JP2512117B2 - Method for producing chlorella high in γ-aminobutyric acid - Google Patents

Method for producing chlorella high in γ-aminobutyric acid

Info

Publication number
JP2512117B2
JP2512117B2 JP30700088A JP30700088A JP2512117B2 JP 2512117 B2 JP2512117 B2 JP 2512117B2 JP 30700088 A JP30700088 A JP 30700088A JP 30700088 A JP30700088 A JP 30700088A JP 2512117 B2 JP2512117 B2 JP 2512117B2
Authority
JP
Japan
Prior art keywords
chlorella
aminobutyric acid
acid
algal cells
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP30700088A
Other languages
Japanese (ja)
Other versions
JPH02154681A (en
Inventor
寿雄 中村
恒夫 松林
利彦 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chlorella Industry Co Ltd
Original Assignee
Chlorella Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chlorella Industry Co Ltd filed Critical Chlorella Industry Co Ltd
Priority to JP30700088A priority Critical patent/JP2512117B2/en
Publication of JPH02154681A publication Critical patent/JPH02154681A/en
Application granted granted Critical
Publication of JP2512117B2 publication Critical patent/JP2512117B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、γ−アミノ酪酸高含有クロレラの製造方法
に関する。
TECHNICAL FIELD The present invention relates to a method for producing chlorella high in γ-aminobutyric acid.

[従来の技術] γ−アミノ酪酸は、脳中に存在するアミノ酸の一種
で、1950年にRobertsらによって脊椎動物の脳中に大量
に存在することが見出だされ、それ以来神経系の機能が
注目され、盛んに研究されるようになった。γ−アミノ
酪酸は、正常人の大脳皮質に40mg%の割合で含まれ、ア
ミノ酸神経伝達物質として脳内のノルエピネフリンを低
下させ、セロトニンを増加させ、神経刺激の伝達に重要
なアセチルコリンを増加させることにより脳の機能促進
に関与したり、脳内のγ−アミノ酪酸量の減少が神経細
胞興奮から痙攣に移行する過程の引き金的役割を担って
いることから痙攣抑制作用があることも知られている。
このようにγ−アミノ酪酸は、その特異な機能から医薬
品として扱われてきた。
[Prior Art] γ-aminobutyric acid is a kind of amino acid existing in the brain, and was found by Roberts et al. In 1950 to be present in large amounts in the brain of vertebrates. Has been attracting attention and has been actively studied. γ-Aminobutyric acid is contained in the cerebral cortex of normal people at a rate of 40 mg%, and it decreases norepinephrine in the brain as an amino acid neurotransmitter, increases serotonin, and increases acetylcholine, which is important for transmission of nerve stimulation. It is also known to have a convulsive suppressive action because it is involved in promoting the function of the brain, and that a decrease in the amount of γ-aminobutyric acid in the brain plays a triggering role in the process of transition from nerve cell excitation to convulsions. There is.
Thus, γ-aminobutyric acid has been treated as a drug because of its unique function.

ところで、γ−アミノ酪酸は種々の植物に含有してい
ることが解明され、該アミノ酪酸を製造することも従来
より試みられている。具体的には、1970年T.R.LaneとMa
rv.Stillerは淡水産緑藻であるクロレラの培養後期にお
いて代謝阻害剤としてフッ化ナトリウム、酢酸、乳酸、
プロピオン酸等を添加して低pHにし、かつ嫌気性条件に
することによって、クロレラ中のグルタミン酸が脱炭酸
されてγ−アミノ酪酸に転換されることが報告されてい
る。
By the way, it has been clarified that γ-aminobutyric acid is contained in various plants, and it has been attempted to produce the aminobutyric acid. Specifically, 1970 TRLane and Ma
rv.Stiller is a freshwater green alga Chlorella in late culture stage as a metabolic inhibitor sodium fluoride, acetic acid, lactic acid,
It has been reported that glutamic acid in chlorella is decarboxylated and converted to γ-aminobutyric acid by adding propionic acid or the like to a low pH and anaerobic conditions.

[発明が解決しようとする課題] しかしながら、上記報告による方法ではγ−アミノ酪
酸含有量の高いクロレラを製造することが困難であっ
た。
[Problems to be Solved by the Invention] However, it was difficult to produce chlorella having a high γ-aminobutyric acid content by the method reported above.

本発明は、上記従来の課題を解決するためになされた
もので、γ−アミノ酪酸の含有率が極めて高いクロレラ
を製造し得る方法を提供しようとするものである。
The present invention has been made in order to solve the above conventional problems, and an object thereof is to provide a method capable of producing chlorella having an extremely high content rate of γ-aminobutyric acid.

[課題を解決するための手段] 本発明は、クロレラを有機炭素源を含み、かつpHが6
〜8の培養液中にて好気性雰囲気で暗培養し、更に前記
炭素源が欠乏した時に前記pH値、好気性雰囲気を維持し
つつ窒素源を添加して再培養を行なった後、pH3〜5の
条件下で低pH処理することを特徴とするγ−アミノ酪酸
高含有クロレラの製造方法である。
[Means for Solving the Problems] The present invention contains chlorella as an organic carbon source and has a pH of 6 or less.
~ 8 in dark culture in aerobic atmosphere, when the carbon source is deficient, the pH value, while maintaining the aerobic atmosphere, a nitrogen source is added and recultured, then pH 3 ~ A method for producing chlorella having a high content of γ-aminobutyric acid, which is characterized by performing low pH treatment under the condition of 5.

上記暗培養時及び再培養時において好気性雰囲気とす
る手段としては、例えば空気などの酸素を含むガスの曝
気処理法又は通気攪拌法等を採用し得る。
As a means for creating an aerobic atmosphere during the above dark culture and reculture, for example, an aeration treatment method of an oxygen-containing gas such as air or an aeration stirring method can be adopted.

上記暗培養時でのpHを6〜8に限定した理由は、この
範囲を逸脱するとクロレラの増殖性が阻害されるからで
ある。また、上記再培養時でのpHを6〜8に維持する理
由はこの範囲を逸脱すると培養されたクロレラ中でのグ
ルタミン酸の蓄積性が低下するからである。これらのpH
調整には、例えばNaOH等のpH調整剤を用いることができ
る。
The reason why the pH in the dark culture is limited to 6 to 8 is that the growth of Chlorella is inhibited if the pH is out of this range. Further, the reason for maintaining the pH at 6 to 8 during the above-mentioned reculturing is that if it deviates from this range, the accumulating ability of glutamic acid in the cultivated chlorella decreases. These pH
A pH adjusting agent such as NaOH can be used for the adjustment.

上記再培養時に添加される窒素源としては、例えばア
ンモニア、尿素、硝酸等を挙げることができる。特に、
再培養時ではクロレラから有機酸が産出されるので前記
pH6〜8を維持するにはアルカリ性調整剤の添加が必要
であるが、窒素源としてアンモニアを使用することによ
りpH調整剤を兼用することが可能となる。
Examples of the nitrogen source added during the reculturing include ammonia, urea, nitric acid and the like. In particular,
Since organic acids are produced from Chlorella during reculturing,
To maintain the pH of 6 to 8, it is necessary to add an alkalinity adjusting agent, but by using ammonia as the nitrogen source, it becomes possible to also serve as the pH adjusting agent.

上記低pH処理時でのpHを3〜5に限定した理由は、こ
の範囲を逸脱するとクロレラに蓄積されたグルタミン酸
をγ−アミノ酪酸に効率よく変換できなくなるからであ
る。
The reason for limiting the pH during the low pH treatment to 3 to 5 is that glutamic acid accumulated in chlorella cannot be efficiently converted into γ-aminobutyric acid if the pH is outside this range.

上記低pH処理での雰囲気は、好気性、嫌気性いずれで
もよいが、クロレラに蓄積されたグルタミン酸を効率よ
くγ−アミノ酪酸に変換させる観点から嫌気性雰囲気で
行なうことが望ましい。
The atmosphere for the low pH treatment may be either aerobic or anaerobic, but it is desirable to carry out the anaerobic atmosphere from the viewpoint of efficiently converting glutamic acid accumulated in chlorella into γ-aminobutyric acid.

[作用] 本発明によれば、クロレラを所定の培養液中で暗培養
し、更に前記炭素源が欠乏した時に前記pH値、好気性雰
囲気を維持しつつ窒素源を添加して再培養を行なうこと
によって、クロレラ中へのグルタミン酸の蓄積を促進で
きる。その結果、この後の低pH処理によりクロレラ中の
グルタミン酸をγ−アミノ酪酸に変換する際、該グルタ
ミン酸の蓄積量が多いため、γ−アミノ酪酸の含有率の
高いクロレラの製造することができる。従って、製造さ
れたクロレラを水洗後そのまま熱処理してスプレードラ
イを行なって粉末にしたり、また熱抽出したエキスを利
用することにより今までの医薬としてしか摂取できなか
ったγ−アミノ酪酸を安全かつ継続的に摂取することが
可能となる。
[Operation] According to the present invention, chlorella is dark-cultured in a predetermined culture medium, and when the carbon source is deficient, a nitrogen source is added while maintaining the pH value and aerobic atmosphere, and re-culture is performed. This can promote the accumulation of glutamate in Chlorella. As a result, when glutamic acid in chlorella is converted to γ-aminobutyric acid by a low pH treatment thereafter, the amount of accumulated glutamic acid is large, so that chlorella having a high γ-aminobutyric acid content can be produced. Therefore, the produced chlorella is washed with water and then heat-treated as it is to be spray-dried into powder, or by utilizing the heat-extracted extract, γ-aminobutyric acid, which could only be taken as a medicine until now, can be safely and continuously maintained. It becomes possible to ingest.

[実施例] 以下、本発明の実施例を詳細に説明する。[Examples] Examples of the present invention will be described in detail below.

実施例 まず、10lのジャーファーメンター中に下記に示す組
成の培養液6lを収容すると共に、単細胞藻類としてクロ
レラ藻体を加え、NaOHの添加によりpH7に調整し、かつ
温度25℃の条件で通気攪拌を行ないながら暗培養を行な
った。こうした暗培養後のクロレラ藻体量はPCV 150で
あった。つづいて、温度25℃で通気攪拌を続行しながら
窒素源であるアンモニアを添加してpH7付近に維持して1
2時間再培養を行なった。次いで、通気を停止し、攪拌
を続行しながら0.01Mの酢酸及びリン酸を添加してpHを
4とすると共に温度25℃下で低pH処理を1時間を行なっ
た。この後、ジャーファーメンターからクロレラ藻体を
取出し、連続遠心分離によりクロレラ藻体を分離し、水
洗、乾燥を行なった。
Example First, while containing 6 l of the culture solution having the composition shown below in a 10 l jar fermenter, chlorella algal cells were added as unicellular algae, pH was adjusted to 7 by addition of NaOH, and aeration was performed at a temperature of 25 ° C. Dark culture was performed with stirring. The amount of Chlorella algal cells after such dark culture was PCV 150. Then, while continuing aeration and stirring at a temperature of 25 ° C, ammonia, which is a nitrogen source, was added to maintain the pH around 7.
Reculture was performed for 2 hours. Then, aeration was stopped, and while continuing stirring, 0.01M acetic acid and phosphoric acid were added to adjust the pH to 4, and a low pH treatment was carried out at a temperature of 25 ° C. for 1 hour. Then, the Chlorella algal cells were taken out from the jar fermenter, separated by continuous centrifugation, washed with water and dried.

〔培養液組成〕[Culture solution composition]

グルコース 100 g/l リン酸カルシウム 2.5g/l 硫酸マグネシウム 2.5g/l 尿素 7.5g/l Fe-EDTA 75mg/l A5solution(微量元素)15ml/l 比較例 前記実施例と同様に10lのジャーファーメンター中に
上述した組成の培養液6lを収容すると共に、単細胞藻類
としてクロレラ藻体を加え、NaOHの添加によりpH7に調
整し、かつ温度25℃の条件で通気攪拌を行ないながら暗
培養を行なった。こうした暗培養後のクロレラ藻体量は
PCV 150であった。次いで、通気を停止し、攪拌を続行
しながら0.01Mの酢酸及びリン酸を添加してpHを4とす
ると共に温度25℃下で低pH処理を1時間を行なった。こ
の後、ジャーファーメンターからクロレラ藻体を取出
し、連続遠心分離によりクロレラ藻体を分離し、水洗、
乾燥を行なった。
Glucose 100 g / l Calcium phosphate 2.5 g / l Magnesium sulfate 2.5 g / l Urea 7.5 g / l Fe-EDTA 75 mg / l A5solution (trace element) 15 ml / l Comparative example In a 10 l jar fermenter as in the previous example While holding 6 l of the culture solution having the above-mentioned composition, chlorella algal cells were added as single-celled algae, pH was adjusted to 7 by addition of NaOH, and dark culture was performed while performing aeration and stirring at a temperature of 25 ° C. The amount of Chlorella algal cells after such dark culture is
It was a PCV 150. Then, aeration was stopped, and while continuing stirring, 0.01 M acetic acid and phosphoric acid were added to adjust the pH to 4, and low pH treatment was carried out at a temperature of 25 ° C. for 1 hour. After this, take out the Chlorella algal cells from the jar fermenter, separate the Chlorella algal cells by continuous centrifugation, wash with water,
It was dried.

しかして、本実施例及び比較例の低pH処理を行なう前
のクロレラ藻体を100℃、15分間で熱抽出を行ない、遠
心分離後の上澄液についてアミノ酸分析を行なったとこ
ろ、下記第1表に示す結果を得た。
Then, the Chlorella algal cells before the low pH treatment of this example and the comparative example were subjected to heat extraction at 100 ° C. for 15 minutes, and amino acid analysis was performed on the supernatant after centrifugation. The results shown in the table were obtained.

上記第1表から明らかなように本実施例の方法は比較
例に比べてL−グルタミン酸の含有率が極めて高いクロ
レラ藻体を製造できる。
As is clear from Table 1 above, the method of this example can produce Chlorella algal cells having a significantly higher L-glutamic acid content than the comparative example.

次に上記のクロレラ藻体をpH処理した後、同様の条件
でアミノ酸分析を行なったところ下記第2表に示す結果
を得た。
Next, after the above-mentioned Chlorella algal cells were subjected to pH treatment, amino acid analysis was performed under the same conditions, and the results shown in Table 2 below were obtained.

上記第2表から明らかなように本実施例の方法は比較
例に比べてγ−アミノ酪酸の含有率が極めて高いクロレ
ラ藻体を製造できることがわかる。
As is clear from Table 2 above, it can be seen that the method of this example can produce Chlorella algal cells having an extremely high content of γ-aminobutyric acid as compared with the comparative example.

[発明の効果] 以上詳述した如く、本発明によればγ−アミノ酪酸含
有率の高いクロレラを製造でき、ひいては該クロレラの
乾燥による粉末化、エキスの熱抽出を行なうことにより
今までの医薬としてしか摂取できなかったγ−アミノ酪
酸を安全かつ継続的に摂取できる等顕著な効果を奏す
る。
[Effects of the Invention] As described in detail above, according to the present invention, chlorella having a high γ-aminobutyric acid content can be produced, and further, the chlorella is powdered by drying and the extract is subjected to heat extraction to obtain a conventional medicine. As a result, remarkable effects such as safe and continuous ingestion of γ-aminobutyric acid that could only be taken as an effect are exhibited.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】クロレラを有機炭素源を含み、かつpHが6
〜8の培養液中にて好気性雰囲気で暗培養し、更に前記
炭素源が欠乏した時に前記pH値、好気性雰囲気を維持し
つつ窒素源を添加して再培養を行なった後、pH3〜5の
条件下で低pH処理することを特徴とするγ−アミノ酪酸
高含有クロレラの製造方法。
1. A chlorella containing an organic carbon source and having a pH of 6
~ 8 in dark culture in aerobic atmosphere, when the carbon source is deficient, the pH value, while maintaining the aerobic atmosphere, a nitrogen source is added and recultured, then pH 3 ~ A method for producing a γ-aminobutyric acid-enriched chlorella, which comprises treating with low pH under the condition of 5.
JP30700088A 1988-12-06 1988-12-06 Method for producing chlorella high in γ-aminobutyric acid Expired - Lifetime JP2512117B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30700088A JP2512117B2 (en) 1988-12-06 1988-12-06 Method for producing chlorella high in γ-aminobutyric acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30700088A JP2512117B2 (en) 1988-12-06 1988-12-06 Method for producing chlorella high in γ-aminobutyric acid

Publications (2)

Publication Number Publication Date
JPH02154681A JPH02154681A (en) 1990-06-14
JP2512117B2 true JP2512117B2 (en) 1996-07-03

Family

ID=17963809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30700088A Expired - Lifetime JP2512117B2 (en) 1988-12-06 1988-12-06 Method for producing chlorella high in γ-aminobutyric acid

Country Status (1)

Country Link
JP (1) JP2512117B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100500333B1 (en) * 2002-03-22 2005-07-11 김미경 Culture medium with BMW, and the processing method
DE102011110996A1 (en) * 2011-08-18 2013-02-21 Evonik Goldschmidt Gmbh Process for the preparation of 4-aminobutyric acid from algae

Also Published As

Publication number Publication date
JPH02154681A (en) 1990-06-14

Similar Documents

Publication Publication Date Title
EP0720974A1 (en) Bacterial preparation and its use for treating wastes of biological origin
EP0623580A1 (en) 2-ceto-3-methyl-4-hydroxy-valeric acid
JPH0262320B2 (en)
JP2512117B2 (en) Method for producing chlorella high in γ-aminobutyric acid
JPH06113819A (en) Culture of euglena
JPH03130084A (en) Production of trehalose
US3458400A (en) Process for producing l-alanine
JPH0440888A (en) Production of fungus containing polymerized selenium
CN102634545A (en) Method for producing L-malic acid by fermenting sucrose molasses
JPS5838153B2 (en) Hatsukouhou Niyoramino Sanno Seizouhou
JPH0799967A (en) Lactobacillus growth promoter
JPH09248179A (en) Production of iron-containing yeast
KR102124585B1 (en) manufacturing method of fermented amino acid fertilizer and fermented amino acid fertilizer manufactured by the method
DE1960524C3 (en) Fermentative process for the production of L-3,4-dihydroxyphenylalanine
JPH037587A (en) Production of l-malic acid
JP2833037B2 (en) Glutathione-rich yeast production method
JPH08133980A (en) Hypotensive agent
KR900000938B1 (en) Process for preparing l-glutamic acid by fermentation
WO2021011726A1 (en) Novel soil amendment with reduced metal content for reducing metal uptake by growing plants, and processes for making and using same
KR900000523B1 (en) Process for preparing l-glutamic acid of zymotechnics
DE1642636C (en) Process for the fermentative production of the enzyme L methiomine decarboxylase
AU619500B2 (en) Process for the preparation of sulphur-containing hydrocarbon chains
RU2005119C1 (en) Method for preparing bifidum bacteria biomass
SU550421A1 (en) The method of growing microorganisms
CN110092729A (en) A kind of method for crystallising of L lysine HCL

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20090416