JPH0440888A - Production of fungus containing polymerized selenium - Google Patents

Production of fungus containing polymerized selenium

Info

Publication number
JPH0440888A
JPH0440888A JP2149318A JP14931890A JPH0440888A JP H0440888 A JPH0440888 A JP H0440888A JP 2149318 A JP2149318 A JP 2149318A JP 14931890 A JP14931890 A JP 14931890A JP H0440888 A JPH0440888 A JP H0440888A
Authority
JP
Japan
Prior art keywords
selenium
cells
bacterial cells
concentration
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2149318A
Other languages
Japanese (ja)
Other versions
JPH0616702B2 (en
Inventor
Eiko Watanabe
渡辺 栄孝
Nobuaki Nakagawa
信明 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Jozo KK
Asahi Chemical Industry Co Ltd
Original Assignee
Toyo Jozo KK
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Jozo KK, Asahi Chemical Industry Co Ltd filed Critical Toyo Jozo KK
Priority to JP2149318A priority Critical patent/JPH0616702B2/en
Publication of JPH0440888A publication Critical patent/JPH0440888A/en
Publication of JPH0616702B2 publication Critical patent/JPH0616702B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the title fungi at a high proliferation rate by dispersing fungi produced by incubating specific microorganisms in an aqueous solution containing an organic compound as substrate and a water-soluble selenium compound. CONSTITUTION:Firstly, yeast such as beer yeast, bacteria such as lactobacillus, or unicellular algae such as Chlorella is, as the case may be, incubated and proliferated. The resultant fungi collected is washed with e.g. water and prepared to a fungal concentration at a level not lower than the biological space. The fungi is then dispersed in an aqueous solution containing (A) an organic compound as substrate for polymerizing selenium (e.g. saccharide such as glucose and/or amino acid such as leucine and (B) a water-soluble selenium compound such as selenious acid, and reacted into polymerized selenium which is then accumulated in the fungi. After reaction, the fungi is collected through e.g. centrifugation and washed with water, thus giving the objective fungi at a high proliferation rate. The present fungi can be concentrated; therefore, the waste liquor therefrom can be reduced.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、高分子化セレン含有菌体の製造法に関し、本
発明で得られる高分子化セレン含有菌体は動物用飼料、
餌料または食品等に添加せしめることによりヒトまたは
動物のセレン欠乏症の予防等に利用できる。
Detailed Description of the Invention <Industrial Application Field> The present invention relates to a method for producing polymerized selenium-containing microbial cells, and the polymerized selenium-containing microbial cells obtained by the present invention can be used in animal feed,
It can be used to prevent selenium deficiency in humans or animals by adding it to feed or food.

〈従来の技術〉 セレンは原子番号34、原子量79の元素であり、以前
は元素としては単に生体に有害なものとしてのみ知られ
ていたが、1957年にSchwarzらが初めてセレ
ン(以下、セレンとは元素セレンを示す)に生理的な役
割があることを発表しくJ、Am、Ches、Soc、
、79:3292,1957)、有毒であるとともに使
用法によっては生体内の有効成分になることが判明した
。それ以来セレンの生体内における有用性が注目されて
きており、その後Sc。
<Prior art> Selenium is an element with an atomic number of 34 and an atomic weight of 79. Previously, it was only known as an element that it was harmful to living organisms, but in 1957, Schwarz et al. J, Am, Ches, Soc,
79:3292, 1957), it was found to be toxic and, depending on how it is used, to become an active ingredient in living organisms. Since then, the usefulness of selenium in living organisms has attracted attention, and subsequently, Sc.

11らの研究によりビタミンEの欠乏による家畜の障害
である子牛等の白筋症、豚の肝臓ネフローゼ、筋肉の発
育異常等の防止にセレンが有効であることが認められ(
Feedstuffs、29,41.20(1957)
)、1969年にはThompsonと5cottらに
よりセレンそのものが動物にとって必須の元素であるこ
とが証明され(J、Nutr、、97:335,196
9 )、ヒトでも必須元素であることは間違いないとさ
れた。
11 studies have shown that selenium is effective in preventing livestock disorders caused by vitamin E deficiency, such as white muscle disease in calves, liver nephrosis in pigs, and muscle growth abnormalities (
Feedstuffs, 29, 41.20 (1957)
), and in 1969, Thompson and Scott et al. demonstrated that selenium itself is an essential element for animals (J. Nutr., 97:335, 196
9), there is no doubt that it is an essential element for humans as well.

現在までに多くの種でセレン欠乏症が知られておりオー
ストラリアやニューシーラントではセレンを鉱物塩また
は肥料に加えるか配合飼料の補助剤として用いている。
Selenium deficiency is known to date in many species, and in Australia and New Zealand, selenium is added to mineral salts or fertilizers, or used as an adjunct to compound feed.

また、セレン単独またはセレンとビタミンの混合物とし
ては世界中のセレン欠乏地域において広範に使用されて
おり、その後も1972年にはセレンがグルタチオンパ
ーオキシダーゼの構成成分であることが発表され、19
74年末国FDAでセレンの飼料添加が認可される等、
セレンの生理学的な研究がより活発になされてきている
In addition, selenium alone or as a mixture of selenium and vitamins is widely used in selenium-deficient areas around the world, and in 1972 it was announced that selenium is a component of glutathione peroxidase.
At the end of 1974, the country's FDA approved the addition of selenium to feed, etc.
Physiological research on selenium is becoming more active.

一方、供給源を無機セレンとしてではなく有機化したセ
レンとする報告としては、セレンとアミノ酸の結合体に
関する報告やセレンを含有する微生物の供給に関する報
告がされている。例えば米国特許第4530846号の
セレン酵母の製造法等が挙げられ、また、日本国内では
安全性の面から飼料1食品等へ無機セレンのまま添加す
ることは認可されていない状況下、いくつかの有機化セ
レンに関する報告がされている。例えば特公昭55−3
6314号は、予め微生物の生育を著しく阻害しない水
溶性無機セレン化合物を添加した培地で、セレンを菌体
内に蓄積することのできる微生物を培養・増殖させるこ
とにより有機化されたセレン含有微生物菌体を得る製造
法であり、さらに特開昭57−174098号はセレン
化合物を添加した培地で培養して得たセレン含有酵母菌
体から生理活性含セレン蛋白多糖体を得る方法であり、
特開昭60−180582号はセレン化合物を含有する
培地で培養することによりL−セレノンステインを蓄積
できる細菌を報告している。また、その他にも合成法に
よるセレン結合蛋白質の製造法等も報告されている。さ
らに特開昭60224451号は、予め無機セレンを添
加した培地で微生物を培養・増殖させることにより得た
有機化セレン含有微生物菌体を家畜・家禽用飼料に添加
した飼料組成物を報告している。
On the other hand, there have been reports regarding organic selenium as a supply source rather than inorganic selenium, such as reports regarding combinations of selenium and amino acids and reports regarding the supply of selenium-containing microorganisms. For example, U.S. Patent No. 4,530,846 discloses a method for producing selenium yeast, and in Japan, adding inorganic selenium to feeds, foods, etc. is not approved for safety reasons, and several There have been reports regarding organic selenium. For example, Tokuko Sho 55-3
No. 6314 is a selenium-containing microbial cell that has been organicized by culturing and propagating microorganisms that can accumulate selenium in their cells in a medium to which a water-soluble inorganic selenium compound that does not significantly inhibit the growth of microorganisms has been added. Further, JP-A-57-174098 discloses a method for obtaining bioactive selenium-containing protein polysaccharides from selenium-containing yeast cells obtained by culturing in a medium supplemented with selenium compounds,
JP-A-60-180582 reports a bacterium that can accumulate L-selenone stain by culturing in a medium containing a selenium compound. In addition, methods for producing selenium-binding proteins by synthetic methods have also been reported. Furthermore, JP-A-60224451 reports a feed composition in which organic selenium-containing microbial cells obtained by culturing and propagating microorganisms in a medium to which inorganic selenium has been added are added to feed for livestock and poultry. .

〈発明が解決しようとする問題点〉 上述の、供給源を無機セレンとしてではなく有機化した
セレンとする方法は、いづれも予め無機セレンを添加さ
せた培地で微生物を培養・増殖せしめることにより有機
化セレン含有菌体を得ている。この場合、菌体にセレン
を取込ませるに当たって無機セレンの存在下に微生物の
増殖をも行わせてセレンを有機化するが、添加するセレ
ンが無機セレンであることから微生物の生育が無機セレ
ンの毒性により生育阻害を受けるため、無機セレン濃度
は該微生物の生育を著しく阻害しない最低限度量に当然
制限されなければならない。また、添加するセレン濃度
を微生物の生育を著しく阻害しない最低限度量にしても
、やはり何らセレンを添加しない通常の培地で培養・増
殖させる場合に比べると菌体増殖に長時間を要し増殖率
も極めて悪く、また菌体のセレン取込み効率も悪く、し
たがって有機化セレン含を菌体の収率は掻めて低くなる
。さらに、微生物の生育を阻害しない最低限度量である
低濃度のセレン添加に制限されることにより、培地中の
セレン濃度を常に測定しつつ目的濃度まで複数回に渡っ
て添加しなければならないという繁雑な培養工程を行う
必要性もあり、そのように培養を行っても、菌体濃度に
限界があることから菌体内に取込まれずに培養上清に残
存する無機セレン濃度が高くなり、廃液処理時に培養上
清に残存する無機セレンを除去する作業が必要となる。
<Problems to be solved by the invention> The above-mentioned methods of using organic selenium instead of inorganic selenium as a supply source involve culturing and growing microorganisms in a medium to which inorganic selenium has been added in advance. We have obtained selenium-containing bacterial cells. In this case, in order to incorporate selenium into the bacterial cells, microorganisms are allowed to grow in the presence of inorganic selenium to make the selenium organic. However, since the added selenium is inorganic selenium, the growth of microorganisms is less likely to occur than inorganic selenium. Since growth is inhibited due to toxicity, the concentration of inorganic selenium must naturally be limited to the minimum amount that does not significantly inhibit the growth of the microorganism. In addition, even if the added selenium concentration is set to the minimum level that does not significantly inhibit the growth of microorganisms, it still takes a longer time for bacterial cell growth than when culturing and propagating in a normal medium without any selenium added, resulting in a higher growth rate. Furthermore, the selenium uptake efficiency of the bacterial cells is also poor, and the yield of organic selenium-containing bacterial cells is therefore extremely low. Furthermore, because the addition of selenium is limited to a low concentration, which is the minimum amount that does not inhibit the growth of microorganisms, it is complicated to constantly measure the selenium concentration in the culture medium and add it multiple times to reach the desired concentration. Even if culture is carried out in this way, there is a limit to the concentration of bacterial cells, so the concentration of inorganic selenium that remains in the culture supernatant without being incorporated into the bacterial cells will increase, making it difficult to dispose of waste liquid. Sometimes it is necessary to remove inorganic selenium remaining in the culture supernatant.

しかし、培養上清中には他にも種々成分が混在すること
から、無機セレンを除去するためには極めて煩雑な操作
が必要であり、したがってコストアップにもつながって
いた。
However, since various other components are present in the culture supernatant, extremely complicated operations are required to remove inorganic selenium, leading to increased costs.

〈問題点を解決するための手段〉 本発明者らは、上記の問題点を解決すべく鋭意研究を行
ったところ、有機化されたセレン、即ち高分子化セレン
を菌体内に蓄積することのできる微生物を、予め実質的
にセレンを添加しない培地で適宜培養・増殖させ、その
後菌体を集菌し、必要に応して水洗して培養培地成分を
除去した後、菌体の培養・増殖を必要としない条件、好
ましくは菌体濃度をハイロジカルスペース以上に調製し
、該菌体をセレンの高分子化基質となり得る有機化合物
である糖および/またはアミノ酸と必要に応しリン酸塩
ならびに水溶性セレン化合物を含有する水溶液に分散せ
しめることにより、意外にも実質的に菌体の培養・増殖
を必要とせずにセレンが効率的に菌体内に取り込まれ蛋
白質等と結合されて高分子化セレンとなり、菌体内に安
定に多量の高分子化セレンを蓄積せしめることが可能で
あることを見出し、以上から新規な高分子化セレン含有
菌体の製造法を確立するに至った。
<Means for Solving the Problems> The present inventors conducted intensive research to solve the above problems, and found that organic selenium, that is, polymerized selenium, accumulates in bacterial cells. The microorganisms that can be produced are cultured and propagated appropriately in advance in a medium that does not substantially contain selenium, then the bacterial cells are collected, and if necessary, after washing with water to remove culture medium components, the bacterial cells are cultured and propagated. Conditions that do not require the use of sugars and/or amino acids, which are organic compounds that can serve as substrates for selenium polymerization, and phosphates and By dispersing it in an aqueous solution containing a water-soluble selenium compound, selenium is efficiently incorporated into the bacterial cells and combined with proteins, etc., to form polymers, surprisingly without the need for culturing or multiplying the bacterial cells. We discovered that it is possible to stably accumulate a large amount of polymerized selenium within bacterial cells, and based on the above, we established a novel method for producing polymerized selenium-containing bacterial cells.

本発明は上記の知見に基づいて完成されたもので、即ち
、高分子化セレンを菌体内に蓄積することのできる微生
物を培養して得た菌体をバイオロジカルスペース以上の
菌体濃度とし、該菌体をセレンの高分子化基質である有
機化合物および水溶性セレン化合物を含有する水溶液に
分散せしめることにより、該菌体に高分子化セレンを蓄
積せしめることを特徴とする高分子化セレン含有国体の
製造法である。
The present invention has been completed based on the above findings, namely, by culturing microorganisms capable of accumulating polymerized selenium within the bacterial cells, the bacterial cell concentration is increased to a level higher than the biological space; A polymerized selenium-containing method characterized in that polymerized selenium is accumulated in the bacterial cells by dispersing the bacterial cells in an aqueous solution containing an organic compound that is a polymerization substrate for selenium and a water-soluble selenium compound. This is the national production method.

本発明において、菌体をセレンの高分子化基質となり得
る有機化合物および水溶性セレン化合物を含有する水溶
液(以下、反応液ということがある)に分散せしめるこ
とにより菌体に高分子化セレンが蓄積される過程を推定
すれば、まずセレンの高分子化基質となり得るとした有
機化合物である糖および/またはアミノ酸等が、菌体の
培養・増殖を必要としない状態、好ましくはバイオロジ
カルスペース濃度以上に調製されて分散された菌体に接
触して菌体内でエネルギーを発生させる基質となり、水
溶性無機セレン化合物中のセレンを菌体内に取込む現象
を活性化させるためのエネルギー源を与えると推測され
る。言い換えれば、菌体が反応液に分散されて反応液中
の糖やアミノ酸等のエネルギー基質を基に菌体内反応機
構である高エネルギーリン酸化合物合成機構が働くこと
により生成されるエネルギーを利用して、菌体内にセレ
ンを取込ませる反応を触発せしめると推測される。高エ
ネルギーリン酸化合物にはアデノシンニリン酸(ATP
)、  ウラノシル三リン酸(UTP)、グアノシル三
リン酸(GTP)、  シトシル三リン酸(CTP)が
あるが、本発明で利用されているエネルギーは上記のい
づれであってもよい。
In the present invention, polymerized selenium accumulates in bacterial cells by dispersing them in an aqueous solution (hereinafter sometimes referred to as reaction solution) containing an organic compound and a water-soluble selenium compound that can serve as a substrate for polymerizing selenium. Estimating the process by which organic compounds such as sugars and/or amino acids that can be used as selenium polymerization substrates are first grown in a state that does not require the cultivation and proliferation of bacterial cells, preferably at a concentration higher than the biological space concentration. It is speculated that this substance becomes a substrate that generates energy within the bacterial cells when it comes into contact with the bacterial cells prepared and dispersed, and provides an energy source to activate the phenomenon of selenium in water-soluble inorganic selenium compounds being taken into the bacterial cells. be done. In other words, the microbial cells are dispersed in the reaction solution and utilize the energy generated by the action of the high-energy phosphoric acid compound synthesis mechanism, which is an intracellular reaction mechanism, based on energy substrates such as sugars and amino acids in the reaction solution. It is assumed that this reaction triggers a reaction that causes selenium to be taken into the bacterial body. High-energy phosphate compounds include adenosine diphosphate (ATP
), uranosyl triphosphate (UTP), guanosyl triphosphate (GTP), and cytosyl triphosphate (CTP), and the energy utilized in the present invention may be any of the above.

主に糖および/またはアミノ酸を基質として菌体内で合
成されたそれらは、まずセレンが菌体細胞膜を透過する
ために利用され、さらに細胞膜を透過したセレンが菌体
内に取り込まれて菌体内蛋白質と結合して高分子セレン
に変換される迄の反応を通して有効に利用されると推測
するが、本発明は何らこれらによって限定されるもので
はない。
Synthesized within the bacterial body mainly using sugars and/or amino acids as substrates, selenium is first used to penetrate the bacterial cell membrane, and then the selenium that has passed through the cell membrane is taken up into the bacterial body and converted into bacterial proteins. Although it is presumed that the selenium is effectively utilized through the reaction of binding and converting it into polymeric selenium, the present invention is not limited thereto in any way.

本発明の製造法の目的は、予めセレンを添加しない実質
的にセレンを含有しない培地で菌体を培養・増殖させる
ため、培養時にセレンによる生育阻害が無く、従来技術
にある予めセレンを添加させた培地で培養・増殖させる
場合に比すと菌体の増殖速度が早く、また増殖率も優れ
ている方法を提供する。
The purpose of the production method of the present invention is to culture and proliferate the bacterial cells in a substantially selenium-free medium without adding selenium in advance, so there is no growth inhibition due to selenium during culturing, and there is no need to add selenium in advance as in the prior art. To provide a method in which the growth rate of bacterial cells is faster and the growth rate is also excellent compared to the case where cells are cultured and grown in a different medium.

また、本発明は菌体を培地で充分培養・増殖させ、集菌
後に反応液へ該菌体を分散させるため、菌体を濃縮化す
ることが可能であることがら反応系を小さくでき、した
がって反応後の廃液を少量化することができ、また、反
応液中にセレン以外の金属を含まないため廃液処理を簡
便にする方法を提供する。
In addition, in the present invention, the bacterial cells are sufficiently cultured and multiplied in a medium, and after the bacteria are collected, the bacterial cells are dispersed in the reaction solution, so that the bacterial cells can be concentrated, so the reaction system can be made smaller. To provide a method in which the amount of waste liquid after reaction can be reduced, and the waste liquid treatment can be simplified because the reaction liquid does not contain metals other than selenium.

さらに、本発明は菌体を適宜増殖させ、集菌後に水洗し
て培養培地成分を除去した後菌体羞度を好ましくはバイ
ロジカルスペース以上に調製して培養・増殖を停止させ
、次いで反応液へ該菌体を分散させるため、当然反応せ
しめる際には菌体増殖の必要は無く、菌体増殖阻害を生
ずるセレンを反応液中で高濃度にすることが可能であり
、かつ菌体内に取込ませ蓄積できる高分子化セレン濃度
も高く、高濃度の高分子化セレンを含有した菌体を製造
することを提供する。
Further, in the present invention, the cells are propagated appropriately, and after collection, the cells are washed with water to remove the culture medium components, and the cell resistance is preferably adjusted to be equal to or higher than the biological space to stop the culture and proliferation, and then the reaction solution is Since the bacterial cells are dispersed into the cells, naturally there is no need for bacterial cell proliferation during the reaction, and selenium, which inhibits bacterial cell growth, can be kept at a high concentration in the reaction solution, and selenium can be taken up into the bacterial cells. To provide a method for producing a bacterial cell containing a high concentration of polymerized selenium, which can be accumulated in a high concentration.

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

まず、使用する微生物菌体に関しては、菌体内にセレン
を透過・吸収して高分子化セレンを蓄積し、高分子化セ
レン含有菌体となりうることが可能な微生物国体であれ
ば広く対象とすることができる。このような菌体は、セ
レンの高分子化基質である有機化合物および水溶性セレ
ン化合物を含有する水溶液の条件下にてセレンを菌体内
に取込み蛋白質等と結合させ、菌体内反応機構により無
機セレンを高分子セレンに変換し得るものと推測される
。また、特に本発明で得られるセレン含有菌体は、動物
用飼料や餌料に添加して動物に給与したり、食品への添
加することが主に期待されるため、使用する微生物菌体
は可食性であることが好ましい。
First, regarding the microbial cells to be used, we will use a wide range of microorganisms that can pass through and absorb selenium into the bacterial cells, accumulate polymerized selenium, and become microbial cells containing polymerized selenium. be able to. Such bacteria take selenium into the bacteria and combine it with proteins etc. under the conditions of an aqueous solution containing an organic compound and a water-soluble selenium compound, which are the polymerization substrates for selenium, and produce inorganic selenium through an intracellular reaction mechanism. It is presumed that it can be converted into polymeric selenium. Furthermore, since the selenium-containing microbial cells obtained by the present invention are mainly expected to be fed to animals by adding them to animal feed or feedstuffs, or to be added to foods, the microbial cells used may be Preferably, it is edible.

上記の微生物に該当するものとしては、酵母細菌5カビ
、単細胞緑藻等が挙げられる。酵母では各種の食品製造
に用いられ安全性が認められているものとしてビール酵
母9日本酒用酵母、パン酵母、アルコール酵母、ワイン
酵母等で知られている例えばサツカロミセス属に属する
酵母が挙げられ、特に好ましくはサンカロミセス・セレ
ビシェ(Saccharomyces cerevis
iae)に属する酵母であり、また、みそ・醤油等に用
いられるものして例えばす、7カロミセス・ロキシ(S
accharomycesrouxii)やチゴサッカ
ロミセス・エスピー(Zyg。
Examples of the above-mentioned microorganisms include yeast, bacteria, 5 molds, and unicellular green algae. Among yeasts, yeasts that are used in the production of various foods and are recognized to be safe include yeasts belonging to the genus Satucharomyces, which are known as beer yeasts, baker's yeasts, alcohol yeasts, wine yeasts, etc. Preferably Saccharomyces cerevis
7 Calomyces roxy (S.
accharomycesrouxii) and Zygosaccharomyces sp. (Zyg.

saccharomyces sp、)に属する酵母等
、その他にもハンセヌラ()fansenula) J
ig、キャンディダ(Candida)属、トルラスポ
ラ(Torulasupora )属、トルロプシス(
Torulopsis)属、ミコトルラ(Mycoto
rula)属に属する幅広い範囲の可食性酵母が本発明
に使用できる。
Yeasts belonging to Saccharomyces sp, ), Hansenula () J
ig, Candida spp., Torulasupora spp., Torulopsis (
Genus Torulopsis, Mycoto
A wide range of edible yeasts belonging to the genus Rula can be used in the present invention.

細菌としては、乳酸菌として知られるラクトバチルス・
カゼイ (Lacttobacillus casei
) = ラクトバチルス アシドフィラス(Lacto
bacillus acidphilus)等、また納
豆菌として知られるバチルス゛ナツト(Bacillu
s natto)等広範囲の可食性の細菌、カビとして
はアスペルギルス・ニガー(Asperugi目ose
 nigar)やアスペルギルス・アワモリ(Aspe
rugillose awamori)に属するものが
ごく一部として例示され、他にも広範囲の可食性のカビ
が使用できる。
As for bacteria, Lactobacillus, known as lactic acid bacteria,
Lacttobacillus casei
) = Lactobacillus acidophilus (Lacto
bacillus acidphilus, etc., and Bacillus nut (Bacillus, also known as natto bacteria).
A wide range of edible bacteria such as Aspergillus niger
nigar) and Aspergillus awamori (Aspe
A wide variety of other edible molds can be used, with only a few examples including those belonging to the genus Rugilose awamori.

また、可食性の単細胞緑藻であるクロレラとしてクロレ
ラ・ブルガリスやスピルリナも本発明に有効に使用でき
る。
Chlorella vulgaris and Spirulina, which are edible unicellular green algae, can also be effectively used in the present invention.

このような高分子化セレンを蓄積することのできる微生
物菌体は、予め適当な方法に従って調製された培地また
は媒体で適宜培養・増殖したものを用いればよい。培養
に当たっては、上記に例示した対象とする微生物菌体の
それぞれを、通常培養する場合に使用されている培養培
地組成例えば炭素源、窒素源、無機等または培養媒体組
成を用い、好適培養温度にて培養すればよく、必要に応
し予備培地または媒体で種菌培養した後各培養培地また
は媒体で適宜培養・増殖せしめればよい。
Microbial cells capable of accumulating such polymerized selenium may be appropriately cultured and propagated in a culture medium or medium prepared in advance according to an appropriate method. For culturing, each of the target microorganisms exemplified above is cultured at a suitable culture temperature using the culture medium composition, such as carbon source, nitrogen source, inorganic, etc., or culture medium composition normally used when culturing. If necessary, the inoculum may be cultured in a preparatory medium or medium, and then cultured and propagated in each culture medium or medium as appropriate.

培養を停止し培養菌体を集菌する時期としては、単に菌
体増殖曲線における対数増殖期後期から定常期後期まで
の適宜な培養を行って通常の遠心分離等の手段により集
菌すればよい。例えば水溶性セレン化合物として亜セレ
ン酸を用いる場合、好ましくは一般に菌体増殖曲線にお
ける亜セレン酸還元酵素が生成される前段階である対数
増殖期後期から定常期初期の段階まで適宜培養して集菌
すれば、増殖菌体数が多く好適であるとともシュ、該菌
体を用いて実質的に菌体増殖を必要としない条件、好ま
しくはバイオロジカルスペース以上の菌体濃度に調製し
て亜セレン酸を含有する反応液と反応せしめた場合、セ
レンが菌体に取込まれても亜セレン酸還元酵素の作用を
受けないことから実質的に無機セレンの生成を防止でき
、良好な高分子セレン含有菌体を得ることができる。
As for the timing to stop the culture and collect the cultured bacteria, it is sufficient to simply perform appropriate culture from the late logarithmic growth phase to the late stationary phase in the bacterial growth curve, and collect the bacteria by normal means such as centrifugation. . For example, when selenite is used as a water-soluble selenium compound, it is preferably cultured and collected as appropriate from the late logarithmic growth phase, which is the stage before selenite reductase is produced, in the bacterial growth curve to the early stationary phase. If the bacteria are grown, it is preferable that the number of proliferating bacteria is large, and the bacteria are used to prepare the subculture under conditions that do not substantially require bacterial growth, preferably at a bacterial concentration higher than the biological space. When reacted with a reaction solution containing selenic acid, even if selenium is taken up into bacterial cells, it is not affected by selenite reductase, so the production of inorganic selenium can be substantially prevented, resulting in a good polymer. Selenium-containing bacterial cells can be obtained.

例えば菌体として酵母を用いた場合は、例えばYPG培
地等で種菌培養した後糖蜜培地で通常25°C〜35°
Cで12時間〜24時間特に好ましくは18時間〜20
時間培養・増殖させた後培養菌体を集菌するのが好まし
い、細菌として乳酸菌を用いた場合は例えばロイコノス
トック培地等で通常25℃〜35°Cで15時間〜30
時間特に好ましくは20時間〜24時間培養・増殖させ
た集菌すればよく、カビを用いた場合は例えばYM培地
で通常20゛C〜30°Cで30時間〜50時間特に好
ましくは35時間〜40時間培養・増殖させた集菌すれ
ばよく、単細胞緑藻を用いた場合は例えば水を媒体とす
るかもしくは実施例22に示した培地で通常25“0〜
33°Cで24時間〜48時間特に好ましくは30時間
〜40時間培養・増殖させて集面すればよい。
For example, when yeast is used as a bacterial cell, after culturing the inoculum in YPG medium etc., it is usually grown in molasses medium at 25°C to 35°C.
C for 12 hours to 24 hours, particularly preferably 18 hours to 20 hours.
It is preferable to collect the cultured bacteria after culturing and propagating for a period of time. When lactic acid bacteria are used as the bacteria, for example, in Leuconostoc medium etc., it is usually kept at 25°C to 35°C for 15 hours to 30 hours.
Time: Particularly preferably 20 to 24 hours, the bacteria may be cultured and grown, and when mold is used, for example, YM medium is usually used at 20°C to 30°C for 30 to 50 hours, particularly preferably 35 to 50 hours. It is sufficient to collect bacteria after culturing and propagating them for 40 hours. When using unicellular green algae, for example, water is used as a medium or the medium shown in Example 22 is usually used for 25 hours.
The cells may be cultured and grown at 33°C for 24 hours to 48 hours, preferably 30 hours to 40 hours, and then collected.

次いで、該集菌した菌体から培養・増殖に用いた培養培
地または媒体を水等で数回洗浄して洗い流して除去し、
さらに、該菌体をセレンの高分子化基質および/または
水溶性セレン化合物を含有する水溶液に分散せしめてセ
レンを高分子化セレンとして菌体内に蓄積せしめるが、
この反応をせしめる際、該菌体をバイオロジカルスペー
ス以上の菌体濃度に調製して菌体増殖によるセレンの高
分子化基質の消費を完全に停止させ、セレンの高分子基
質の消費を専ら高分子化の反応用に向けさせることが必
要である。このバイオロジカルスペース以上の菌体濃度
に調製するとは、菌体懸濁液(反応液)が本質的には該
面体の増殖を許す成分を含んでいても、懸濁液の一定容
積中に菌体が実質的にそれ以上増殖することのできない
状態、即ち菌体増殖曲線における定常状態の菌体濃度以
上の濃度の状況下に調製することを意味する。例えば、
酵母では109コ/m1以上、乳酸菌では108コ/ 
m i、 、クロレラでは109コ/ m 12以上で
あるので、反応に際しては酵母では1〜5×10qコ/
 m 12 、乳酸菌では1〜5×108コ/m!、ク
ロレラでは1〜5X10’コ/ m Eの菌体濃度で行
えばよく、実用上はこれら微生物の懸濁液における菌体
濃度の測定は分光光度計によるOD値で行うことから、
対象菌体の増殖曲線の定常期状態における菌体濃度時点
とする場合のOD値の測定誤差を±10%とすればよい
。また、カビの場合はODによる測定が不可能であるの
で培養液量より少ない反応液に菌体を懸濁して使用すれ
ばよい。
Next, the culture medium or medium used for culturing and propagation is removed from the collected bacterial bodies by washing and rinsing several times with water etc.
Furthermore, the bacterial cells are dispersed in an aqueous solution containing a polymerized selenium substrate and/or a water-soluble selenium compound, and selenium is accumulated in the bacterial cells as polymerized selenium.
When this reaction is induced, the bacterial cell concentration is adjusted to be higher than the biological space to completely stop the consumption of the polymerized selenium substrate by bacterial cell growth, and the consumption of the polymerized selenium substrate is exclusively controlled. It is necessary to direct it to molecularization reactions. Preparing the bacterial cell concentration to be higher than this biological space means that even if the bacterial cell suspension (reaction liquid) essentially contains components that allow the growth of the facet, the bacteria in a certain volume of the suspension are This means that the bacteria are prepared under conditions in which the cells are substantially unable to proliferate any further, that is, the concentration is higher than the steady-state concentration of the cells in the cell growth curve. for example,
109 cells/ml or more for yeast, 108 cells/ml for lactic acid bacteria
m i, , for chlorella it is 109 q/m or more, so for yeast it is 1 to 5 x 10 q/m during the reaction.
m 12 , 1 to 5 x 108 bacteria/m for lactic acid bacteria! For Chlorella, it is sufficient to use a bacterial cell concentration of 1 to 5 x 10'/mE, and in practice, the bacterial cell concentration in a suspension of these microorganisms is measured by the OD value using a spectrophotometer.
The measurement error of the OD value may be ±10% when the bacterial cell concentration is in the stationary phase of the growth curve of the target bacterial cells. Furthermore, in the case of mold, it is impossible to measure by OD, so the bacterial cells may be suspended in a reaction solution smaller than the amount of the culture solution.

次いで、該菌体をセレンの高分子化基質となり得る有機
化合物および/または水溶性セレン化合物を含有する水
溶液に分散せしめて、菌体内に高分子化セレンを蓄積せ
しめる。
Next, the bacterial cells are dispersed in an aqueous solution containing an organic compound and/or a water-soluble selenium compound that can serve as a substrate for polymerizing selenium, thereby accumulating polymerized selenium within the bacterial cells.

反応液中でセレンの高分子化基質となり得る有機化合物
および水溶性セレン化合物を含有する水?8液は、両方
を混合した水溶液にして上述のバイオロジカルスペース
以上の菌体濃度に調製された菌体を該水溶液に同時に分
散させても、または逐次にまず該菌体を有機化合物水溶
液に分散させてから水溶性セレン化合物水溶液に分散さ
せても、または分散する順序を逆としてもいづれの過程
を経ていてもかまわず、バイオロジカルスペース以上の
菌体濃度に調製された菌体を上記の反応液に分散・接触
せしめる過程であればいづれでもかまわない。
Water that contains organic compounds and water-soluble selenium compounds that can serve as selenium polymerization substrates in the reaction solution? Solution 8 can be prepared by making an aqueous solution of both and dispersing the bacteria at a concentration higher than the above-mentioned biological space at the same time, or by sequentially dispersing the bacteria into an organic compound aqueous solution. It does not matter whether the bacterial cell concentration is higher than the biological space and then dispersed in an aqueous solution of a water-soluble selenium compound, or by reversing the order of dispersion. Any process that involves dispersion and contact with a liquid may be used.

まず、セレンの高分子化基質となり得る有機化合物とは
、菌体内反応機構である高エネルギーリン酸化合物合成
機構、例えば解糖系反応機構やTCA回路反応機構を作
動させるに不可欠な成分であり、即ち菌体にとってエネ
ルギー基質となり得る有機化合物であればよ<、糖およ
び/またはアミノ酸が挙げられる。糖としては、例えば
、グルコース フルクトース、ガラクトース、シュクロ
ース、マルトース、トレハロースが挙ケラれ、特に好ま
しくはグルコースである。アミノ酸としては、例えばロ
イシン、イソロイシン、セリン等のゲルコゲニックアミ
ノ酸系であればよく、特に好ましくはロイシンまたはイ
ソロイシンである。反応液である該有機化合物水溶液に
は少なくとも上記糖および/またはアミノ酸と、必要に
応し緩衝液としてリン酸塩等を含有する水溶液であるの
が好ましい。
First, organic compounds that can serve as selenium polymerization substrates are essential components for operating high-energy phosphoric acid compound synthesis mechanisms, such as glycolytic reaction mechanisms and TCA cycle reaction mechanisms, which are intracellular reaction mechanisms. That is, any organic compound that can serve as an energy substrate for bacterial cells may include sugars and/or amino acids. Examples of the sugar include glucose, fructose, galactose, sucrose, maltose, and trehalose, with glucose being particularly preferred. The amino acid may be a glucogenic amino acid such as leucine, isoleucine, or serine, and leucine or isoleucine is particularly preferred. The organic compound aqueous solution serving as the reaction solution preferably contains at least the above-mentioned sugar and/or amino acid and, if necessary, a phosphate or the like as a buffer.

さらに、必要に応じ高エネルギーリン酸化合物の補給源
となりうるちのとして、アデニン、アデノシンを上記系
に添加すると、より有効に高分子化セレンが菌体内に蓄
積される。
Furthermore, if adenine or adenosine is added to the above system as a source of high-energy phosphoric acid compounds if necessary, polymerized selenium is more effectively accumulated in the bacterial cells.

上記、有機化合物水溶液の反応に用いる際、該水溶液の
pHはpH4〜7特にpH5〜6に調製するのが好まし
い。リン酸塩等緩衝液を用いた場合には該緩衝液を好ま
しいpHに調製すればよい。
When using the organic compound aqueous solution in the reaction described above, the pH of the aqueous solution is preferably adjusted to pH 4 to 7, particularly pH 5 to 6. When a buffer such as a phosphate salt is used, the buffer may be adjusted to a preferred pH.

有機化合物水溶液の各々の成分の量的関係については、
有機化合物水溶液全量に対し、糖とアミノ酸は単独かま
たは併用してもよく、糖は0.3%〜2%を含有させる
のが好ましく、アミノ酸は0゜3%〜2%、また必要に
応し緩衝液であるリン酸塩は0.OIM〜0.3M用い
ればよく、また、アデニン、アデノシンを加える場合に
は、0.001%〜0゜02%を用いればよい。
Regarding the quantitative relationship of each component of the organic compound aqueous solution,
Sugar and amino acid may be used alone or in combination with respect to the total amount of the organic compound aqueous solution, and sugar is preferably contained in an amount of 0.3% to 2%, and amino acid is contained in an amount of 0.3% to 2%, and as necessary. The phosphate buffer is 0. OIM to 0.3M may be used, and when adenine and adenosine are added, 0.001% to 0.02% may be used.

次いで、本発明に使用できるセレンの供給源である水溶
性セレン化合物は、対象菌体の細胞膜を透過し、菌体内
で蛋白質と結合して高分子化セレンと変換されうる適当
な水溶性のセレン化合物であればよく、例えば亜セレン
酸(H,SeOユ)、二酸化セレン(SeOz)、セレ
ン酸(HzSeO4)等の無機セレンが挙げられるが、
特に亜セレン酸を用いるのが好ましい。反応に用いる量
としては反応液中のセレン濃度が2PPm以上、好まし
くは10〜1100PPとなるように水溶性セレン化合
物の添加量を調製ればよい。
Next, the water-soluble selenium compound, which is a selenium source that can be used in the present invention, is a suitable water-soluble selenium compound that can permeate the cell membrane of the target bacterial cell and be converted to polymerized selenium by binding to proteins within the bacterial cell. Any compound may be used, such as inorganic selenium such as selenite (H, SeO), selenium dioxide (SeOz), and selenic acid (HzSeO4).
In particular, it is preferable to use selenite. The amount of the water-soluble selenium compound used in the reaction may be adjusted so that the selenium concentration in the reaction solution is 2 PPm or more, preferably 10 to 1100 PP.

上述のとうり、反応液へ菌体を同時または逐次に分散し
、振盪させて反応せしめるが、反応における反応温度は
20℃〜40°C特に好ましくは25°C〜35°Cで
、反応時間は4時間以上特に8〜20時間反応せしめる
のが好ましい。
As mentioned above, the bacterial cells are simultaneously or sequentially dispersed in the reaction solution and reacted by shaking. It is preferable to react for 4 hours or more, especially 8 to 20 hours.

反応後、遠心分離等の手段で集菌し、さらに回収菌体を
水で数回洗浄することにより高分子化されたセレンを含
有する微生物菌体が得られる。また得られた高分子化セ
レン含有菌体は必要に応し凍結乾燥等をして保存すれば
よい。
After the reaction, microbial cells containing polymerized selenium are obtained by collecting the bacteria by centrifugation or the like, and washing the collected cells several times with water. Further, the obtained polymerized selenium-containing bacterial cells may be stored by freeze-drying or the like, if necessary.

本発明は、以上のようにして効率的で安定な高分子化セ
レン含有微生物菌体を得る方法を提供する。
The present invention provides a method for obtaining efficient and stable polymerized selenium-containing microbial cells as described above.

〈実施例〉 以下、実施例を挙げて本発明を具体的に説明するが、本
発明はこれらによって何ら限定されるものではない。
<Examples> The present invention will be specifically described below with reference to Examples, but the present invention is not limited by these in any way.

実施例1fII母の培養と増殖曲線の作成pH5に調製
したYPG培地(グルコース4%、ペプトン1%、イー
ストエキス0.5%、リン酸カリウム0.5%、硫酸マ
グネシウム0.2%) 100 mlを500m1容三
角フラスコに分注し121°Cで15分殺菌した後、サ
ツカロミセス・セレビシェFTY−3(FERM  B
P−2326)を1白金耳植付け、30℃で24時間振
盪培養し、種菌とした。その後、pH5に調製した糖蜜
培地(糖蜜10%(蔗糖として4%含有)、尿素0.5
%、75%リン酸0.1%、硫酸亜鉛0.0003%)
100rr+j!に種菌5mlを植え付け、30°Cで
30時間培養して増殖速度を求め、増殖曲線を第1図に
示した。
Example 1 fII mother culture and creation of growth curve 100 ml of YPG medium adjusted to pH 5 (glucose 4%, peptone 1%, yeast extract 0.5%, potassium phosphate 0.5%, magnesium sulfate 0.2%) After dispensing it into a 500 ml Erlenmeyer flask and sterilizing it at 121°C for 15 minutes,
One platinum loop of P-2326) was planted and cultured with shaking at 30°C for 24 hours to use as a seed. After that, molasses medium adjusted to pH 5 (molasses 10% (contains 4% as sucrose), urea 0.5
%, 75% phosphoric acid 0.1%, zinc sulfate 0.0003%)
100rr+j! 5 ml of inoculum was inoculated and cultured at 30°C for 30 hours to determine the growth rate, and the growth curve is shown in Figure 1.

このように、培地中に実質的にセレンを含有しないこと
から菌体増殖は極めて良好であった。
As described above, since the medium contained substantially no selenium, bacterial cell growth was extremely good.

実施例2 培養時間と反応(振盪)時間によるセレン取
込みへの影響 実施例1と同様の条件でサツカロミセス・セレビシェF
TY−3の菌体を、培養時間8,1216 20 24
.28時間口毎に各々遠心分離して(300Orpm、
 15分間)集菌し、100mfの水で3回洗浄した後
、菌体濃度を1〜1.6X109コ/ m lに調製し
てバイオロジカルスペース以上の菌体濃度の状態とし、
該菌体を1%グルコースを含む0.1Mリン酸緩衝液(
pH6)50mf!に懸濁し、亜セレン酸5mg (セ
レン濃度として60ppm)を加えて30°Cで振盪し
て反応せしめた。
Example 2 Effect of culture time and reaction (shaking) time on selenium uptake Satucharomyces cerevisiae F under the same conditions as Example 1
TY-3 cells were cultured for 8,1216 20 24
.. Centrifugation was performed every 28 hours (300 rpm,
After collecting the bacteria (for 15 minutes) and washing three times with 100 mf of water, the bacterial cell concentration was adjusted to 1 to 1.6 x 109 cells/ml to achieve a bacterial cell concentration higher than the biological space.
The bacterial cells were dissolved in 0.1M phosphate buffer containing 1% glucose (
pH6) 50mf! 5 mg of selenite (selenium concentration: 60 ppm) was added, and the mixture was shaken at 30°C to react.

振盪(反応)時間2,4,16.24時間口毎に各々菌
体濃度を測定して遠心分離にて集菌し、さらに菌体を1
00mfの水で2回洗浄した後凍結乾燥し、菌体内に取
込まれたセレン濃度を測定した。
Shaking (reaction) time: 2, 4, 16.24 hours The bacterial cell concentration was measured at each mouth, and the bacteria were collected by centrifugation.
After washing twice with 00 mf water, the cells were freeze-dried, and the concentration of selenium incorporated into the bacterial cells was measured.

その結果を第1表に示す。The results are shown in Table 1.

尚、菌体濃度の測定は反応液を水で適宜希釈し、660
nmで吸光度を測定したものであり、また菌体内に取込
まれたセレン濃度の測定は、乾燥菌体約100mgを秤
量し湿式灰化した後原子吸光法にて測定したものであり
、以下の実施例における菌体濃度および菌体内に取込ま
れたセレン濃度の測定はすべて同様の方法にて行った。
In addition, to measure the bacterial cell concentration, dilute the reaction solution appropriately with water and add 660
Absorbance was measured at nm, and the concentration of selenium incorporated into the bacterial cells was measured by atomic absorption spectrometry after weighing approximately 100 mg of dry bacterial cells and wet ashing. In Examples, the bacterial cell concentration and the selenium concentration taken into the bacterial cells were all measured using the same method.

影響 糖蜜培地100mj2に予め亜セレン酸5mg (セレ
ン濃度として30ppm)を加え、実施例1のYPG培
地で培養したサツカロミセス・セレビシェFTY−3の
種菌5mf!、を植付け、30”Cで30時間培養し、
16,20,24.30時間目毎に菌体濃度を測定し、
遠心分離にて集菌し、さらに菌体を100m1の水で2
回洗浄した後凍結乾燥し、菌体内に取込まれたセレン濃
度を測定した。その結果を第2表に示す、尚、30時間
培養後の乾燥菌体量は690mgであった。
5mf of Saccharomyces cerevisiae FTY-3 inoculum cultured in the YPG medium of Example 1 with 5mg of selenite (30ppm as selenium concentration) added in advance to 100mj2 of influence molasses medium! , and cultured at 30"C for 30 hours.
Measure the bacterial cell concentration every 16, 20, 24, and 30 hours,
Collect bacteria by centrifugation, and then add 100ml of water to the cells.
After washing twice and freeze-drying, the concentration of selenium incorporated into the bacterial cells was measured. The results are shown in Table 2. The amount of dry bacterial cells after 30 hours of culture was 690 mg.

以上から、反応時間経過における菌体増殖はほとんど認
められないものの、各培養時間における菌体ともセレン
取込み濃度は反応時間とともに増加し、サツカロミセス
・セレビシェを用いた場合、培養8〜20時間程時間項
養菌体を用いて反応せしめることが最も好適であった。
From the above, although almost no bacterial cell proliferation was observed over the course of the reaction time, the selenium uptake concentration of the bacterial cells at each culture time increased with the reaction time, and when using Satucharomyces cerevisiae, the time period of culture was approximately 8 to 20 hours. It was most suitable to carry out the reaction using a nutrient cell.

参考例  予め亜セレン酸を添加した培地で培養した場
合のセレン取込みへの 以上から、予め亜セレン酸壱添加した培地で培養しなか
らセレンを面体に取込ませた場合は、本発明よりも菌体
のセレン取込み率が極めて低いことがわかった。
Reference example: From the above, when cultured in a medium to which selenite has been added in advance, selenium uptake is improved. It was found that the selenium uptake rate of bacterial cells was extremely low.

実施例3 二酸化セレンを用いた場合のセレン取込みへ
の影響 実施例1と同様の条件でサツカロミセス・セレビシェF
TY−3を30°Cで16時間培養し、培養1100m
fより得られた菌体を100m1の水で3回洗浄した後
、菌体濃度を1.5X109コ/m2に調製してバイオ
ロジカルスペース以上の菌体濃度の状態とし、該菌体を
1%グルコースを含む0.1Mリン酸緩衝液(pH6)
50mj!のに懸濁し、水に溶解した二酸化セレン4.
15mg (セレン濃度として50ppm)を加えて3
0°Cで20時間振盪して反応せしめ、遠心分離にて集
菌し、さらに菌体を100mj!の水で2回洗浄した後
凍結乾燥し、乾燥菌体1.19g (菌体内セレン濃度
142QPPm)を得た(取込み率51.2%)。
Example 3 Effect on selenium uptake when using selenium dioxide Saccharomyces cerevisiae F.
TY-3 was cultured at 30°C for 16 hours, and cultured at 1100 m
After washing the bacterial cells obtained in step f three times with 100 ml of water, the bacterial cell concentration was adjusted to 1.5 x 109 cells/m2 to achieve a bacterial cell concentration higher than the biological space, and the bacterial cells were reduced to 1%. 0.1M phosphate buffer (pH 6) containing glucose
50mj! 4. Selenium dioxide suspended in water and dissolved in water.
Add 15mg (50ppm as selenium concentration) and
The reaction was allowed to occur by shaking at 0°C for 20 hours, and the bacteria were collected by centrifugation. The cells were washed twice with water and then freeze-dried to obtain 1.19 g of dried bacterial cells (selenium concentration in the bacterial cells: 142QPPm) (uptake rate 51.2%).

実施例4 セレン酸を用いた場合のセレン取込みへの影
響 実施例1と同様の条件でサツカロミセス・セレビシェF
TY−3を30°Cで16時間培養し、培養i!100
mj2より得られた菌体を100mj!の水で3回洗浄
した後、菌体濃度を1.5X10’コ/m!ニ調製して
バイオロジカルスペース以上の菌体濃度の状態とし、該
菌体を1%グルコースを含む0.1 Mリン酸緩衝1(
pH5)50mfの二こ懸濁し、水に溶解したセレン酸
3.7mg(セレン濃度として40ppm)を加えて3
0°Cで20時間振盪して反応せしめ、遠心分離にて集
菌し、さらに菌体を100m1の水で2回洗浄した後凍
結乾燥し、乾燥菌体1.11g (菌体内セレン濃度1
440p p m )を得た(取込み率80%)。
Example 4 Effect on selenium uptake when using selenate
TY-3 was cultured at 30°C for 16 hours, and culture i! 100
100mj of bacterial cells obtained from mj2! After washing three times with water, the bacterial cell concentration was reduced to 1.5 x 10'/m! The cells were prepared in a 0.1 M phosphate buffer 1 containing 1% glucose (
pH 5) 3.7 mg of selenic acid (40 ppm as selenium concentration) dissolved in water was suspended in 50 mf.
The reaction was allowed to occur by shaking at 0°C for 20 hours, the bacteria were collected by centrifugation, the cells were washed twice with 100 ml of water, and then freeze-dried.
440 ppm) (uptake rate 80%).

実施例5 リン酸無添加によるセレン取込みへの影響 実施例1と同様の条件でサツカロミセス・セレビシェF
TY−3を30°Cで16時間培養し、培養液100m
j!より得られた菌体を100mj!の水で3回洗浄し
た後、菌体濃度を1.5X10’コ/mlに調製してバ
イオロジカルスペース以上の菌体濃度の状態とし、該菌
体を0.5%、1%、2%の各々の濃度のグルコース5
0m1に懸濁し、亜セレン酸5mg (セレン濃度とし
て60ppm)を各々加え、30°Cで18時間振盪し
て反応せしめ、菌体濃度を測定して遠心分離にて集菌し
、さらに菌体を100m1の水で2回洗浄した後凍結乾
燥し、菌体内に取込まれたセレン濃度を測定した。その
結果を第3表に示す 第3表 菌体濃度(ODbho)と菌体内セレン濃度(ppm)
養液100m1より得られた菌体を100mfの水で3
回洗浄した後、菌体濃度を1.6X10’コ/mlに調
製してバイオロジカルスペース以上の菌体濃度の状態と
し、該菌体を1%グルコースを含む0.1Mリン酸緩衝
液(pH5)50mfに懸濁し、アデノシン、アデニン
を各々0.02%および無添加のものを調製し、亜セレ
ン酸5mg (セレン濃度として60ppm)を各々に
加え、30°Cで20時間振盪して反応せしめ、菌体濃
度を測定して遠心分離にて集菌し、さらに菌体を100
m/!の水で2回洗浄した後凍結乾燥し、菌体内に取り
込まれたセレン濃度を測定した。その結果を第4表に示
す。
Example 5 Effect of no addition of phosphoric acid on selenium uptake Satucharomyces cerevisiae F under the same conditions as Example 1
TY-3 was cultured at 30°C for 16 hours, and 100 m
j! 100mj of the bacterial cells obtained! After washing three times with water, the bacterial cell concentration was adjusted to 1.5 x 10' cells/ml to achieve a bacterial cell concentration higher than the biological space, and the bacterial cell concentration was adjusted to 0.5%, 1%, and 2%. glucose at each concentration of 5
0 ml, add 5 mg of selenite (60 ppm as selenium concentration), react by shaking at 30°C for 18 hours, measure the bacterial cell concentration, collect the bacteria by centrifugation, and further collect the bacterial cells. After washing twice with 100 ml of water, the cells were freeze-dried, and the concentration of selenium incorporated into the bacterial cells was measured. The results are shown in Table 3 Table 3 Bacterial cell concentration (ODbho) and intrabacterial selenium concentration (ppm)
The bacterial cells obtained from 100ml of the nutrient solution were mixed with 100mf of water.
After washing twice, the bacterial cell concentration was adjusted to 1.6 x 10' cells/ml to achieve a bacterial cell concentration higher than the biological space, and the bacterial cells were added to a 0.1 M phosphate buffer (pH 5) containing 1% glucose. ) 50mf, 0.02% each of adenosine and adenine, and no additives were prepared. 5mg of selenite (selenium concentration: 60ppm) was added to each, and the mixture was shaken at 30°C for 20 hours to react. , measure the bacterial cell concentration, collect the bacteria by centrifugation, and further collect 100 bacterial cells.
m/! After washing twice with water, the cells were freeze-dried, and the concentration of selenium incorporated into the cells was measured. The results are shown in Table 4.

以上から、リン酸を添加しなくとも、良好にセレンが菌
体内に取り込まれた。
From the above, selenium was successfully incorporated into the bacterial cells even without the addition of phosphoric acid.

実施例6 アデニン、アデノシンの添加によるセレン取
込みへの影響 実施例1と同様の条件でサツカロミセス・セレビシェF
TY−3を30°Cで20時間培養し、培以上の通り、
アデニン、アデノシンの添加によリセレンの菌体内への
取込みはより有効であった。
Example 6 Effect of addition of adenine and adenosine on selenium uptake Satucharomyces cerevisiae F under the same conditions as Example 1
TY-3 was cultured at 30°C for 20 hours, and as described above,
The addition of adenine and adenosine made the uptake of reselene into the bacterial cells more effective.

実施例7 セレン濃度によるセレン取込みへの影響 実施例1と同様の条件です、カロミセス・セレビシェF
TY−3を30°Cで20時間培養し、培養液100m
jl!より得られた菌体を100mfの水で3回洗浄し
た後、菌体濃度を1.7X10qコ/mlに調製してバ
イオロジカルスペースの菌体濃度の状態とし、該菌体を
1%グルコースを含む01Mリン酸緩衝液(pH5)5
0mlに懸濁し、亜セレン酸Og(セレン濃度としてO
ppm)、  1mg(セレン濃度として12.5pp
m)、  2mg (セレン濃度として25pp+* 
) 、  4 mg (セレン濃度として50pp+i
 )、  6mg (セレン濃度として75ppm )
 、  8mg(セレン濃度として100 ppm )
を各々加えて調製し、30°Cで16時間振盪して反応
せしめ、遠心分離にて集菌し、さらに面体を100mA
の水で2回洗浄した後凍結乾燥し、乾燥菌体量と菌体内
に取り込まれたセレン濃度を測定した。その結果を第5
表に示す。
Example 7 Effect of selenium concentration on selenium uptake The same conditions as Example 1, Calomyces cerevisiae F
TY-3 was cultured at 30°C for 20 hours, and 100 m
jl! After washing the obtained bacterial cells three times with 100 mf of water, the bacterial cell concentration was adjusted to 1.7 x 10 q/ml to reach the biological space concentration, and the bacterial cells were soaked in 1% glucose. 01M phosphate buffer (pH 5) containing 5
Suspend in 0 ml and add Og selenite (Og as selenium concentration).
ppm), 1mg (12.5pp as selenium concentration)
m), 2mg (25pp++ as selenium concentration
), 4 mg (50pp+i as selenium concentration
), 6mg (75ppm as selenium concentration)
, 8mg (100 ppm as selenium concentration)
The mixture was prepared by adding each of
After washing twice with water, the cells were freeze-dried, and the amount of dried bacterial cells and the concentration of selenium incorporated into the bacterial cells were measured. The result is the fifth
Shown in the table.

第5表 以上から、反応液へ添加する亜セレン酸は、1mg〜8
mg(セレン濃度として12PPm〜10100ppを
使用することにより良好に菌体にセレンが取り込まれた
From Table 5 and above, the amount of selenite added to the reaction solution is 1 mg to 8
mg (By using a selenium concentration of 12 PPm to 10,100 ppm, selenium was well incorporated into the bacterial cells.

実施例8 反応液のPHによるセレン取込みへの影響 実施例1と同様の条件です、カロミセス・セレビシェF
TY−3について6本のフラスコ培養を行い、培養液1
00mj!より得られた菌体を100m1の水で3回洗
浄した後、菌体濃度を1.8XIO9コ/mlに調製し
てバイオロジカルスペース以上の菌体濃度の状態とし、
該菌体を1%グルコースを含むpH3,4,5,6,7
,8の範囲の各々に調製した0、1 Mリン酸緩衝液5
0m1に懸濁し、亜セレン酸5mg (セレン濃度とし
て60ppm)を加え、30°Cで20時間振盪し反応
せしめ、遠心分離にて集菌し、さらに菌体を100+n
1の水で2回洗浄した後凍結乾燥し、菌体内に取り込ま
れたセレン濃度を各々測定した。その結果を第6表に示
す。
Example 8 Effect of PH of reaction solution on selenium uptake The same conditions as Example 1, Calomyces cerevisiae F
TY-3 was cultured in 6 flasks, and culture solution 1
00mj! After washing the obtained bacterial cells three times with 100 ml of water, the bacterial cell concentration was adjusted to 1.8XIO9 cells/ml to achieve a bacterial cell concentration higher than the biological space,
The bacterial cells were incubated at pH 3, 4, 5, 6, 7 containing 1% glucose.
, 8 0 and 1 M phosphate buffers prepared respectively in the range of 5
0ml, add 5mg of selenite (60ppm as selenium concentration), shake at 30°C for 20 hours to react, collect the bacteria by centrifugation, and further collect 100+n of bacterial cells.
After washing twice with water from Step 1, the cells were freeze-dried, and the concentration of selenium incorporated into the cells was measured. The results are shown in Table 6.

第6表 以上から、反応液のpHは、pH4〜6に調製すること
により、良好に菌体内にセレンが取込まれた。
From Table 6 and above, selenium was successfully incorporated into the bacterial cells by adjusting the pH of the reaction solution to pH 4 to 6.

実施例9  反応(振盪)温度によるセレン取込みへの
影響 実施例1と同様の条件でサツカロミセス・セレビシェF
TY−3について5本のフラスコ培1を行い、培養液1
00rr+1より得られた菌体を100m1の水で3回
洗浄した後、菌体濃度を1.5X10’コ/mlに調製
してバイオロジカルスペース以上の菌体濃度の状態とし
、該菌体を1%グルコースを含む0.1Mリン酸緩衝液
(pH5)50mj2に懸濁し、亜セレン酸5mg (
セレン濃度として60ppm)を加え、20℃、25℃
、30℃、35°C940°Cの各々の温度範囲で20
時間振盪して反応せしめ、遠心分離にて集菌し、さらに
菌体を100mj!の水で2回洗浄した後凍結乾燥し、
菌体内に取り込まれたセレン濃度を各々測定した。その
結果を第7表に示す。
Example 9 Effect of reaction (shaking) temperature on selenium uptake Satucharomyces cerevisiae F under the same conditions as Example 1
TY-3 was cultured in 5 flasks, culture solution 1
After washing the bacterial cells obtained from 00rr+1 three times with 100 ml of water, the bacterial cell concentration was adjusted to 1.5 x 10' cells/ml to make the bacterial cell concentration higher than the biological space, and the bacterial cells were washed with 100 ml of water three times. Suspended in 50mj2 of 0.1M phosphate buffer (pH 5) containing % glucose, 5mg of selenite (
60 ppm) was added as a selenium concentration, and 20°C and 25°C were added.
, 30°C, 35°C, 20°C in each temperature range of 940°C.
Shake for a few hours to react, collect the bacteria by centrifugation, and further collect the bacteria at 100 mJ! After washing twice with water, freeze-drying,
The concentration of selenium taken into the bacterial cells was measured. The results are shown in Table 7.

第7表 以上から、反応せしめる際の反応(振盪)温度は、25
℃〜35℃であることにより良好に菌体内にセレンが取
込まれた。
From Table 7 and above, the reaction (shaking) temperature during reaction is 25
By keeping the temperature between 35°C and 35°C, selenium was well incorporated into the bacterial cells.

実施例10 アデニン添加濃度によるセレン取込みへの
影響 実施例1と同様の条件でサツカロミセス・セレビシェF
TY−3について6本のフラスコ培養を行い、培養if
flloomj!より得られた菌体を100m1の水で
3回洗浄した後、菌体濃度を1.5X109コ/ m 
j2に調製してバイオロジカルスペース以上の菌体濃度
の状態とし、該菌体を1%グルコースを含む0.1Mリ
ン酸緩衝液(pH5)50mfに懸濁し、アデニンを0
%、 0.001%、 0.003%0.01%、 0
.03%、0.1%の範囲の各々に調製して添加し、亜
セレン酸6mg (セレン濃度として72ppm)を加
え、30°Cで20時間振盪して反応せしめ、遠心分離
にて集菌し、さらに菌体を100m1の水で2回洗浄し
た後凍結乾燥し、菌体内に取り込まれたセレン濃度を各
々測定した。その結果を第8表に示す。
Example 10 Effect of adenine addition concentration on selenium uptake Satucharomyces cerevisiae F under the same conditions as Example 1
TY-3 was cultured in 6 flasks, and culture if
flroomj! After washing the obtained bacterial cells three times with 100 ml of water, the bacterial cell concentration was adjusted to 1.5 x 109 cells/m2.
j2 to bring the bacterial cell concentration above the biological space, suspend the bacterial cells in 50 mf of 0.1 M phosphate buffer (pH 5) containing 1% glucose, and add adenine to 0.
%, 0.001%, 0.003%0.01%, 0
.. 03% and 0.1%, added 6 mg of selenite (72 ppm as selenium concentration), reacted by shaking at 30°C for 20 hours, and collected bacteria by centrifugation. Furthermore, the bacterial cells were washed twice with 100 ml of water and then freeze-dried, and the concentration of selenium incorporated into the bacterial cells was measured. The results are shown in Table 8.

(以 下 余 白 ) 第8表 以上から、反応液にアデニンを添加する場合、使用濃度
は、0.003%〜0.1%に調製することにより良好
に菌体内にセレンが取込まれた。
(Margin below) From Table 8 and above, when adding adenine to the reaction solution, selenium was well incorporated into the bacterial cells by adjusting the concentration to 0.003% to 0.1%. .

実施例11 リン酸添加濃度によるセレン取込みへの影
響 実施例1と同様の条件です、カロミセス・セレビシェF
TY−3について6本のフラスコ培養ヲ行い、培養液1
00mj2より得られた菌体を100 mlの水で3回
洗浄した後、菌体濃度を1.6X10’コ/ m 1に
調製してバイオロジカルスペース以上の菌体濃度の状態
とし、該国体を1%グルコースを含むOM  0.00
3 M、 0.OLM  0.03M、 0.1 M、
 0.3 Mの各々に調製したリン酸緩衝液(pH5)
50mjl!に懸濁し、各々亜セレン酸5mg (セレ
ン濃度として60ppm)を加え、30°Cで20時間
振盪して反応せしめ、遠心分離にて集菌し、さらに国体
を100mj2の水で2回洗浄した後凍結乾燥し、菌体
内に取り込まれたセレン濃度を各々測定した。その結果
を第9表に示す。
Example 11 Effect of phosphoric acid addition concentration on selenium uptake The same conditions as Example 1, Calomyces cerevisiae F
TY-3 was cultured in 6 flasks, and culture solution 1
After washing the bacterial cells obtained from 00mj2 three times with 100 ml of water, the bacterial cell concentration was adjusted to 1.6 x 10' cells/m1 to reach a bacterial cell concentration higher than the biological space, and the bacterial cells were OM 0.00 with 1% glucose
3M, 0. OLM 0.03M, 0.1M,
Phosphate buffer solution (pH 5) prepared to 0.3 M each
50 mjl! 5 mg of selenite (60 ppm as selenium concentration) was added to each, shaken at 30°C for 20 hours to react, collected by centrifugation, and washed twice with 100 mj2 of water. The cells were freeze-dried and the concentration of selenium incorporated into the cells was measured. The results are shown in Table 9.

第9表 以上から、反応液にリン酸緩衝液を添加する場合、リン
酸の濃度は0.003 M〜0.3Mに調製することに
より良好に菌体内にセレンが取り込まれた。
From Table 9 and above, when a phosphate buffer was added to the reaction solution, selenium was well incorporated into the bacterial cells by adjusting the concentration of phosphoric acid to 0.003 M to 0.3 M.

実施例12 実施例1と同様の条件でYPG培地で24時間フラスコ
培養したサツカロミセス・セレビシェFTY−3の種菌
各々500mfを30A容ジャーファーメンタ−4基を
用い、pH5に調製して120°Cで30分加熱滅菌し
た糖蜜培地2ONに植付け、32°C1通気置301/
分、撹拌速度300rpmで16時間培養した。連続遠
心機を使用して集菌しく12017時間)、約202の
水を加えて菌体を懸濁し、遠心分離して菌体を洗浄した
。この操作を3回繰り返した後、菌体濃度を2.5X1
09コ/mj2に調製してバイオロジカルスペース以上
の菌体濃度の状態とし、0.5%グルコースを含む0゜
03Mリン酸緩衝液(pH5)5fに懸濁し、亜セレン
酸0.4 g (セレン濃度として48ppm)を加え
て通気量10!/分、撹拌速度200rpm、振盪(反
応)温度30″Cで反応せしめた。18時間後、遠心分
離して集菌し、さらに2ONの水で3回洗浄し、湿菌体
3.5Kgを得た。その後、7!の水を加えて撹拌、分
散した後、90°Cで15分加熱し、コチワ式スプレー
ドライヤーを用い、送風140℃、排風60°C5送液
442/時間の条件でスプレードライし、乾燥粉末1.
1Kgを得た(水分4゜1%、菌体内セレン濃度191
0ppm)。
Example 12 500 mf of each Satucharomyces cerevisiae FTY-3 inoculum cultured in a YPG medium for 24 hours in a flask under the same conditions as in Example 1 was adjusted to pH 5 using four 30 A jar fermenters and incubated at 120°C. Plant in 2ON molasses medium sterilized by heat for 30 minutes, and place at 32°C1 aeration 301/
The cells were cultured for 16 hours at a stirring speed of 300 rpm. Bacteria were collected using a continuous centrifuge (12,017 hours), and about 20 ml of water was added to suspend the bacteria, followed by centrifugation to wash the bacteria. After repeating this operation three times, the bacterial cell concentration was increased to 2.5X1.
The microbial cell concentration was adjusted to 0.09 cells/mj2 to achieve a bacterial cell concentration above the biological space, suspended in 5 f of 0.03M phosphate buffer (pH 5) containing 0.5% glucose, and 0.4 g of selenite ( Addition of selenium concentration (48 ppm) and ventilation rate 10! /min, a stirring speed of 200 rpm, and a shaking (reaction) temperature of 30''C. After 18 hours, the bacteria were collected by centrifugation, and further washed three times with 2ON water to obtain 3.5 kg of wet bacteria. After that, 7! of water was added, stirred and dispersed, and heated at 90°C for 15 minutes. Using a Kochiwa spray dryer, air was blown at 140°C, exhaust air was 60°C, and liquid was sent at 442°C/hour. Spray dry and dry powder1.
1 kg was obtained (moisture 4.1%, selenium concentration inside the bacteria 191
0ppm).

参考例 実施例12で得られた菌体5gを50mfの水に懸濁し
、IN苛性ソーダでPH7に調製した後、ポジトロン破
砕機で菌体を破砕し、さらに95°Cで10分加熱した
後、10000rp+nで15分間遠心分離し、上清3
8mlを得た(セレン濃度174PPm)。上滑10m
j2を凍結乾燥した後、2mfの水に溶解し、その内1
mfを用いてセファデックスG50の100m42カラ
ム(2X32cs+)による溶出パターンとセレンの分
布を調べた。その結果、第2図の如く、85%以上のセ
レンが高分子分画に存在した。
Reference Example 5 g of bacterial cells obtained in Example 12 were suspended in 50 mf of water, adjusted to pH 7 with IN caustic soda, crushed with a positron crusher, further heated at 95°C for 10 minutes, Centrifuge at 10,000 rp+n for 15 minutes and remove supernatant 3.
8 ml was obtained (selenium concentration 174 PPm). Kamisume 10m
After freeze-drying j2, it was dissolved in 2 mf of water, of which 1
The elution pattern and selenium distribution using a 100 m42 column (2X32cs+) of Sephadex G50 were investigated using mf. As a result, as shown in Figure 2, more than 85% of selenium was present in the polymer fraction.

実施例13 グルコース濃度と、反応(振盪)時間によ
るセレン取込みへの影響 実施例1と同様の条件でサツカロミセス・セレビシェF
TY3を30’Cで16時間培養して得た培養液600
m/!を遠心分離して集菌しく300Orp―、15分
間)、500mj2の水で3回洗浄した後、菌体濃度を
1.4X10’コ/ m lに調製してバイオロジカル
スペースの菌体濃度の状態とし、0.1Mリン酸緩衝液
(pH5)に懸濁して300mj2にメスアンプし、そ
の内50mj!を500mf!容三角フラスコに分注し
、亜セレン酸4.1mg(セレン濃度として50ppm
)とグルコースO%、0.1%0.3%、1%12%、
3%、5%の各々を加えて30°Cで振盪し反応せしめ
た。その後、4,1624時間目の各々で菌体濃度を測
定し、遠心分離して集菌し、さらに菌体を100mj!
の水で2回洗浄した後凍結乾燥し、乾燥菌体内に取込ま
れたセレン濃度を測定した。その結果を第10表に示す
Example 13 Effect of glucose concentration and reaction (shaking) time on selenium uptake Satucharomyces cerevisiae F under the same conditions as Example 1
Culture solution 600 obtained by culturing TY3 at 30'C for 16 hours
m/! After centrifuging to collect bacteria (300 Orp for 15 minutes) and washing three times with 500 mj2 water, the bacterial cell concentration was adjusted to 1.4 x 10' cells/ml and the bacterial cell concentration in the biological space was determined. and suspended in 0.1M phosphate buffer (pH 5) and amplified to 300mj2, of which 50mj! 500mf! Dispense 4.1 mg of selenite (selenium concentration: 50 ppm) into a Erlenmeyer flask.
) and glucose O%, 0.1% 0.3%, 1% 12%,
3% and 5% were added, and the mixture was shaken and reacted at 30°C. After that, the bacterial cell concentration was measured at each 4,1624th hour, and the bacteria were collected by centrifugation.
After washing twice with water, the cells were freeze-dried, and the concentration of selenium incorporated into the dried cells was measured. The results are shown in Table 10.

以上から、セレンの高分子化基質である有機化合物とし
てグルコースを使用した場合、添加濃度は0.3%以上
であることが好ましかった。
From the above, when glucose was used as the organic compound that is the polymerization substrate for selenium, the concentration of addition was preferably 0.3% or more.

実施例14 tR#Iの種類によるセレン取込みへの影
響 実施例1と同様の条件でサツカロミセス・セレビシェF
TY−3を30”Cで16時間培養し、培養液100m
ff1から得られた菌体を100mfの水で3回洗浄し
た後、菌体濃度を1.8X10”コ/m2に調製してバ
イオロジカルスペースの菌体濃度の状態とし、該菌体を
1%のグルコース、フラクトース、ガラクトース、シェ
ークロース マルトース、トレハロースを各々含む0.
1Mリン酸緩衝液(pH5)50mffiに懸濁し、各
々亜セレン酸5mg (セレン濃度として60ppm)
!加えて30°Cで20時間振盪して反応せしめ、遠心
分離にて集菌し、さらに菌体を100m1の水で2回洗
浄した後凍結乾燥し、乾燥菌体量と菌体内に取り込まれ
たセレン濃度を各々測定した。その結果を第1I表に示
す。
Example 14 Effect of tR#I type on selenium uptake Satucharomyces cerevisiae F under the same conditions as Example 1
TY-3 was cultured at 30"C for 16 hours, and 100 m
After washing the bacterial cells obtained from ff1 three times with 100 mf of water, the bacterial cell concentration was adjusted to 1.8 x 10" cells/m2 to achieve the bacterial cell concentration in the biological space, and the bacterial cells were reduced to 1%. Contains glucose, fructose, galactose, shakerose, maltose, and trehalose, respectively.
Suspended in 50 mffi of 1M phosphate buffer (pH 5), 5 mg of each selenite (60 ppm as selenium concentration)
! In addition, the reaction was allowed to occur by shaking at 30°C for 20 hours, the bacteria were collected by centrifugation, and the cells were washed twice with 100 ml of water and freeze-dried to determine the amount of dried cells and the amount taken into the cells. The selenium concentration was measured in each case. The results are shown in Table 1I.

(以 下 余 白) 第11表 以上から、セレンの高分子化基質である有機化合物とし
てグルコース以外にもフラクトース、シュクロース マ
ルトース、トレハロースヲ使用スることにより良好に菌
体内にセレンを取込ませることができた。
(Margins below) From Table 11 and above, we can see that in addition to glucose, fructose, sucrose, maltose, and trehalose can be used as organic compounds that are polymerization substrates for selenium to better incorporate selenium into bacterial cells. I was able to do that.

実施例15 アミノ酸添加によるセレン取込みへの影響 実施例1と同様の条件でサツカロミセス・セレビシェF
TY−3を30°Cで16時間培養し、培養液100m
j!から得られた菌体を100m1の水で3回洗浄した
後、菌体濃度を1.8XIO”コ/m2に調製してバイ
オロジカルスペース以上の菌体濃度の状態とし、該菌体
を0.5%のロイシン、イソロイシン、セリン、グルタ
ミン酸、アスパラギンを各々含む0.1 Mリン酸緩衝
液(pH5)50mlに懸濁し、各々亜セレン酸5m、
g(セレン濃度として60ppm)を加えて30°Cで
20時間振盪して反応せしめ、遠心分離にて集菌し、さ
らに菌体を100mffの水で2回洗浄した後凍結乾燥
し、乾燥菌体量と菌体内に取り込まれたセレン濃度を各
々測定した。その結果を第12表に示す。
Example 15 Effect of amino acid addition on selenium uptake Satucharomyces cerevisiae F under the same conditions as Example 1
TY-3 was cultured at 30°C for 16 hours, and 100 m
j! After washing the bacterial cells obtained from the above three times with 100 ml of water, the bacterial cell concentration was adjusted to 1.8 XIO'' cells/m2 to reach a bacterial cell concentration higher than the biological space, and the bacterial cells were washed with 0.0 ml of water. Suspended in 50 ml of 0.1 M phosphate buffer (pH 5) containing 5% each of leucine, isoleucine, serine, glutamic acid, and asparagine, and 5% each of selenite,
g (60 ppm as selenium concentration) was added and reacted by shaking at 30°C for 20 hours, and the bacteria were collected by centrifugation.The cells were further washed twice with 100 mff of water, and then freeze-dried. The amount of selenium taken into the cells and the concentration of selenium taken into the cells were measured. The results are shown in Table 12.

第  12 表 以上から、セレンの高分子化基質である有機化合物とし
てロイシン、イソロイシンを使用することにより良好に
菌体にセレンを取込ませることができた。
From Table 12 and above, by using leucine and isoleucine as organic compounds that are polymerization substrates for selenium, it was possible to successfully incorporate selenium into the bacterial cells.

実施例16 微生物をキャンディダ・クルゼイとした場
合 キャンディダ・クルゼイ(Candida kruse
i)  156−”25A(IF○−0841)をYP
G培地で30°Cで20時間培養し、培養液100mj
!から得みれた菌体を100rr+1の水で3回洗浄し
た後、菌体濃度を1.2X10’コ/ m lに調製し
てバイオロジカルスペースの菌体濃度の状態とし、該菌
体を1%グルコースを含む0.1Mリン酸緩衝液(pH
6)25mAに懸濁し、亜セレン酸1.3mg(セレン
濃度として30ppm)を加えて、30″Cで20時間
振盪して反応せしめ、遠心分離にて集菌し、さらに菌体
を100m1の水で2回洗浄した後凍結乾燥し、乾燥菌
体量と菌体内に取り込まれたセレン濃度を測定した。そ
の結果を第13表に示す。
Example 16 When the microorganism is Candida krusei
i) YP 156-”25A (IF○-0841)
Cultivate in G medium at 30°C for 20 hours, and add 100 mj of culture solution.
! After washing the bacterial cells obtained from the above three times with 100rr+1 water, the bacterial cell concentration was adjusted to 1.2 x 10' cells/ml to obtain the bacterial cell concentration in the biological space, and the bacterial cells were reduced to 1%. 0.1M phosphate buffer containing glucose (pH
6) Suspend in 25mA, add 1.3mg of selenite (30ppm as selenium concentration), shake at 30"C for 20 hours to react, collect the bacteria by centrifugation, and add the bacteria to 100ml of water. After washing twice with water, the cells were freeze-dried, and the amount of dried bacterial cells and the concentration of selenium incorporated into the bacterial cells were measured.The results are shown in Table 13.

第13表 以上から、キャンディダ属の酵母を使用した場合も良好
に菌体にセレンを取込ませることができた。
From Table 13 and above, selenium was successfully incorporated into the bacterial cells even when yeast of the genus Candida was used.

実施例17 微生物をトルラスポラ・デルブレラキイと
した場合 トルラスポラ・デルブレノキイ(Torulasupo
radelbrueckii)  154−CA (I
 FO−1129)をYPG培地で30°Cで20時間
培養し、培養液100mfから得られた菌体を100m
fの水で3回洗浄した後、菌体濃度を1.8X10”コ
/ m 1に調製してバイオロジカルスペースの菌体濃
度の状態とし1、該菌体を1%グルコースを含む0.1
 Mリン酸緩衝液(pH6)25m/!に懸濁し、亜セ
レン酸1.3mg(セレン濃度として30ppm)を加
えて、30°Cで20時間振盪して反応せしめ、遠心分
離にて集菌し、さらに菌体を100m1の水で2回洗浄
した後凍結乾燥し、乾燥菌体量と菌体内に取り込まれた
セレン濃度を測定した。その結果を第14表に示す。
Example 17 When the microorganism is Torulaspora delbrellakii
radelbrueckii) 154-CA (I
FO-1129) was cultured in YPG medium at 30°C for 20 hours, and the bacterial cells obtained from 100mf of the culture solution were cultured in 100mf.
After washing 3 times with water of f, the bacterial cell concentration was adjusted to 1.8 x 10" cells/m1 to make it the bacterial cell concentration of biological space 1, and the bacterial cells were mixed with 0.1 microorganisms containing 1% glucose.
M phosphate buffer (pH 6) 25m/! Add 1.3 mg of selenite (selenium concentration: 30 ppm), shake at 30°C for 20 hours to react, collect the bacteria by centrifugation, and add the cells twice with 100 ml of water. After washing and freeze-drying, the amount of dried bacterial cells and the concentration of selenium incorporated into the bacterial cells were measured. The results are shown in Table 14.

第14表 以上から、トルラスポラ属の酵母を使用した場合も良好
に菌体にセレンを取込ませることができ実施例18 微
生物をラクトバチルス・カゼイとした場合 ラクトバチルス・カゼイ(Lactobacillus
 casei)B  1045 (IFO3425)を
pH7に調製したロイコノストック培地(2%グルコー
ス0.5% イーストエキス、0.5%ペプトン:12
0°Cで15分殺菌)で30°Cで20時間培養し、培
養液100mfから得られた菌体を100mj!の水で
3回洗浄した後、菌体濃度を1.2X10”コ/m!に
調製してバイオロジカルスペース以上の菌体濃度の状態
とし、該菌体を1%グルコースを含む0.1 Mリン酸
緩衝液(pH6)25mAに懸濁し、亜セレン酸1.3
mg(セレン濃度として30ppm)を加えて、30°
Cで20時間振盪して反応せしめ、遠心分離にて集菌し
、さらに菌体を100m1の水で2回洗浄した後凍結乾
燥し、乾燥菌体量と菌体内に取り込まれたセレン濃度を
測定した。
From Table 14 and above, selenium can be incorporated into the bacterial cells well even when Torulaspora yeast is used.Example 18 When the microorganism is Lactobacillus casei
Leuconostoc medium (2% glucose 0.5% yeast extract, 0.5% peptone: 12
Sterilize at 0°C for 15 minutes) and culture at 30°C for 20 hours. After washing three times with water, the bacterial cell concentration was adjusted to 1.2 x 10"/m! to achieve a bacterial cell concentration higher than the biological space, and the bacterial cells were washed with 0.1 M water containing 1% glucose. Suspended in phosphate buffer (pH 6) 25 mA, selenite 1.3
mg (30 ppm as selenium concentration) and heated at 30°
The cells were shaken at C for 20 hours to react, collected by centrifugation, and the cells were washed twice with 100 ml of water, then freeze-dried, and the amount of dry cells and the concentration of selenium incorporated into the cells were measured. did.

その結果を第15表に示す。The results are shown in Table 15.

(以 下 余 白) 第  15 表 以上から、微生物として乳酸菌を使用した場合も良好に
菌体にセレンを取込ませることができた。
(Margin below) Table 15 From Table 15 and above, selenium could be successfully incorporated into the bacterial cells even when lactic acid bacteria were used as the microorganism.

実施例19 微生物をラクトバチルス アンドフィラス
とした場合 ラクトバチルス・アンドフィラス(Lactobaci
lIus acidphilus) B −105] 
 (l FO−3953)をpH7に調製したロイコノ
ストック培地で30°Cで20時間培養し、培養液10
0mfがら得られた菌体を100m1の水で3回洗浄し
た後、菌体濃度を1.1XIO” コ/ m nに調製
してバイオロジカルスペース以上の菌体感度の状態とし
、該菌体を1%グルコースを含む0.1Mリン酸緩衝液
(pH6)25mj!に懸濁し、亜セレン酸1.3mg
(セレン濃度として30ppm)を加えて、30°Cで
20時間振盪して反応せしめ、遠心分離にて集菌し、さ
らに面体を100mj!の水で2回洗浄した後凍結乾燥
し、乾燥菌体量と菌体内に取り込まれたセレン濃度を測
定した。その結果を第16表に示す。
Example 19 When the microorganism is Lactobacillus andophilus
lIus acidphilus) B-105]
(l FO-3953) was cultured at 30°C for 20 hours in Leuconostoc medium adjusted to pH 7, and the culture solution 10
After washing the bacterial cells obtained from 0mf three times with 100 ml of water, the bacterial cell concentration was adjusted to 1.1XIO'' co/mn to achieve a bacterial cell sensitivity higher than the biological space, and the bacterial cells were 1.3 mg of selenite was suspended in 25 mj! of 0.1 M phosphate buffer (pH 6) containing 1% glucose.
(Selenium concentration: 30 ppm), stirred at 30°C for 20 hours to react, collected bacteria by centrifugation, and then heated the facepiece to 100 mJ! After washing twice with water, the cells were freeze-dried, and the amount of dried bacterial cells and the concentration of selenium incorporated into the bacterial cells were measured. The results are shown in Table 16.

第  16  表 実施例20 微生物をアスペルギルス・ニガーとした場
合 アスペルギルス゛ニガー(Asuperugillos
s niger)S7(IFO−6341)をpH7に
調製したYM培地(1%グルコース、05%ペプトン、
0.3%イーストエキス、0.3%マルトエキス:12
0°Cで15分殺菌)で25°Cで30時間培養し、培
養液100mfから得られた菌体を100mfの水で3
回洗浄した後、該菌体を1%グルコースを含む0.1M
リン酸緩衝液(pH6)15mffに懸濁し、亜セレン
酸1.25mg(セレン濃度として50ppm)を加え
て、30°Cで18時間振盪して反応せしめ、遠心分離
にて集菌し、さらに菌体を100m1の水で2回洗浄し
た後凍結乾燥し、乾燥菌体0.48gを得た。菌体内に
取込まれたセレン濃度は920ppm(取込み率46%
)であった。
Table 16 Example 20 When Aspergillus niger is used as a microorganism, Aspergillus niger
YM medium (1% glucose, 05% peptone,
0.3% yeast extract, 0.3% malt extract: 12
Sterilize at 0°C for 15 minutes) and culture at 25°C for 30 hours.
After washing twice, the bacterial cells were washed with 0.1M solution containing 1% glucose.
Suspend in 15mff of phosphate buffer (pH 6), add 1.25mg of selenite (50ppm as selenium concentration), shake at 30°C for 18 hours to react, collect by centrifugation, and further The cells were washed twice with 100 ml of water and then freeze-dried to obtain 0.48 g of dried cells. The selenium concentration taken into the bacterial body was 920 ppm (uptake rate 46%).
)Met.

実施例21 微生物をアスペルギルス・アワモリとした
場合 アスペルギルス゛アワモリ(Asuρerugillo
se awallori) N04A (IFO−40
33)をpH7に調製したYM培地で25°Cで30時
間培養し、培養液100m1から得られた菌体を100
mj!の水で3回洗浄した後、該菌体を1%グルコース
を含む0.1Mリン酸緩衝1(pH6)25mj!に懸
濁し、亜セレン酸2.5mg(セレン濃度として60P
pm)を加えて、30’Cで18時間振盪して反応せし
め、遠心分離にて集菌し、さらに菌体を100m1の水
で2回洗浄巳た後凍結乾燥し、乾燥菌体0.62gを得
た。菌体内に取込まれたセレン濃度は、2230ppm
 (取込み率70%)であった。
Example 21 When the microorganism is Aspergillus awamori
se awallori) N04A (IFO-40
33) was cultured in YM medium adjusted to pH 7 at 25°C for 30 hours, and the bacterial cells obtained from 100 ml of culture solution were
mj! After washing three times with water, the cells were washed with 0.1M phosphate buffer 1 (pH 6) containing 1% glucose at 25mj! 2.5 mg of selenite (60P as selenium concentration)
pm), reacted by shaking at 30'C for 18 hours, collected the bacteria by centrifugation, washed the cells twice with 100ml of water, and freeze-dried to obtain 0.62g of dried cells. I got it. The selenium concentration taken into the bacterial body is 2230 ppm.
(uptake rate 70%).

以上から、微生物としてカビを使用した場合も良好に菌
体にセレンを取込ませることができた。
From the above, even when mold was used as the microorganism, it was possible to successfully incorporate selenium into the bacterial cells.

実施例22 微生物をクロレラ・ブルガリスとした場合 クロレラ・ブルガリス(Chrorella burB
allis)E−25を2%グルコース、0.4%尿素
、0.1%リン酸塩、0.1%硫酸マグネシウム、0.
03%硫酸第一鉄、0.1%塩化カルシウムを含む培地
で30°Cで30時間培養し、培養液100mj!から
得られた菌体を100m/!の水で3回洗浄した後、菌
体濃度を2X10’コ/ m lに調製してバイオロジ
カルスペース以上の菌体濃度の状態とし、該菌体を0.
5%グルコースを含む0.1Mリン酸緩衝液(pH6)
25mfに懸濁し、亜セレン酸5mg (セレン濃度と
して120ppm)を加えて、30°Cで18時間振盪
して反応せしめ、菌体濃度を測定して遠心分離にて集菌
し、さらに菌体を100mj2の水で2回洗浄した後凍
結乾燥し、菌体内に取り込まれたセレン濃度を測定した
。その結果を第17表に示す。
Example 22 When the microorganism is Chlorella vulgaris
allis) E-25 in 2% glucose, 0.4% urea, 0.1% phosphate, 0.1% magnesium sulfate, 0.
Cultured at 30°C for 30 hours in a medium containing 0.3% ferrous sulfate and 0.1% calcium chloride, and the culture solution was 100mj! 100m/! of bacterial cells obtained from After washing three times with water, the bacterial cell concentration was adjusted to 2 x 10' cells/ml to achieve a bacterial cell concentration higher than the biological space, and the bacterial cell concentration was adjusted to 0.
0.1M phosphate buffer (pH 6) containing 5% glucose
25 mf, add 5 mg of selenite (120 ppm as selenium concentration), shake at 30°C for 18 hours to react, measure the bacterial cell concentration, collect the bacteria by centrifugation, and further collect the bacterial cells. After washing twice with 100 mj2 of water, the cells were freeze-dried, and the concentration of selenium incorporated into the cells was measured. The results are shown in Table 17.

(以 下 余 白) 第  17  表 以上かち、微生物として単細胞緑藻を使用した場合も良
好に菌体にセレンを取込ませることができた。
(Margins below) Table 17 As shown above, even when unicellular green algae was used as the microorganism, selenium could be successfully incorporated into the bacterial cells.

〈発明の効果〉 本発明の製造法の目的は、予めセレンを添加しない実質
的にセレンを含有しない培地で菌体を培養・増殖させる
ため、培養時にセレンによる生育阻害が無く、従来技術
にある予めセレンを添加させた培地で培養・増殖させる
場合−二比すと菌体の増殖速度が早く、また増殖率も優
れている方法を提供する。
<Effects of the Invention> The purpose of the production method of the present invention is to culture and proliferate bacterial cells in a substantially selenium-free medium without adding selenium in advance, so that there is no growth inhibition due to selenium during culturing, which is different from the conventional technology. To provide a method in which the growth rate of bacterial cells is faster than in the case of culturing and growing in a medium to which selenium has been added in advance, and the growth rate is also excellent.

また、本発明は国体を培地で充分培養・増殖さゼ、集菌
後に反応液へ該菌体を分散させるため、菌体を4縮化す
ることが可能であることから反応系を小さくでき、した
がって反応後の廃液を少量化することができ、また、反
応液中にセレン以外の金属を含まないため廃液処理を簡
便にする方法を提供する。
In addition, in the present invention, the bacterial cells are dispersed in the reaction solution after sufficiently culturing and propagating Kokutai in a medium, and after collection, the bacterial cells can be reduced to four, so the reaction system can be made smaller. Therefore, the amount of waste liquid after the reaction can be reduced, and since the reaction liquid does not contain metals other than selenium, a method is provided that simplifies waste liquid treatment.

さらに、本発明は菌体を適宜増殖させせ、集菌後に水洗
して培養培地成分を除去した後菌体濃度を好ましくはバ
イロジカルスペース以上にIIして培養・増殖を停止−
させ、次いで反応液へ該菌体を分散させるため、当然反
応せしめる際には菌体増殖の必要は無く、菌体増殖阻害
を生ずるセレンを反応液中で高濃度にすることが可能で
あり、かつ、菌体内に取込ませ蓄積できる高分子化セレ
ン濃度も高く、高濃度の高分子化セレンを含有した菌体
を製造することを提供する。
Furthermore, the present invention allows the bacterial cells to propagate appropriately, and after collecting the bacteria, washes with water to remove culture medium components, and then adjusts the bacterial cell concentration to II, preferably above the biological space, to stop the culture and proliferation.
Since the bacterial cells are then dispersed in the reaction solution, there is naturally no need for bacterial cell proliferation during the reaction, and it is possible to increase the concentration of selenium, which inhibits bacterial cell growth, in the reaction solution. Moreover, the concentration of polymerized selenium that can be taken up and accumulated in the bacterial cells is high, and the present invention provides the production of bacterial cells containing a high concentration of polymerized selenium.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1で求めた菌体の増殖曲線を示し、第2
図は実施例12参考例で求めた溶出パターンとセレンの
分布を示す。
Figure 1 shows the growth curve of bacterial cells determined in Example 1, and Figure 1 shows the growth curve of bacterial cells determined in Example 1.
The figure shows the elution pattern and selenium distribution determined in Example 12 Reference Example.

Claims (1)

【特許請求の範囲】 中高分子化セレンを菌体内に蓄積することのできる微生
物を培養して得た菌体をバイオロジカルスペース以上の
菌体濃度とし、該菌体をセレンの高分子化基質である有
機化合物および水溶性セレン化合物を含有する水溶液に
分散せしめることにより、該菌体に高分子化セレンを蓄
積せしめることを特徴とする高分子化セレン含有菌体の
製造法。 (2)高分子化セレンを菌体内に蓄積することのできる
微生物が可食性の酵母、細菌、カビまたは単細胞緑藻で
ある請求項第1項記載の製造法。 (3)可食性の酵母がサッカロミセス(Sacchar
omyces)属、トルラスポラ(Torulasup
ora)属、トルロプシス(Torulopsis)属
、ミコトルラ(Mycotorula)属、キャンディ
ダ(Candida)属、ハンセヌラ(Hansenu
la)属に属する酵母である請求項第2項記載の製造法
。 (4)水溶性セレン化合物が亜セレン酸、二酸化セレン
またはセレン酸である請求項第1項記載の製造法。 (5)セレンの高分子化基質である有機化合物が糖およ
び/またはアミノ酸である請求項第1項記載の製造法。 (6)糖がグルコース、フラクトース、シュクロース、
マルトースまたはトレハロースであり、アミノ酸がロイ
シンまたはイソロイシンである請求項第5項記載の製造
法。 (7)セレンの高分子化基質である有機化合物水溶液が
少なくとも糖および/またはアミノ酸およびリン酸塩を
含有してなる請求項第5項記載の製造法。
[Claims] The bacterial cells obtained by culturing a microorganism capable of accumulating medium-polymerized selenium in the bacterial cells are brought to a bacterial cell concentration higher than the biological space, and the bacterial cells are treated with a polymerized selenium substrate. 1. A method for producing polymerized selenium-containing bacterial cells, which comprises accumulating polymerized selenium in the bacterial cells by dispersing them in an aqueous solution containing a certain organic compound and a water-soluble selenium compound. (2) The production method according to claim 1, wherein the microorganism capable of accumulating polymerized selenium within its bacterial cells is edible yeast, bacteria, mold, or unicellular green algae. (3) The edible yeast is Saccharomyces
omyces), Torulaspora (Torulasup)
ora), Torulopsis, Mycotorula, Candida, Hansenu
The method according to claim 2, wherein the yeast belongs to the genus la). (4) The production method according to claim 1, wherein the water-soluble selenium compound is selenite, selenium dioxide, or selenic acid. (5) The production method according to claim 1, wherein the organic compound that is the polymerization substrate for selenium is a sugar and/or an amino acid. (6) Sugar is glucose, fructose, sucrose,
6. The method according to claim 5, wherein the amino acid is maltose or trehalose and the amino acid is leucine or isoleucine. (7) The method according to claim 5, wherein the organic compound aqueous solution that is the polymerization substrate for selenium contains at least sugar and/or amino acid and phosphate.
JP2149318A 1990-06-07 1990-06-07 Method for producing microbial cell containing polymerized selenium Expired - Lifetime JPH0616702B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2149318A JPH0616702B2 (en) 1990-06-07 1990-06-07 Method for producing microbial cell containing polymerized selenium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2149318A JPH0616702B2 (en) 1990-06-07 1990-06-07 Method for producing microbial cell containing polymerized selenium

Publications (2)

Publication Number Publication Date
JPH0440888A true JPH0440888A (en) 1992-02-12
JPH0616702B2 JPH0616702B2 (en) 1994-03-09

Family

ID=15472499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2149318A Expired - Lifetime JPH0616702B2 (en) 1990-06-07 1990-06-07 Method for producing microbial cell containing polymerized selenium

Country Status (1)

Country Link
JP (1) JPH0616702B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2829698A1 (en) * 2001-09-19 2003-03-21 Jean Pierre Brune Medicinal and alimentary compositions containing a mixture of algae and sugar have improved absorption characteristics
KR100581343B1 (en) * 2004-07-01 2006-05-17 이정복 Yeast containing a large percentage of organic-selenium and its cultivation method and the composition utilizing thereof
KR100728585B1 (en) * 2005-05-16 2007-06-15 주식회사 메디오젠 lactic ferments with selenium and manufacturing method thereof
WO2010089864A1 (en) * 2009-02-04 2010-08-12 クロレラ工業株式会社 Selenium-containing unicellular microalgae for animal plankton feeds and method of culturing selenium-containing animal planktons using the same
CN105331546A (en) * 2015-11-23 2016-02-17 湖北工业大学 Selenium-rich candida glabrata strain FXY-4 as well as cultivation method and application of selenium-rich candida glabrata strain FXY-4 serving as additive for fish feed
CN114561322A (en) * 2022-02-22 2022-05-31 武汉轻工大学 Bacillus licheniformis and application thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011129462A2 (en) 2010-04-12 2011-10-20 Ajinomoto Co., Inc. A YEAST EXTRACT CONTAINING γ-Glu-X OR γ-Glu-X-Gly AND A METHOD FOR PRODUCING THE SAME
WO2012046731A1 (en) 2010-10-05 2012-04-12 味の素株式会社 YEAST AND YEAST EXTRACT CONTAINING γ-Glu-Abu, AND METHOD FOR PRODUCING THE YEAST OR YEAST EXTRACT CONTAINING γ-Glu-Abu

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2829698A1 (en) * 2001-09-19 2003-03-21 Jean Pierre Brune Medicinal and alimentary compositions containing a mixture of algae and sugar have improved absorption characteristics
KR100581343B1 (en) * 2004-07-01 2006-05-17 이정복 Yeast containing a large percentage of organic-selenium and its cultivation method and the composition utilizing thereof
KR100728585B1 (en) * 2005-05-16 2007-06-15 주식회사 메디오젠 lactic ferments with selenium and manufacturing method thereof
WO2010089864A1 (en) * 2009-02-04 2010-08-12 クロレラ工業株式会社 Selenium-containing unicellular microalgae for animal plankton feeds and method of culturing selenium-containing animal planktons using the same
CN102307486A (en) * 2009-02-04 2012-01-04 小球藻工业株式会社 Selenium-containing unicellular microalgae for animal plankton feeds and method of culturing selenium-containing animal planktons using the same
JP4852662B2 (en) * 2009-02-04 2012-01-11 クロレラ工業株式会社 Selenium-containing single-cell microalgae for zooplankton feed and methods for culturing selenium-containing zooplankton using the same
CN105331546A (en) * 2015-11-23 2016-02-17 湖北工业大学 Selenium-rich candida glabrata strain FXY-4 as well as cultivation method and application of selenium-rich candida glabrata strain FXY-4 serving as additive for fish feed
CN105331546B (en) * 2015-11-23 2018-09-25 湖北工业大学 A kind of selenium-rich Candida glabrata strain FXY-4 and its cultural method and the application as fish feed additive
CN114561322A (en) * 2022-02-22 2022-05-31 武汉轻工大学 Bacillus licheniformis and application thereof
CN114561322B (en) * 2022-02-22 2023-12-29 武汉轻工大学 Bacillus paratungensis and application thereof

Also Published As

Publication number Publication date
JPH0616702B2 (en) 1994-03-09

Similar Documents

Publication Publication Date Title
CN101842334B (en) Novel biological fertiliser, method for obtaining same and use thereof as a plant growth stimulator
US4144129A (en) Cholesteroloxidase and method for its production from microorganisms
PT2324108E (en) Microorganism capable of solubilizing phosphate and iron and its applications
JPH0440888A (en) Production of fungus containing polymerized selenium
CS277658B6 (en) Process for preparing 6-hydroxynicotinic acid
WO2010096382A1 (en) Processes for the production of proteins containing selenium using yeast cells
US5521090A (en) L-ascorbic acid containing biomass of chlorella pyrenoidosa
JPH06113819A (en) Culture of euglena
CN103773685B (en) A kind of method for preserving of Nitrosomas
CN109504713A (en) The method and application of high ester bond humic acid preparation are prepared using Clostridium beijerinckii
JPH05176758A (en) Production of iron-containing yeast
JP2000217567A (en) Sporulation of bacteria of genus bacillus
JP4434927B2 (en) Method for producing γ-aminobutyric acid-containing food, and yeast having high γ-aminobutyric acid production ability
JP3957783B2 (en) Method for producing iron-containing yeast
JPS62134083A (en) Iron-containing microorganism and production thereof
KR100581343B1 (en) Yeast containing a large percentage of organic-selenium and its cultivation method and the composition utilizing thereof
JPH1070960A (en) Use of selenium-containing microbial cell
CN110317754A (en) A kind of microbial liquid microbial inoculum and preparation method thereof containing polyglutamic acid
JPH08332081A (en) Yeast containing magnesium at high concentration
JPH10500002A (en) Production of L-ascorbic acid in microorganisms
KR20050117620A (en) A microorganic feed supplement with organometal or organomineral accumualted in microorganism and a preparation method thereof
JPH06113753A (en) Feed for fishes comprising organic selenium-containing cell
JP2002306158A (en) Composite culture material, method for producing composite culture material, precultured material, method for producing precultured material and method for producing microbial preparation
CN106398713A (en) Production method of complex fungicide-containing soil conditioner
CN105062901B (en) A kind of active bacteria formulation and its application for Bioconversion of D-xylose To Produce Xylitol

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090309

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090309

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100309

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 17

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 17