifuged to recover the cells, and the dry cell weight, protein content, and paramylon content per liter of the culture solution were measured. As a result, Euglena having a paramylon content of 40.9% was obtained as shown below.
Paramylon was quantified by removing bacterial lipids with acetone and then deproteinizing with sodium dodecyl sulfate aqueous solution (1%).
The obtained glucan was dissolved in sodium hydroxide (2N) and quantified by the phenol-sulfuric acid method, and the protein was quantified by the micro Kjeldahl method.

【0012】[0012]

【表1】 表1 ─────────────────────────── 細胞収量 8.2g/l タンパク質 45.2% パラミロン 40.9% (dry basis) ─────────────────────────── 実施例1 上記のユーグレナ培養例で培養48時間目以降を更に操
作を続けた。すなわちまず上記培養例の通りユーグレナ
を培養しておき、2N水酸化ナトリウム水溶液、あるい
は2N硫酸を用いて培養開始後48時間で培地pHを
1.0〜8.5に変化させた。培養48時間から以降は
それぞれのpHに培地pHをコントロールし、培養開始
後72時間で細胞をそれぞれ回収し、タンパク質含量、
パラミロン含量を測定した。結果を以下に示す。
[Table 1] Table 1 ─────────────────────────── Cell yield 8.2 g / l Protein 45.2% Paramylon 40.9% (Dry basis) ─────────────────────────── Example 1 In the above Euglena culture example, further operation was continued after 48 hours of culture. It was That is, first, Euglena was cultured as in the above culture example, and the pH of the medium was changed to 1.0 to 8.5 48 hours after the start of the culture using a 2N sodium hydroxide aqueous solution or 2N sulfuric acid. After 48 hours of culture, the pH of the medium was controlled to each pH, and the cells were collected 72 hours after the start of culture to recover the protein content,
The paramylon content was measured. The results are shown below.

【0013】[0013]

【表2】 表2 ─────────────────────────────────── 培養48時間以降のpH タンパク質含量 パラミロン含量 ─────────────────────────────────── 1.0 44.9 41.2 1.5 55.8 30.9 2.0 56.9 29.1 2.5 55.0 29.8 3.0 53.1 32.6 3.5 53.9 33.1 4.0 49.0 38.3 4.5 45.1 40.2 5.0 43.9 43.2 5.5 51.0 34.2 6.0 55.4 29.7 6.5 59.0 24.1 7.0 59.3 24.3 8.0 58.6 25.0 8.5 45.0 40.6 (%) ─────────────────────────────────── 上記のごとく、定常期における培地pHが1.5〜3.
5、あるいは5.5〜8.0で培養したユーグレナは培
養例で示したものに比較し、低パラミロン、高タンパク
質となっていた。
[Table 2] Table 2 ─────────────────────────────────── pH after 48 hours of protein content Paramylon Content ─────────────────────────────────── 1.0 44.9 41.2 1.5 55. 8 30.9 2.0 56.9 29.1 2.5 55.0 29.8 3.0 53.1 32.6 3.5 53.9 33.1 4.0 49.0 38.3 4 .5 45.1 40.2 5.0 43.9 43.2 5.5 51.0 34.2 6.0 55.4 29.7 6.5 59.0 24.1 7.0 59.3. 24.3 8.0 58.6 25.0 8.5 45.0 40.6 (%) ─────────────────────────── ───────── As mentioned above, Kicking the medium pH is 1.5 to 3.
Euglena cultivated at 5, or 5.5 to 8.0 had lower paramylon and higher protein than those shown in the culture example.

【0014】実施例2 培養例とほぼ同様にしてユーグレナを培養した。しかし
培養中の培地pHは48時間まで4.5、48時間以降
は6.5とした。そして48時間目以降の培養中、下記
の設定で窒素源を添加した。
Example 2 Euglena was cultured in substantially the same manner as in the culture example. However, the medium pH during the culture was 4.5 until 48 hours and 6.5 after 48 hours. Then, during the culturing after the 48th hour, a nitrogen source was added at the following settings.

【0015】[0015]

【表3】 表3 ─────────────────────────────────── 添加窒素源 添加時間 添加量 pHコントロール ─────────────────────────────────── 1区 硝酸カリウム 48時間目 0.5 % 水酸化ナトリウム 2区 硫酸アンモニウム 48時間目 0.5 % 〃 3区 塩化アンモニウム 48時間目 0.5 % 〃 4区 グルタミン酸ナトリウム 48時間目 0.5 % 〃 5区 − − 〃 6区 − − アンモニア水 ───────────────────────────────────[Table 3] Table 3 ─────────────────────────────────── Addition nitrogen source Addition time Addition amount pH control ─────────────────────────────────── 1st section Potassium nitrate 48 hours 0.5% sodium hydroxide 2nd section Ammonium sulfate 48 Time 0.5% 〃 3 wards Ammonium chloride 48 hours 0.5% 〃 4 wards Sodium glutamate 48 hours 0.5% 〃 5 wards − − 〃 6 wards − − Ammonia water ─────────────── ─────────────────────

【0016】[0016]

【表4】 表4 ────────────────────────── タンパク質含量 パラミロン含量 (%) ────────────────────────── 1区 48.4 34.9 2区 68.6 15.5 3区 66.9 18.0 4区 65.7 19.7 5区 47.1 35.6 6区 74.1 11.8 ────────────────────────── 上記のように窒素源の添加によってよりパラミロン含量
は低くなるが、タンパク質含量が高い細胞を得ることが
できた。特に培養中のpHコントロールをアンモニア水
で行なうことによって別途窒素源を添加する事無く、高
蛋白細胞を得ることができる。これはpH制御の目的で
添加したアンモニア水が窒素源として作用した結果であ
る。また、ユーグレナは窒素源として硝酸態窒素を利用
することができないためか添加する窒素源が硝酸態窒素
では本発明の効果を十分期待できないことがわかる。な
お、本実施例において6区を除き、48時間目の培地中
にはアンモニア態窒素は検出されなかった。6区の培地
中ではアンモニア態窒素濃度は培養期間中ほぼ一定して
いた。
[Table 4] Table 4 ─────────────────────────── Protein content Paramylon content (%) ─────────── ─────────────── 1st ward 48.4 34.9 2nd ward 68.6 15.5 3rd ward 66.9 18.0 4th ward 65.7 19.7 5th ward 47 1 35.6 6 wards 74.1 11.8 ────────────────────────── As mentioned above, the addition of nitrogen source makes paramylon more effective. It was possible to obtain cells with a low protein content but a high protein content. In particular, by performing pH control with ammonia water during the culture, high protein cells can be obtained without adding a separate nitrogen source. This is a result of the fact that ammonia water added for the purpose of pH control acts as a nitrogen source. Further, it is understood that the effect of the present invention cannot be sufficiently expected when the added nitrogen source is nitrate nitrogen, probably because Euglena cannot utilize nitrate nitrogen as a nitrogen source. In addition, in this example, ammonia nitrogen was not detected in the medium at the 48th hour except for the 6th section. In the medium of the 6th section, the ammonia nitrogen concentration was almost constant during the culture period.

【0017】[0017]

【発明の効果】以上の実施例から明らかなように本発明
によるユーグレナの培養方法は従来の培養方法に比べて
簡便かつ効率的に高タンパク質のユーグレナ細胞を提供
することができる。また従来の方法で得ることが困難で
あったタンパク質60%以上の細胞も何ら特殊な装置を
も必要とせずに得ることが可能である。
As is apparent from the above examples, the method for culturing Euglena according to the present invention can provide Euglena cells with high protein simply and efficiently as compared with the conventional culture methods. Further, cells having a protein content of 60% or more, which are difficult to obtain by the conventional method, can be obtained without requiring any special device.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 北岡 正三郎 大阪府河内長野市大矢船中町17−11 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shozaburo Kitaoka 17-11 Oya Funakanakamachi, Kawachinagano City, Osaka Prefecture

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 パラミロンを30%(対乾物重量比)以
上含有するユーグレナ細胞を培地中で資化性窒素化合物
に接触させながら培地のpHを1.5ないし3.5又は
5.5ないし8.0の範囲として行なうことを特徴とす
るユーグレナの培養方法。
1. A pH of the medium is 1.5 to 3.5 or 5.5 to 8 while contacting Euglena cells containing paramylon in an amount of 30% or more (dry matter weight ratio) with assimilable nitrogen compounds in the medium. A method for culturing Euglena, characterized in that it is carried out in the range of 0.0.
【請求項2】 資化性窒素化合物を培地中に少なくとも
10ppm以上とする請求項1の方法。
2. The method according to claim 1, wherein the assimilable nitrogen compound is contained in the medium in an amount of at least 10 ppm or more.
【請求項3】 資化性窒素化合物がアンモニア態窒素化
合物又はアミノ酸のいずれかである請求項2の方法。
3. The method according to claim 2, wherein the assimilable nitrogen compound is either an ammoniacal nitrogen compound or an amino acid.
JP4263734A 1992-10-01 1992-10-01 Culture of euglena Pending JPH06113819A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4263734A JPH06113819A (en) 1992-10-01 1992-10-01 Culture of euglena

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4263734A JPH06113819A (en) 1992-10-01 1992-10-01 Culture of euglena

Publications (1)

Publication Number Publication Date
JPH06113819A true JPH06113819A (en) 1994-04-26

Family

ID=17393554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4263734A Pending JPH06113819A (en) 1992-10-01 1992-10-01 Culture of euglena

Country Status (1)

Country Link
JP (1) JPH06113819A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008207154A (en) * 2007-02-28 2008-09-11 Livestock Industry's Environmental Improvement Organization Digestion liquid processing method and its device
JP2009018211A (en) * 2007-06-15 2009-01-29 Mitsubishi Kakoki Kaisha Ltd Treatment apparatus of livestock excretions
JP2010090065A (en) * 2008-10-08 2010-04-22 Nihon Kolmar Co Ltd Cosmetic product
WO2012011421A1 (en) * 2010-07-20 2012-01-26 株式会社ユーグレナ Process for production of euglena containing wax ester at high content, and process for production of wax ester
WO2014157077A1 (en) * 2013-03-27 2014-10-02 国立大学法人筑波大学 Euglena spp. microalgae, polysaccharide manufacturing method, and organic compound manufacturing method
CN106497793A (en) * 2016-11-24 2017-03-15 王江新 A kind of Euglena culture medium and its cultural method
JP2017070239A (en) * 2015-10-07 2017-04-13 株式会社神鋼環境ソリューション Culture method of euglena
CN112481330A (en) * 2020-12-18 2021-03-12 天津科技大学 Fermentation production method of algae-derived beta-1, 3-glucan
JP2021166510A (en) * 2020-04-10 2021-10-21 スバル株式会社 Euglena culture method
CN114621313A (en) * 2020-12-10 2022-06-14 启迪禾美生物科技(嘉兴)有限公司 Euglena protein extract and application thereof in cosmetics

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008207154A (en) * 2007-02-28 2008-09-11 Livestock Industry's Environmental Improvement Organization Digestion liquid processing method and its device
JP2009018211A (en) * 2007-06-15 2009-01-29 Mitsubishi Kakoki Kaisha Ltd Treatment apparatus of livestock excretions
JP2010090065A (en) * 2008-10-08 2010-04-22 Nihon Kolmar Co Ltd Cosmetic product
US9045784B2 (en) 2010-07-20 2015-06-02 Euglena Co., Ltd. Method for production of euglena containing wax ester at high content, and method for production of wax ester
WO2012011421A1 (en) * 2010-07-20 2012-01-26 株式会社ユーグレナ Process for production of euglena containing wax ester at high content, and process for production of wax ester
JP2012023977A (en) * 2010-07-20 2012-02-09 Euglena Co Ltd Process for production of euglena containing wax ester at high content, and process for production of wax ester
CN105229140A (en) * 2013-03-27 2016-01-06 株式会社神钢环境舒立净 The manufacture method of Euglena microalgae, polyose and the manufacture method of organic compound
KR20150134350A (en) * 2013-03-27 2015-12-01 가부시키가이샤 신꼬오 간쿄우 솔루션 Euglena spp. microalgae, polysaccharide manufacturing method, and organic compound manufacturing method
WO2014157077A1 (en) * 2013-03-27 2014-10-02 国立大学法人筑波大学 Euglena spp. microalgae, polysaccharide manufacturing method, and organic compound manufacturing method
JPWO2014157077A1 (en) * 2013-03-27 2017-02-16 株式会社神鋼環境ソリューション Euglena microalgae, polysaccharide manufacturing method, and organic compound manufacturing method
US9845485B2 (en) 2013-03-27 2017-12-19 Kobelco Eco-Solutions Co., Ltd. Microalgae of the genus Euglena, method for producing polysaccharides, and method for producing organic compound
AU2014245973B2 (en) * 2013-03-27 2019-08-01 Kobelco Eco-Solutions Co., Ltd. Microalgae of the genus Euglena, method for producing polysaccharides, and method for producing organic compound
AU2014245973B8 (en) * 2013-03-27 2019-12-12 Kobelco Eco-Solutions Co., Ltd. Microalgae of the genus Euglena, method for producing polysaccharides, and method for producing organic compound
JP2017070239A (en) * 2015-10-07 2017-04-13 株式会社神鋼環境ソリューション Culture method of euglena
CN106497793A (en) * 2016-11-24 2017-03-15 王江新 A kind of Euglena culture medium and its cultural method
JP2021166510A (en) * 2020-04-10 2021-10-21 スバル株式会社 Euglena culture method
CN114621313A (en) * 2020-12-10 2022-06-14 启迪禾美生物科技(嘉兴)有限公司 Euglena protein extract and application thereof in cosmetics
CN112481330A (en) * 2020-12-18 2021-03-12 天津科技大学 Fermentation production method of algae-derived beta-1, 3-glucan

Similar Documents

Publication Publication Date Title
JPH06113819A (en) Culture of euglena
CN111363707A (en) Method for improving acid production rate and conversion rate of butyric acid fermentation
DE3427495A1 (en) METHOD FOR PRODUCING L-AMINO ACIDS FROM (ALPHA) KETO ACIDS
EP0079241B1 (en) Process for producing glutathione
US4210720A (en) Process for fermentatively producing vitamin B12
JPH0440888A (en) Production of fungus containing polymerized selenium
Mitchell et al. Improvement of growth of Rhizopus oligosporus on a model solid substrate
JP3915505B2 (en) Process for producing ε-poly-L-lysine
KR900005771B1 (en) Process for the preparation of glutamic acid
US3310475A (en) Method for producing l-aspartic acid
JPH09248179A (en) Production of iron-containing yeast
JPH06141875A (en) Production of 5-aminolevulinic acid by microorganism
JP2512117B2 (en) Method for producing chlorella high in γ-aminobutyric acid
JPH10500002A (en) Production of L-ascorbic acid in microorganisms
JP3165688B2 (en) Production method of d-isocitric acid by fermentation method
US5200326A (en) Method for the fermentative production of L-amino acids from α-keto acids
JPS6015309B2 (en) Production method of chromium yeast
FR2634218A1 (en) PROCESS FOR THE PRODUCTION OF BUTANOL AND ACETONE BY FERMENTATION FROM SUGAR CANE MOLASSES
JPS5922515B2 (en) Production method of cyanoacetic acid using microorganisms
JPH09131199A (en) Production of extracellular polysaccharide produced with microorganism of genus lipomyces
JPS6296095A (en) Conversion of acetamide cinamic acid to l-phenylalanine by fermentation
JPH06245782A (en) Production of trans-4-hydroxy-l-proline
JP2922213B2 (en) Method for producing 5'-inosinic acid by fermentation method
JPS6170991A (en) Production of poly-beta-hydroxybutryic acid with bacterium
JPS5926274B2 (en) Production method of coenzyme Q↓1↓0 by fermentation method