JP2021166510A - Euglena culture method - Google Patents

Euglena culture method Download PDF

Info

Publication number
JP2021166510A
JP2021166510A JP2021066518A JP2021066518A JP2021166510A JP 2021166510 A JP2021166510 A JP 2021166510A JP 2021066518 A JP2021066518 A JP 2021066518A JP 2021066518 A JP2021066518 A JP 2021066518A JP 2021166510 A JP2021166510 A JP 2021166510A
Authority
JP
Japan
Prior art keywords
concentration
culture
euglena
culture solution
glucose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021066518A
Other languages
Japanese (ja)
Other versions
JP7286183B2 (en
Inventor
雅弘 林
Masahiro Hayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Subaru Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Subaru Corp filed Critical Subaru Corp
Publication of JP2021166510A publication Critical patent/JP2021166510A/en
Application granted granted Critical
Publication of JP7286183B2 publication Critical patent/JP7286183B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a technique for culturing Euglena in large scale culture.SOLUTION: A Euglena culture method of the invention comprises: a conditioning step for preparing a plurality of kinds of conditioning culture media, where the conditioning culture media are formed of low concentration culture medium in which glucose concentration is prescribed concentration from 0% to 2%, and high concentration culture medium in which glucose concentration is greater than 2% and equal to or less than 8%, namely the concentration is prescribed condition, and among the conditioning culture media, glucose concentration is different, and sequentially using the conditioning culture media for culturing Euglena, in an order of having low glucose concentration in the conditioning culture media; and a growth step for culturing the Euglena acquired in the conditioning step, using a growth culture medium in which, the glucose concentration is equal to that of the high concentration culture medium, or the glucose concentration is greater than that of the high concentration culture medium and is equal to or less than 8%.SELECTED DRAWING: Figure 1

Description

本発明は、ユーグレナの培養方法に関する。 The present invention relates to a method for culturing Euglena.

微細藻類の一種であるユーグレナ(Euglena gracilis)は長さが約50μm、幅が約10μm、植物にも動物にも属する生き物である。ユーグレナはミドリムシとしても知られており、光合成によって水と二酸化炭素から有機化合物を合成し、酸素を放出する。 Euglena gracilis, a type of microalgae, is about 50 μm long and about 10 μm wide, and is a creature that belongs to both plants and animals. Euglena, also known as Euglena, photosynthesizes organic compounds from water and carbon dioxide to release oxygen.

ユーグレナは、それ自身の栄養価が高いことから、乾燥粉末が食品添加物や栄養補助食品(サプリメント)として利用されている。また、ユーグレナの産生物質のひとつであるパラミロンは、ナノファイバーの原料物質として利用され、ワックスエステル(炭素数が十数個のアルコールとカルボン酸からなるエステル化合物)は燃料としての活用が期待されている。 Euglena is used as a food additive and dietary supplement because of its high nutritional value. In addition, paramylon, which is one of the substances produced by Euglena, is used as a raw material for nanofibers, and wax ester (an ester compound consisting of alcohol and carboxylic acid having more than a dozen carbon atoms) is expected to be used as a fuel. There is.

米国特許出願公開第2003/0180898号明細書U.S. Patent Application Publication No. 2003/0180898 特開昭63-71192号公報JP-A-63-71192

Ogbonna, JC., Tomiyama, S., Tanaka, H., Heterotrophic cultivation of Euglena gracilis Z for efficient production of alpha-tocopherol. Journal of Applied Phycology 10, 67.Ogbonna, JC., Tomiyama, S., Tanaka, H., Heterotrophic cultivation of Euglena gracilis Z for efficient production of alpha-tocopherol. Journal of Applied Phycology 10, 67. Doucha, J., Livansky, K.,(2011), Production of high-density Chlorella culture grown in fermenters. J Appl Phycol, 24, 35-43.Doucha, J., Livansky, K., (2011), Production of high-density Chlorella culture grown in fermenters. J Appl Phycol, 24, 35-43. Swaaf, ME., Sijtsma, L.,Pronk, JT., (2003), High-cell-density fed-batch cultivation of the docosahexaenoic acid producing marine alga Crypthecodinium cohnii. Biotechnol Bioeng, 81, 666-672.Swaaf, ME., Sijtsma, L., Pronk, JT., (2003), High-cell-density fed-batch cultivation of the docosahexaenoic acid producing marine alga Crypthecodinium cohnii. Biotechnol Bioeng, 81, 666-672. Schmidt, RA., Wiebe, MG., Eriksen, NT., (2005), Heterotrophic high cell-density fed-batch cultures of the phycocyanin-producing red alga Galdieria sulphuraria. Biotechnol Bioeng, 90, 77-84. 29-36.Schmidt, RA., Wiebe, MG., Eriksen, NT., (2005), Heterotrophic high cell-density fed-batch cultures of the phycocyanin-producing red alga Galdieria sulphuraria. Biotechnol Bioeng, 90, 77-84. 29-36 .. Ganuza, E., et al., (2008), High-cell-density cultivation of Schizochytrium sp. In an ammonium/pH-auxostat fed-batch system. Biotechnology Letters. 30, 1559-1564.Ganuza, E., et al., (2008), High-cell-density cultivation of Schizochytrium sp. In an ammonium / pH-auxostat fed-batch system. Biotechnology Letters. 30, 1559-1564.

ユーグレナが産生する物質の工業的、商業的利用を実現するためには、目的とする物質を産生する能力に優れたユーグレナを安定的に且つ大量に培養する技術が求められる。 In order to realize the industrial and commercial use of the substances produced by Euglena, a technique for stably and mass-culturing Euglena having an excellent ability to produce the target substance is required.

一般的に、微生物を大量に培養する場合、培養槽内に微生物を高密度に充填して培養する高密度培養法が用いられる。高密度培養における培養能力は、例えば、一度に培養可能な単位容量当たりの微生物の量(これを最大バイオマス収量という)で表すことができる。これまでに報告されている高密度培養における微細藻類の最大バイオマス収量は、クロレラ属(chlorella vulgaris)が117.2g/L、クリプテコディヌウム属(Cryptecodiniumu cohnii)が109.0g/L、ガルディエリア属(Galdieria sulphurariaha )が116.0g/L、スラウストキトリアルス(Thraustochytriales)が221.0g/Lであるのに対して、ユーグレナ(Euglena gracilis)では48.2g/Lであり、他の微細藻類に比べるとユーグレナは最大バイオマス収量が低く(特許文献1、非特許文献1〜4)、ユーグレナの最大バイオマス収量を高めることができる培養条件が模索されていた。なお、ここでは、単位容量当たりの微細藻類の乾燥重量でバイオマス収量が表されている。 Generally, when culturing a large amount of microorganisms, a high-density culture method is used in which the microorganisms are densely packed in a culture tank and cultured. The culturing ability in high-density culturing can be expressed, for example, by the amount of microorganisms per unit volume that can be cultivated at one time (this is referred to as the maximum biomass yield). The maximum biomass yields of microalgae in high-density culture reported so far are 117.2 g / L for chlorella vulgaris, 109.0 g / L for Cryptecodiniumu cohnii, and Gardieria (Cryptecodiniumu cohnii). Galdieria sulphurariaha) is 116.0 g / L and Thraustochytriales is 221.0 g / L, while Euglena gracilis is 48.2 g / L, which is higher than other microalgae. Cultivation conditions have been sought for which the maximum algae yield is low (Patent Documents 1 and Non-Patent Documents 1 to 4) and the maximum algae yield of Euglena can be increased. Here, the biomass yield is expressed by the dry weight of microalgae per unit volume.

本発明が解決しようとする課題は、ユーグレナを大量培養する技術の提供である。 The problem to be solved by the present invention is to provide a technique for mass-culturing Euglena.

上記課題を解決するために成された本発明に係るユーグレナの培養方法は、
グルコース濃度が0%から2%までの間の所定の濃度である低濃度培養液と、グルコース濃度が2%よりも高く且つ8%以下の所定の濃度である高濃度培養液とから成る、グルコース濃度が異なる複数種類の馴化用培養液を用意し、グルコース濃度が低い馴化用培養液から順に該馴化用培養液を使ってユーグレナを培養する馴化工程と、
前記馴化工程で得られたユーグレナを、グルコース濃度が前記高濃度培養液と同じか、前記高濃度培養液よりも高く且つ8%以下である増殖用培養液を使って培養する増殖工程とを有することを特徴とする。
The method for culturing Euglena according to the present invention, which was made to solve the above problems, is
A glucose consisting of a low-concentration culture medium having a glucose concentration of a predetermined concentration between 0% and 2% and a high-concentration culture medium having a glucose concentration of more than 2% and a predetermined concentration of 8% or less. An acclimatization step in which multiple types of acclimatization culture solutions having different concentrations are prepared, and Euglena is cultured using the acclimatization culture medium in order from the acclimatization culture medium having the lowest glucose concentration.
It has a growth step of culturing Euglena obtained in the acclimation step using a growth culture solution having the same glucose concentration as the high-concentration culture solution, or higher than the high-concentration culture solution and 8% or less. It is characterized by that.

上記課題を解決するために成された本発明に係るユーグレナの培養方法は、
グルコース濃度が0%から2%までの間の所定の濃度である低濃度培養液と、グルコース濃度が2%よりも高く且つ8%以下の所定の濃度である高濃度培養液と、グルコース濃度が前記低濃度培養液よりも高く、前記高濃度培養液よりも低い濃度である中間濃度培養液とから成る、グルコース濃度が異なる複数種類の馴化用培養液を用意し、グルコース濃度が低い馴化用培養液から順に該馴化用培養液を使ってユーグレナを培養する馴化工程と、
前記馴化工程で得られたユーグレナを、グルコース濃度が前記高濃度培養液と同じか、前記高濃度培養液よりも高く且つ8%以下である増殖用培養液を使って培養する増殖工程と
を有することを特徴とする。
The method for culturing Euglena according to the present invention, which was made to solve the above problems, is
A low-concentration culture medium having a glucose concentration of a predetermined concentration between 0% and 2%, a high-concentration culture medium having a glucose concentration higher than 2% and a predetermined concentration of 8% or less, and a glucose concentration Prepare a plurality of types of acclimation culture solutions having different glucose concentrations, which consist of an intermediate concentration culture solution having a concentration higher than that of the low-concentration culture solution and a concentration lower than that of the high-concentration culture solution. The acclimation step of culturing Euglena using the acclimation culture solution in order from the solution,
It has a growth step of culturing Euglena obtained in the acclimation step using a growth culture solution having the same glucose concentration as the high-concentration culture solution, or higher than the high-concentration culture solution and 8% or less. It is characterized by that.

上記のユーグレナの培養方法において、前記中間濃度培養液が、濃度が異なる複数種類の培養液から成るものとしても良い。 In the above method for culturing Euglena, the intermediate concentration culture solution may consist of a plurality of types of culture solutions having different concentrations.

一般的に培養液に含まれるグルコース等の炭素源の濃度が高いほど微細藻類の高密度培養が可能となり、バイオマスス収量が増加する。ところが、ユーグレナを培養する場合、培養液に含めることができるグルコール濃度はせいぜい2%程度で、それ以上にグルコースの濃度を高めるとかえって増殖率が低下したり、増殖阻害が起きたりすることが知られていた。これに対して、本発明者は、ユーグレナの培養液に含まれるグルコース濃度を徐々に高めていくことにより、グルコース濃度が高い培養液に対して、つまり高濃度グルコースに対して耐性を有するユーグレナが現れることを見いだした。本発明はこのような知見に基づきなされたものである。本発明では、ユーグレナに高濃度グルコースに対する耐性を獲得させることを「馴化」と呼ぶこととする。 Generally, the higher the concentration of a carbon source such as glucose contained in the culture solution, the higher the density of microalgae can be cultivated, and the higher the biomass yield. However, when euglena is cultivated, the concentration of glycol that can be contained in the culture solution is at most about 2%, and it is known that if the glucose concentration is increased further, the growth rate will decrease or growth inhibition will occur. Was being done. On the other hand, the present inventor gradually increases the glucose concentration contained in the Euglena culture medium, so that Euglena having resistance to the culture medium having a high glucose concentration, that is, to the high-concentration glucose can be obtained. I found it to appear. The present invention has been made based on such findings. In the present invention, making Euglena acquire resistance to high-concentration glucose is referred to as "acclimation".

つまり、本発明では、馴化用培養液として、グルコース濃度が0%から2%までの間の所定の濃度である低濃度培養液と、グルコース濃度が2%よりも高く且つ8%以下の所定の濃度である高濃度培養液とを用意する。あるいは、馴化用培養液として、低濃度培養液及び高濃度培養液と、グルコース濃度が前記低濃度培養液よりも高く、前記高濃度培養液よりも低い濃度である1又は複数種類の中間濃度培養液とを用意する。そして、グルコース濃度が低い馴化用培養液から順に該馴化用培養液を使ってユーグレナを培養することで、従来のユーグレナが耐え得る培養液中のグルコース濃度である2%よりも高濃度のグルコースにユーグレナを馴化させる。馴化工程で得られたユーグレナは、増殖工程において、グルコース濃度が前記高濃度培養液と同じか、前記高濃度培養液よりも高く且つ8%以下である増殖用培養液を使って培養することで増殖する。なお、厳密な意味では「8%以下の所定の濃度」には8%を超える濃度は含まれないが、実質的に同一とみなされる範囲であれば8%を多少上回る濃度も含まれることとする。 That is, in the present invention, as the conditioned culture medium, a low-concentration culture medium having a glucose concentration of a predetermined concentration between 0% and 2% and a predetermined culture medium having a glucose concentration of more than 2% and 8% or less. Prepare a high-concentration culture solution having a high concentration. Alternatively, as the acclimation culture solution, one or a plurality of types of intermediate concentration cultures, which are a low-concentration culture solution and a high-concentration culture solution, and a glucose concentration higher than that of the low-concentration culture solution and lower than that of the high-concentration culture solution. Prepare the liquid. Then, by culturing Euglena using the acclimation culture solution in order from the acclimation culture solution having the lowest glucose concentration, the glucose concentration becomes higher than 2%, which is the glucose concentration in the culture solution that the conventional Euglena can tolerate. Familiarize Euglena. Euglena obtained in the acclimation step is cultivated in the growth step using a growth culture solution having the same glucose concentration as the high-concentration culture solution, or higher than the high-concentration culture solution and 8% or less. Multiply. In a strict sense, the "predetermined concentration of 8% or less" does not include a concentration exceeding 8%, but a concentration slightly higher than 8% is included as long as it is considered to be substantially the same. do.

例えば、低濃度培養液のグルコース濃度を1.0%、高濃度培養液のグルコース濃度を2.5%とすることで、ユーグレナは少なくとも2.5%のグルコース濃度に対する耐性を獲得する。また例えば、低濃度培養液のグルコース濃度を1.0%、中間濃度培養液のグルコース濃度を2.0%、高濃度培養液のグルコース濃度を3.0%としたとき、ユーグレナは少なくとも3.0%のグルコース濃度に対する耐性を獲得する。また例えば、低濃度培養液のグルコース濃度を2.0%、中間濃度培養液のグルコース濃度を2.2%〜4.8%の1又は複数種類の濃度、高濃度培養液のグルコース濃度を5.0%としたとき、ユーグレナは少なくとも5.0%のグルコース濃度に対する耐性を獲得する。馴化工程によりグルコース濃度が高い培養液に対する耐性を獲得したユーグレナ(糖耐性ユーグレナ)を本出願人は「ハイパー株」と呼んでいる。ハイパー株を作出したことで、増殖工程においてグルコース濃度が2%よりも高く且つ8%以下の高濃度の培養液を使ってユーグレナを培養しても、増殖率が低下したり増殖が阻害されたりすることがなく、ユーグレナを安定的に且つ効率よく増殖させることができる。 For example, by setting the glucose concentration of the low-concentration culture medium to 1.0% and the glucose concentration of the high-concentration culture solution to 2.5%, Euglena acquires resistance to a glucose concentration of at least 2.5%. For example, when the glucose concentration of the low-concentration culture solution is 1.0%, the glucose concentration of the intermediate-concentration culture solution is 2.0%, and the glucose concentration of the high-concentration culture solution is 3.0%, Euglena is resistant to a glucose concentration of at least 3.0%. Acquire. Further, for example, when the glucose concentration of the low-concentration culture solution is 2.0%, the glucose concentration of the intermediate-concentration culture solution is one or more kinds of concentrations of 2.2% to 4.8%, and the glucose concentration of the high-concentration culture solution is 5.0%, Euglena. Acquires resistance to glucose concentrations of at least 5.0%. The applicant refers to Euglena (sugar-tolerant Euglena), which has acquired resistance to a culture medium having a high glucose concentration by the acclimation process, as a "hyper strain". By creating a hyper strain, even if Euglena is cultured in a culture medium having a glucose concentration higher than 2% and 8% or less in the growth step, the growth rate is reduced or the growth is inhibited. Euglena can be grown stably and efficiently without any problem.

馴化工程で使用される馴化用培養液は、グルコース濃度が2%の低濃度培養液及び5%の高濃度培養液と、グルコース濃度が2%から5%までの間の複数種類の中間濃度培養液から成ると良い。このとき、グルコース濃度が2%〜5%までの間の中間濃度培養液の当該グルコース濃度は、2%から5%までの範囲を等分した値に設定すると、馴化工程で用いられる馴化用培養液のグルコース濃度を直線的に高めることができる点で好ましいが、これに限らない。 The acclimation culture medium used in the acclimation step includes a low-concentration culture solution having a glucose concentration of 2% and a high-concentration culture solution having a glucose concentration of 5%, and a plurality of types of intermediate-concentration culture solutions having a glucose concentration of 2% to 5%. It should consist of liquid. At this time, if the glucose concentration of the intermediate concentration culture solution in which the glucose concentration is between 2% and 5% is set to a value obtained by equally dividing the range from 2% to 5%, the acclimation culture used in the acclimation step is used. It is preferable in that the glucose concentration of the liquid can be increased linearly, but the present invention is not limited to this.

また、高濃度培養液のグルコース濃度が5%であるとき、前記増殖用培養液のグルコース濃度は5%〜8%の間の所定の濃度にすると、ユーグレナを効率よく増殖させることができる。 Further, when the glucose concentration of the high-concentration culture solution is 5%, if the glucose concentration of the growth culture solution is a predetermined concentration between 5% and 8%, Euglena can be efficiently grown.

また、本発明においては、前記馴化工程と前記増殖工程の間に、該馴化工程において得られたユーグレナの中から増殖率の高いユーグレナを選抜する選抜工程を有すると良い。これにより、増殖工程におけるユーグレナの増殖率を高めることができる。 Further, in the present invention, it is preferable to have a selection step for selecting Euglena having a high growth rate from the Euglena obtained in the acclimatization step between the acclimatization step and the proliferation step. This makes it possible to increase the growth rate of Euglena in the growth step.

ところで、グルコース濃度が2%よりも高い培養液に対する耐性を既に有しているユーグレナの場合には、馴化工程を経なくても、培養当初からグルコース濃度が2%よりも増殖用培養液を使って培養することができる。そこで、本発明に係るユーグレナの培養方法は、グルコース濃度が2%よりも高く、且つ8%以下である所定の濃度の増殖用培養液を使ってユーグレナを培養するものとすることができる。また、本発明はユーグレナの製造方法にも適用できる。つまり、本発明に係るユーグレナの製造方法は、グルコース濃度が2%よりも高く、且つ8%以下である所定の濃度の増殖用培養液を使ってユーグレナを培養し、増殖させることを特徴とする。 By the way, in the case of Euglena, which already has resistance to a culture medium having a glucose concentration higher than 2%, a growth culture medium having a glucose concentration higher than 2% is used from the beginning of the culture without going through the acclimation step. Can be cultivated. Therefore, in the method for culturing Euglena according to the present invention, Euglena can be cultured using a growth culture solution having a glucose concentration of more than 2% and 8% or less. The present invention can also be applied to a method for producing Euglena. That is, the method for producing Euglena according to the present invention is characterized in that Euglena is cultured and propagated using a growth culture solution having a glucose concentration of more than 2% and 8% or less. ..

グルコース濃度が2%よりも高い培養液に対する耐性を有しているユーグレナ(糖耐性ユーグレナ)は、本発明の糖耐性ユーグレナの製造方法で製造することができる。本発明の糖耐性ユーグレナの製造方法は、グルコース濃度が0%から2%までの間の所定の濃度である低濃度培養液と、グルコース濃度が2%よりも高く且つ8%以下の所定の濃度である高濃度培養液とから成る、グルコース濃度が異なる複数種類の馴化用培養液を用意し、グルコース濃度が低い馴化用培養液から順に該馴化用培養液を使ってユーグレナを培養する工程を有するもの、あるいは、グルコース濃度が0%から2%までの間の所定の濃度である低濃度培養液と、グルコース濃度が2%よりも高く且つ8%以下の所定の濃度である高濃度培養液と、グルコース濃度が前記低濃度培養液よりも高く、前記高濃度培養液よりも低い濃度である中間濃度培養液とから成る、グルコース濃度が異なる複数種類の馴化用培養液を用意し、グルコース濃度が低い馴化用培養液から順に該馴化用培養液を使ってユーグレナを培養する工程を有するものである。 Euglena (sugar-tolerant euglena) having resistance to a culture medium having a glucose concentration of more than 2% can be produced by the method for producing a sugar-tolerant euglena of the present invention. The method for producing a sugar-tolerant Euglena of the present invention comprises a low-concentration culture medium having a glucose concentration of a predetermined concentration between 0% and 2%, and a predetermined concentration having a glucose concentration of more than 2% and 8% or less. It has a step of preparing a plurality of types of acclimation culture broths having different glucose concentrations, which are composed of high-concentration culture broth, and culturing Euglena using the acclimation culture broth in order from the acclimation culture broth having the lowest glucose concentration. Or a low-concentration culture medium having a predetermined concentration of glucose between 0% and 2%, and a high-concentration culture medium having a glucose concentration higher than 2% and a predetermined concentration of 8% or less. , Multiple types of acclimation culture broths having different glucose concentrations, which consist of an intermediate concentration culture broth having a glucose concentration higher than that of the low-concentration culture broth and a concentration lower than that of the high-concentration culture broth, are prepared. It has a step of culturing Euglena using the acclimation culture solution in order from the lowest acclimation culture solution.

また、上述した以外に糖耐性ユーグレナは、天然の淡水中又は海水中から採取した、天然のユーグレナの中から所定の条件を満たすものを選抜し分離することで取得しても良く、天然のユーグレナ若しくは微生物保存機関から取得したユーグレナの継代培養を続けるなかで現れた自然変異種であっても良い。また、糖耐性ユーグレナは、公知の方法で突然変異を誘導させたり、遺伝子組み換えやゲノム編集等の技術を利用したりして人為的に作出することもできる。 In addition to the above, sugar-tolerant euglena may be obtained by selecting and separating euglena that satisfies a predetermined condition from natural euglena collected from natural fresh water or seawater, and the natural euglena may be obtained. Alternatively, it may be a natural variant that appears while continuing the subculture of Euglena obtained from a microbial preservation institution. In addition, sugar-resistant Euglena can be artificially produced by inducing mutations by a known method or by using techniques such as gene recombination and genome editing.

本発明によれば、ユーグレナを安定的に且つ効率よく大量培養することができる。 According to the present invention, Euglena can be stably and efficiently mass-cultured.

本発明の実施例1における馴化工程の模式図。The schematic diagram of the acclimatization process in Example 1 of this invention. 6種類のユーグレナの耐性株と非馴化株のバイオマス収量の時間的変化を示すグラフ。The graph which shows the time change of the biomass yield of 6 kinds of Euglena resistant strains and unacclimated strains. 6種類のユーグレナの耐性株のバイオマス収量と細胞内組成を表すグラフ。The graph which shows the biomass yield and the intracellular composition of 6 kinds of Euglena resistant strains. 6種類のユーグレナの非馴化株のバイオマス収量と細胞内組成を表すグラフ。The graph which shows the biomass yield and the intracellular composition of 6 kinds of Euglena unacclimated strains. 実施例2における、培養液量とバイオマス収量との関係を示すグラフ。The graph which shows the relationship between the culture solution amount and the biomass yield in Example 2. FIG. 培養液量の増殖に及ぼす影響を示すグラフ。The graph which shows the influence on the growth of a culture solution volume. 培養液のpHとバイオマス収量との関係を示すグラフ。The graph which shows the relationship between the pH of a culture solution and a biomass yield. 培養液のpHの増殖に及ぼす影響を示すグラフ。The graph which shows the influence on the growth of the pH of a culture solution. 培養液のC/Nとバイオマス収量との関係を示すグラフ。The graph which shows the relationship between the C / N of a culture solution and a biomass yield. 培養液のC/Nの増殖に及ぼす影響を示すグラフ。The graph which shows the influence on the growth of C / N of a culture solution. 実施例3における、培養液中のグルコース濃度と乾燥藻体重量との関係を示すグラフ。The graph which shows the relationship between the glucose concentration in a culture solution and the weight of a dry alga in Example 3. FIG. 培養液のグルコース濃度が増殖に及ぼす影響を示すグラフ。The graph which shows the influence which the glucose concentration of a culture solution has on growth. 実施例4における、培養液の濁度および糖濃度と培養時間との関係を示すグラフ。The graph which shows the relationship between the turbidity and sugar concentration of the culture solution, and the culture time in Example 4. FIG. 暗条件及び明条件での培養を行った後の耐性株の写真。Photographs of resistant strains after culturing in dark and light conditions.

本発明は、グルコース濃度が2%よりも高く、且つ8%以下である所定の濃度の増殖用培養液を使ってユーグレナを培養することを特徴とする。具体的には、本発明に係るユーグレナの培養方法は、グルコース濃度が0%から2%までの間の所定の濃度である低濃度培養液と、グルコース濃度が2%よりも高く且つ8%以下の所定の濃度である高濃度培養液とから成る、グルコース濃度が異なる複数種類の馴化用培養液を用意し、グルコース濃度が低い馴化用培養液から順に該馴化用培養液を使ってユーグレナを培養する馴化工程と、前記馴化工程で得られたユーグレナを、グルコース濃度が前記高濃度培養液と同じか、前記高濃度培養液よりも高く且つ8%以下である増殖用培養液を使って培養する増殖工程とを有するものである。 The present invention is characterized in that Euglena is cultured using a growth culture medium having a glucose concentration of more than 2% and 8% or less. Specifically, the method for culturing Euglena according to the present invention includes a low-concentration culture medium having a predetermined glucose concentration between 0% and 2%, and a glucose concentration higher than 2% and 8% or less. Prepare a plurality of types of acclimation culture broths having different glucose concentrations, which consist of a high-concentration culture broth having a predetermined concentration of The acclimation step and the Euglena obtained in the acclimation step are cultured using a growth culture medium having the same glucose concentration as the high-concentration culture medium, or higher than the high-concentration culture medium and 8% or less. It has a breeding step.

また、本発明に係るユーグレナの培養方法は、グルコース濃度が0%から2%までの間の所定の濃度である低濃度培養液と、グルコース濃度が2%よりも高く且つ8%以下の所定の濃度である高濃度培養液と、グルコース濃度が前記低濃度培養液よりも高く、前記高濃度培養液よりも低い濃度である中間濃度培養液とから成る、グルコース濃度が異なる複数種類の馴化用培養液を用意し、グルコース濃度が低い馴化用培養液から順に該馴化用培養液を使ってユーグレナを培養する馴化工程と、前記馴化工程で得られたユーグレナを、グルコース濃度が前記高濃度培養液と同じか、前記高濃度培養液よりも高く且つ8%以下である増殖用培養液を使って培養する増殖工程とを有するものである。 In addition, the method for culturing Euglena according to the present invention includes a low-concentration culture medium having a glucose concentration of a predetermined concentration between 0% and 2%, and a predetermined culture medium having a glucose concentration of more than 2% and 8% or less. Multiple types of acclimation cultures having different glucose concentrations, consisting of a high-concentration culture medium having a high concentration and an intermediate-concentration culture medium having a glucose concentration higher than that of the low-concentration culture solution and lower than that of the high-concentration culture solution. The acclimation step of preparing a solution and culturing Euglena using the acclimation culture solution in order from the acclimation culture solution having the lowest glucose concentration, and the euglena obtained in the acclimation step are referred to as the high concentration culture solution. It has a growth step of culturing using a growth culture solution which is the same or higher than the high-concentration culture solution and is 8% or less.

本発明の培養方法で用いられるユーグレナは、典型的にはユーグレナ属のユーグレナ グラシリス(Euglena gracilis)であるが、ユーグレナ属であればそれ以外の種類(species)であっても良い。また、ユーグレナは、湖沼や池、水田等の天然の淡水中あるいは海水中から採取したもの、微生物保存機関から入手したもののいずれを用いても良い。さらに、天然の淡水中又は海水中から採取したユーグレナ、あるいは微生物保存機関から入手したユーグレナを継代培養したものでも良く、公知の方法で突然変異を誘導させたり、遺伝子組み換えやゲノム編集等の技術を利用したりして人為的に作出した変異種を用いても良い。 The Euglena used in the culture method of the present invention is typically Euglena gracilis of the genus Euglena, but other species may be used as long as it is of the genus Euglena. In addition, Euglena may be collected from natural freshwater or seawater such as lakes, ponds, and paddy fields, or may be obtained from a microbial preservation organization. Furthermore, Euglena collected from natural fresh water or seawater, or Euglena obtained from a microbial preservation institution may be subcultured, and mutations can be induced by known methods, or techniques such as gene recombination and genome editing can be used. You may use the mutants artificially created by using.

馴化用培養液は、ユーグレナ等の微細藻類の培養に一般的に使用される培養液に適宜の量のグルコースを添加してグルコース濃度を調整したものを用いることができる。 As the acclimation culture solution, a culture solution generally used for culturing microalgaes such as Euglena can be used in which an appropriate amount of glucose is added to adjust the glucose concentration.

以下、本発明の実施例について説明する。
[実施例1]
1.馴化工程
図1は本実施例の馴化工程の手順を示す模式図である。本実施例では以下の表1に示す、ユーグレナ グラシリス(以下、ユーグレナという)の6種類の株を使用した。

Figure 2021166510
Hereinafter, examples of the present invention will be described.
[Example 1]
1. 1. The acclimation process FIG. 1 is a schematic view showing the procedure of the acclimation process of this embodiment. In this example, six strains of Euglena gracilis (hereinafter referred to as Euglena) shown in Table 1 below were used.
Figure 2021166510

また、馴化工程では、A培地に2N(規定度)の水酸化ナトリウム又は2Nの塩酸を添加してpH4.5に調整した後、20g/L〜50g/Lの範囲の適宜の量のグルコースを添加してグルコース濃度を2.0%〜5.0%に調整した培養液を用いた。A培地の組成、及びA培地に含まれるD溶液及びE溶液の組成をそれぞれ表2、表3、表4に示す。D溶液は、透明になるまで5Nの塩酸を添加したものを用いた。なお、本明細書では、グルコース濃度(%)はいずれも溶質重量/容量%(W/V%)を意味する。

Figure 2021166510
Figure 2021166510
Figure 2021166510
In the acclimation step, 2N (normal) sodium hydroxide or 2N hydrochloric acid is added to the medium A to adjust the pH to 4.5, and then an appropriate amount of glucose in the range of 20 g / L to 50 g / L is added. A culture medium was used in which the glucose concentration was adjusted to 2.0% to 5.0% by addition. The composition of medium A and the compositions of solution D and solution E contained in medium A are shown in Tables 2, 3 and 4, respectively. As the D solution, a solution to which 5N hydrochloric acid was added until it became transparent was used. In this specification, the glucose concentration (%) means solute weight / volume% (W / V%).
Figure 2021166510
Figure 2021166510
Figure 2021166510

馴化工程では、100mL容量のバッフル付きフラスコを6個用意し、それぞれに上述した培養液を20mLずつ入れ、滅菌した後、上述したユーグレナ グラシリスの6種類の株をそれぞれ所定量ずつ植藻(植菌ともいう)した。これを、温度28℃、撹拌速度110rpm、暗黒下の条件で72時間、回転振とう培養した後、そこから増殖したユーグレナを含む培養液を1mL採取し、別のフラスコに収容された培養液に植え継ぎ、同じ条件、同じ時間で培養を行った。 In the acclimation step, six flasks with 100 mL capacity baffles are prepared, 20 mL of the above-mentioned culture solution is put into each, and after sterilization, a predetermined amount of each of the above-mentioned six types of Euglena gracilis strains is inoculated (inoculation). Also called). After culturing this under rotary shaking for 72 hours under the conditions of a temperature of 28 ° C., a stirring speed of 110 rpm, and darkness, 1 mL of a culture solution containing Euglena grown from the culture solution was collected and placed in another flask. Subculture was carried out under the same conditions and at the same time.

馴化工程では、初発グルコース濃度を2.0%とし、植え継ぎを行う毎に培養液中のグルコース濃度を0.2%高くした。そして、培養液中のグルコース濃度が5.0%に達した時点で、培養を終了した(つまり、同じフラスコ内での培養を1サイクルとすると、第15サイクルで終了)。以上の馴化工程で得られた株を以下では「耐性株」と呼ぶこととする。 In the acclimatization step, the initial glucose concentration was set to 2.0%, and the glucose concentration in the culture solution was increased by 0.2% each time the subculture was performed. Then, when the glucose concentration in the culture solution reached 5.0%, the culture was terminated (that is, if the culture in the same flask was one cycle, the culture was terminated in the 15th cycle). The strain obtained by the above acclimatization step will be referred to as a "resistant strain" below.

一方、比較工程として、グルコース濃度が2.0%の培養液を用いた以外は上記馴化工程と同じ条件、同じ時間で、ユーグレナの6種類の株の培養を行った。この比較工程で得られた株を以下では「非馴化株」と呼ぶこととする。 On the other hand, as a comparative step, 6 kinds of Euglena strains were cultured under the same conditions and for the same time as the above-mentioned acclimatization step except that a culture solution having a glucose concentration of 2.0% was used. The strains obtained in this comparison step will be referred to as "unconditioned strains" below.

2.増殖能力の高い株の選抜
(1) 馴化工程終了後の培養液(つまり耐性株を含む培養液)、及び比較工程収量後の培養液(つまり非馴化株を含む培養液)をそれぞれ1mLずつ、1.5mL容量のチューブ(エッペンドルフ ジャパン製)に移し、生理食塩水で10万倍に希釈した。
(2) 希釈液100μLを、培養皿に入った寒天培地(A培地、グルコース濃度5.0%)に接種し、コンラージ棒で均等に塗り広げた。
(3) 1週間後、寒天培地に出現したコロニーを観察し、増殖速度が最も速かったコロニーを採取し、これらをそれぞれ6種類のユーグレナの耐性株及び非馴化株の選抜株とした。
2. Selection of strains with high proliferative capacity
(1) 1 mL each of the culture solution after the acclimation step (that is, the culture solution containing the resistant strain) and the culture solution after the comparative step yield (that is, the culture solution containing the unacclimated strain), 1.5 mL volume tube (Eppendorf) Transferred to (made in Japan) and diluted 100,000 times with physiological saline.
(2) 100 μL of the diluted solution was inoculated on an agar medium (medium A, glucose concentration 5.0%) in a culture dish and spread evenly with a spreader.
(3) One week later, the colonies that appeared on the agar medium were observed, and the colonies with the fastest growth rate were collected, and these were selected strains of 6 types of Euglena resistant strains and unconditioned strains, respectively.

3.増殖工程
6種類のユーグレナの耐性株の選抜株をグルコース濃度を5.0%に調整した培養液で、及び6種類のユーグレナの非馴化株の選抜株をグルコース濃度を2.0%に調整した培養液で、それぞれ、上述した馴化工程と同じ条件で72時間培養を継続し、そこから採取した1.0mLの培養液を、グルコース濃度が同じ新たな培養液に植え継ぐ作業を繰り返した。植え継ぐ際にバッフル付きフラスコから所定量の培養液をサンプルとして採取し、後述するバイオマス収量(1Lあたりの乾燥藻体重量)、残糖量、細胞内成分含量の測定に供した。
3. 3. Propagation step Six types of Euglena-resistant strains were selected with a glucose concentration adjusted to 5.0%, and six types of Euglena unconditioned strains were selected with a glucose concentration adjusted to 2.0%. In each case, the culture was continued for 72 hours under the same conditions as the above-mentioned acclimatization step, and the 1.0 mL culture solution collected from the culture solution was subcultured into a new culture solution having the same glucose concentration. At the time of subculture, a predetermined amount of culture solution was collected as a sample from a flask with a baffle, and used for measuring the biomass yield (dry algae weight per 1 L), residual sugar amount, and intracellular component content, which will be described later.

4.バイオマス収量の測定
(1) 恒量になった1.5mL容量のエッペンドルフチューブに、増殖工程で採取した1.0mLの培養液を入れ、遠心分離(5000rpm、5分間)を行った。
(2) 遠心分離の後、上清を除去し、そこに、0.8%生理食塩水を1.0mL加え、ボルテックスミキサーを用いて撹拌した。
(3) 再び、遠心分離(5000rpm、5分間)を行い、上清を除去した。
(4) (2)及び(3)の工程を再度繰り返した。
(5) エッペンドルフチューブを加熱し、該チューブ内の細胞(ユーグレナの細胞)を乾燥した(105℃、12時間)。
(6) エッペンドルフチューブをデシケーターに入れて放冷した後、エッペンドルフチューブの重量を測定し、そこから該エッペンドルフチューブの初期重量を差し引いて細胞の乾燥細胞重量を算出した。
4. Biomass yield measurement
(1) 1.0 mL of the culture solution collected in the growth step was placed in a constant volume of 1.5 mL Eppendorf tube and centrifuged (5000 rpm, 5 minutes).
(2) After centrifugation, the supernatant was removed, 1.0 mL of 0.8% physiological saline was added thereto, and the mixture was stirred using a vortex mixer.
(3) Centrifugation (5000 rpm, 5 minutes) was performed again to remove the supernatant.
(4) The steps (2) and (3) were repeated again.
(5) The Eppendorf tube was heated, and the cells (Euglena cells) in the tube were dried (105 ° C., 12 hours).
(6) After putting the Eppendorf tube in a desiccator and allowing it to cool, the weight of the Eppendorf tube was measured, and the initial weight of the Eppendorf tube was subtracted from the weight to calculate the dry cell weight of the cells.

5.残糖量の測定
植え継ぎ時に採取した1.5mLの培養液に含まれるグルコースの濃度を、グルコースC-IIテストワコーキット(ムタローゼ・GOD法、和光純薬株式会社製)を用いて測定した。測定波長は550nmに設定した。
5. Measurement of residual sugar amount The concentration of glucose contained in 1.5 mL of the culture solution collected at the time of subculture was measured using the Glucose C-II Test Wako Kit (Mutarose / GOD method, manufactured by Wako Pure Chemical Industries, Ltd.). The measurement wavelength was set to 550 nm.

6.バイオマス収量及び残糖量の測定結果
図2は、6種類のユーグレナの耐性株及び6種類のユーグレナの非馴化株のバイオマス収量の時間的変化を示すグラフである。これらのグラフの横軸は培養時間を、縦軸は細胞の乾燥重量を表している。
6. Measurement Results of Biomass Yield and Residual Sugar Amount FIG. 2 is a graph showing the temporal changes in biomass yield of 6 types of Euglena resistant strains and 6 types of Euglena unconditioned strains. The horizontal axis of these graphs represents the culture time, and the vertical axis represents the dry weight of the cells.

図2から分かるように、6種類すべてのユーグレナにおいて非馴化株より耐性株の方が長時間、増殖することが確認できたが、株の種類により増殖速度が大きく異なっていた。具体的には、耐性株のうち、NIES48、PO、SM-ZK、IGの4株は培養96時間で定常期に達し、それ以降はバイオマス収量はほとんど変化しなかったのに対し、NIES47は培養120時間、NIES49は培養144時間でそれぞれ定常期に達した。また、耐性株のうち、NIES48、PO、SM-ZKの3株の耐性株は、培養48時間の時点で未馴化株と同様の増殖速度を示したが、NIES47、NIES49、IGの3株の耐性株は、培養48時間の時点では未馴化株に比べて増殖速度が低下していた。 As can be seen from FIG. 2, it was confirmed that the resistant strains proliferated for a longer time than the unconditioned strains in all 6 types of Euglena, but the growth rate differed greatly depending on the strain type. Specifically, among the resistant strains, 4 strains of NIES48, PO, SM-ZK, and IG reached the stationary phase after 96 hours of culturing, and the biomass yield did not change much after that, whereas NIES47 was cultivated. 120 hours and 144 hours of culture reached the steady phase of NIES49. Among the resistant strains, the three resistant strains NIES48, PO, and SM-ZK showed the same growth rate as the unconditioned strain at 48 hours of culture, but the three strains NIES47, NIES49, and IG showed the same growth rate. The growth rate of the resistant strain was lower than that of the unconditioned strain at 48 hours of culture.

表5は、6種類のユーグレナの耐性株及び非馴化株のバイオマス収量の対糖収率を示している。バイオマス収量の対糖収率は、培養開始時の培養液中のグルコース量に対する培養後のバイオマス収量の割合を意味する。培養開始時の培養液1L中のグルコース量が1gであり培養後のバイオマス収量が1gであるとき、対糖収率は100%となる。
表5から分かるように、耐性株及び非馴化株のいずれにおいても、株間で顕著な差は確認できなかったが、耐性株と非馴化株の間で大きな差が見られた。すなわち、未馴化株では、すべての株においても対糖収率が50%以上の値を示したのに対し、耐性株では、いずれの株も対糖収率は32%〜42%の範囲内にあり、未馴化株よりも対糖収率が低下していた。

Figure 2021166510
Table 5 shows the biomass yields of the six Euglena resistant strains and the unconditioned strains with respect to sugar. The biomass yield to sugar yield means the ratio of the biomass yield after culturing to the amount of glucose in the culture broth at the start of culturing. When the amount of glucose in 1 L of the culture solution at the start of the culture is 1 g and the biomass yield after the culture is 1 g, the yield to sugar is 100%.
As can be seen from Table 5, no significant difference was confirmed between the resistant strains and the unconditioned strains, but a large difference was observed between the resistant strains and the unconditioned strains. That is, in the unacclimated strain, the sugar yield was 50% or more in all the strains, whereas in the resistant strain, the sugar yield was in the range of 32% to 42%. The yield on sugar was lower than that of the unconditioned strain.
Figure 2021166510

7.細胞内成分の測定
増殖が定常期初期もしくは対数増殖期後期に達した時点で、50mL容量の遠沈管に培養液を回収した。回収した培養液を遠心分離し(3000rpm,5min)、上清を除去して細胞を得、これを凍結乾燥して以下の細胞内成分の分析に供した。未馴化株については、培養72時間の培養液を回収し、耐性株については、株により増殖速度が異なるため培養液の回収時間を次のように設定した。すなわち、NIES49の耐性株は培養144時間、NIES47、NIES48、NIES49、PO、SM-ZK及びIGの耐性株は培養96時間で、それぞれ培養液を回収した。
7. Measurement of intracellular components When the growth reached the early stage of the stationary phase or the late stage of the logarithmic growth phase, the culture solution was collected in a 50 mL volume centrifuge tube. The collected culture broth was centrifuged (3000 rpm, 5 min), the supernatant was removed to obtain cells, which were lyophilized and subjected to the analysis of the following intracellular components. For unacclimated strains, the culture broth for 72 hours was collected, and for resistant strains, the growth rate differed depending on the strain, so the recovery time of the culture broth was set as follows. That is, the NIES49-resistant strains were cultured for 144 hours, and the NIES47, NIES48, NIES49, PO, SM-ZK and IG-resistant strains were cultured for 96 hours.

7−1.パラミロンの測定
植え継ぎ時に採取した2.0mLの培養液に含まれるパラミロンの含量を以下の手順で測定した。
A.パラミロンの精製
(1) 2mL容量のエッペンチューブに培養液2mLを入れ、遠心分離(5000rpm, 5min)を行い、上清を除去した。
(2) イオン交換水300μLを加え、ボルテックスミキサーで撹拌して細胞を完全に分散させて、軽くスピンダウンした。
(3) エッペンチューブにフロートを取り付け、超音波洗浄機に浮かべて細胞を破砕した(5min)。
(4) アセトン1200μLを加え、ボルテックスミキサーで十分攪拌し、遠心分離(5000rpm, 5min)した。
(5) ピペットマン(登録商標)で上清を丁寧に除去し、アセトン1500μLを加え、ボルテックスミキサーで十分攪拌し、遠心分離(5000rpm, 5min)した。
(6) アセトン処理及び遠心分離を再度繰り返した。
(7) ピペットマンで上清を除去し、10% SDS水溶液1500μLを加え、ボルテックスミキサーで十分攪拌して細胞を十分分散させ、軽くスピンダウンさせた。
(8) エッペンチューブのキャップを開けた状態で、100℃のアルミブロックヒーター上で30分間加熱した。
(9) 放冷後、遠心分離(5000rpm, 5min)して、ピペットマンで上清を除去し、0.1%SDS水溶液1500μLを加え、ボルテックスミキサーで十分攪拌して細胞を十分分散させた。
(10) 遠心分離(5000rpm, 5min)して、ピペットマンで上清を丁寧に除去し、イオン交換水1500μLを加え、ボルテックスミキサーで十分撹拌して細胞を十分分散させた。以上により、パラミロンを精製した。
(11) 精製したパラミロンに1Nの水酸化ナトリウム溶液1mLを加えて完全に溶解させたものを、次のパラミロンの定量用サンプルとした。
7-1. Measurement of paramylon The content of paramylon contained in 2.0 mL of the culture solution collected at the time of subculture was measured by the following procedure.
A. Purification of paramylon
(1) 2 mL of the culture solution was placed in a 2 mL volume Eppen tube, centrifuged (5000 rpm, 5 min), and the supernatant was removed.
(2) 300 μL of ion-exchanged water was added, and the cells were completely dispersed by stirring with a vortex mixer, and the cells were lightly spun down.
(3) A float was attached to the Eppen tube and floated on an ultrasonic cleaner to crush the cells (5 min).
(4) 1200 μL of acetone was added, and the mixture was sufficiently stirred with a vortex mixer and centrifuged (5000 rpm, 5 min).
(5) The supernatant was carefully removed with Pipetman (registered trademark), 1500 μL of acetone was added, the mixture was sufficiently stirred with a vortex mixer, and the mixture was centrifuged (5000 rpm, 5 min).
(6) Acetone treatment and centrifugation were repeated again.
(7) The supernatant was removed with Pipetman, 1500 μL of a 10% SDS aqueous solution was added, and the cells were sufficiently dispersed with a vortex mixer and lightly spun down.
(8) With the Eppen tube cap open, it was heated for 30 minutes on an aluminum block heater at 100 ° C.
(9) After allowing to cool, the cells were centrifuged (5000 rpm, 5 min), the supernatant was removed with Pipetman, 1500 μL of 0.1% SDS aqueous solution was added, and the cells were sufficiently dispersed with a vortex mixer.
(10) Centrifugation (5000 rpm, 5 min) was performed, the supernatant was carefully removed with Pipetman, 1500 μL of ion-exchanged water was added, and the cells were sufficiently dispersed with a vortex mixer. From the above, paramylon was purified.
(11) 1 mL of 1 N sodium hydroxide solution was added to the purified paramylon and completely dissolved, and this was used as the next sample for quantification of paramylon.

B.パラミロンの定量(フェノール硫酸法)
(1) 上述した定量用サンプルに100μLに、イオン交換水900μLを加えて希釈した。
(2) 200μg/mLのグルコース溶液 250μLにイオン交換水750μLを加え、グルコース濃度が50μg/mLの標準試料を調製した。
(3) 希釈した定量用サンプル、標準試料に80%フェノール溶液を25μL加え、ボルテックスミキサーで十分撹拌した。
(4) ドラフト内で濃硫酸2.5mLを加え、ボルテックスミキサーで十分撹拌した。
(5) 放冷後、吸光波長490nmで吸光度を測定した。
B. Quantification of paramylon (phenol sulfuric acid method)
(1) 900 μL of ion-exchanged water was added to 100 μL of the above-mentioned quantitative sample for dilution.
(2) 750 μL of ion-exchanged water was added to 250 μL of a glucose solution of 200 μg / mL to prepare a standard sample having a glucose concentration of 50 μg / mL.
(3) 25 μL of 80% phenol solution was added to the diluted quantitative sample and standard sample, and the mixture was sufficiently stirred with a vortex mixer.
(4) 2.5 mL of concentrated sulfuric acid was added in the draft, and the mixture was sufficiently stirred with a vortex mixer.
(5) After allowing to cool, the absorbance was measured at an absorption wavelength of 490 nm.

C.パラミロン含量の算出方法
以下の式(1)から、パラミロン含量(μg)を算出した。式(1)中、Eは試料の吸光度を、E0は標準試料の吸光度をそれぞれ表している。なお、式(1)中、「180.16」は標準試料に含まれるグルコースの分子量であり、「162.14」はグルコースが脱水縮合しβ-1,3結合した多糖類であるパラミロンの分子量である。
パラミロン含量(μg)=E/E0×50(μg/mL)×1(mL)/(180.16/162.14)×希釈倍率
…(1)
C. Calculation method of paramylon content The paramylon content (μg) was calculated from the following formula (1). In equation (1), E represents the absorbance of the sample and E0 represents the absorbance of the standard sample. In formula (1), "180.16" is the molecular weight of glucose contained in the standard sample, and "162.14" is the molecular weight of paramylon, which is a polysaccharide obtained by dehydration condensation of glucose and β-1,3 binding.
Paramylon content (μg) = E / E 0 x 50 (μg / mL) x 1 (mL) / (180.16 / 162.14) x dilution ratio
… (1)

7−2.その他の成分の定量
タンパク質の定量は、Kjeldahl法を用いた(特許文献2)。また、脂質は、改訂されたFolch法(非特許文献5)を用いた。
7-2. Quantification of other components The Kjeldahl method was used for the quantification of proteins (Patent Document 2). As the lipid, the revised Folch method (Non-Patent Document 5) was used.

8.細胞内成分の測定結果
8−1.パラミロン含量の対糖収率
表6は、6種類のユーグレナの耐性株及び非馴化株のパラミロン含量の対糖収率を示している。パラミロン含量の対糖収率は、培養開始時の培養液中のグルコース量に対する培養後のパラミロン含量の割合を意味する。培養開始時の培養液中のグルコース量が1gであり培養後のパラミロン含量が1gであるとき、対糖収率は100%となる。
表6から分かるように、パラミロン含量における対糖収率は、PO及びSM-ZKの2株は未馴化株よりも耐性株の方が高い値を示したが、NIES47、NIES48、NIES49の3株は耐性株と未馴化株とで同等の値を示した。また、耐性株においてバイオマス収量の対糖収率が最も低かったIGのパラミロン含量の対糖収率については、耐性株の方が未馴化株よりも低い値を示した。

Figure 2021166510
8. Measurement results of intracellular components 8-1. Paramylon content-to-sugar yield Table 6 shows the paramylon-to-sugar yields of the six Euglena-resistant strains and unconditioned strains. The paramylon content-to-sugar yield means the ratio of the paramylon content after culturing to the amount of glucose in the culture broth at the start of culturing. When the amount of glucose in the culture solution at the start of culture is 1 g and the paramylon content after culture is 1 g, the yield to sugar is 100%.
As can be seen from Table 6, the yield of sugar to sugar in the paramylon content was higher in the resistant strain than in the unconditioned strain in the two strains of PO and SM-ZK, but the three strains of NIES47, NIES48 and NIES49. Showed the same value in the resistant strain and the unconditioned strain. In addition, the paramylon content of IG, which had the lowest biomass yield to sugar in the resistant strain, showed a lower value in the resistant strain than in the unacclimated strain.
Figure 2021166510

8−2.バイオマス収量に占める各成分の割合
図3及び図4は、6種類のユーグレナの耐性株及び非馴化株の最大バイオマス収量と細胞内組成を示している。図3及び図4の横軸はユーグレナの種類の名称を、縦軸は細胞内組成物及び最大バイオマス収量の値(g/L)を示している。つまり、各棒グラフの高さが各種類の最大バイオマス収量を表している。
8-2. Ratio of each component to biomass yield FIGS. 3 and 4 show the maximum biomass yield and intracellular composition of 6 types of Euglena resistant strains and unconditioned strains. The horizontal axis of FIGS. 3 and 4 shows the name of the type of Euglena, and the vertical axis shows the value of the intracellular composition and the maximum biomass yield (g / L). That is, the height of each bar graph represents the maximum biomass yield of each type.

図3と図4の比較から分かるように、6種類のユーグレナの全てにおいて、耐性株の最大バイオマス収量は、未馴化株の最大バイオマス収量の約1.5倍から2.0倍であった。また、NIES48の耐性株においては20g/L以上の最大バイオマス収量を示し、Tukeyの多重比較検定の結果、IGに比べ有意に高い値を示した(p<0.05)が、その他の株との間では有意な差は認められなかった。 As can be seen from the comparison between FIGS. 3 and 4, the maximum biomass yield of the resistant strain was about 1.5 to 2.0 times the maximum biomass yield of the unacclimated strain in all six types of Euglena. In addition, the NIES48-resistant strain showed a maximum biomass yield of 20 g / L or more, and Tukey's multiple comparison test showed a significantly higher value than IG (p <0.05), but with other strains. No significant difference was observed.

また、パラミロン含量及びパラミロン含有率については、6種類のユーグレナの全てにおいて、未馴化株よりも耐性株の方が高い値を示した。特に、6種類のユーグレナのうちPO及びSM-ZKの耐性株は、パラミロン含有率が50%以上であり、他の4種類の耐性株に比べて有意に高い値を示した(p<0.05)。
以上の結果から、本実施例の培養方法は、パラミロンを得る目的でユーグレナを培養する方法として有用であるといえる。
Regarding the paramylon content and the paramylon content, the resistant strains showed higher values than the unacclimated strains in all six types of Euglena. In particular, among the 6 types of Euglena, the PO and SM-ZK resistant strains had a paramylon content of 50% or more, which was significantly higher than that of the other 4 types of resistant strains (p <0.05). ..
From the above results, it can be said that the culture method of this example is useful as a method for culturing Euglena for the purpose of obtaining paramylon.

6種類のユーグレナの全てにおいてタンパク質含量は耐性株の方が未馴化株よりも多かったが、タンパク質含有率については耐性株の方が未馴化株よりも低かった。一方、脂質含量については、耐性株の方が未馴化株よりも多かったが、脂質含有率については、耐性株と未馴化株との間に顕著な差は確認できなかった。 In all six Euglena, the protein content of the resistant strain was higher than that of the unconditioned strain, but the protein content of the resistant strain was lower than that of the unconditioned strain. On the other hand, regarding the lipid content, the resistant strain was higher than that of the unacclimated strain, but regarding the lipid content, no significant difference could be confirmed between the resistant strain and the unacclimated strain.

なお、本実施例では、馴化工程で用いられた、グルコース濃度が2.0%の培養液が本発明の低濃度培養液に、グルコース濃度が2.2%〜4.8%の培養液が中間濃度培養液に、グルコース濃度が5.0%の培養液が高濃度培養液に相当するが、視点を変えると、グルコース濃度が2.0%の培養液を低濃度培養液、2.2%の培養液を高濃度培養液とみなすことができる。この場合は、グルコース濃度が2.2%又は2.4%の培養液が増殖用培養液に相当する。また、グルコース濃度が2.0%の培養液を低濃度培養液、4.0%の培養液を高濃度培養液、2.2%〜3.8%の培養液を中間濃度培養液とすると、グルコース濃度が3.8%又は4.0%の培養液は増殖用培養液に相当する。つまり、本実施例の結果から、グルコース濃度が2%よりも高く、且つ5%以下の培養液に対する耐性を有するユーグレナを作出できることが分かる。 In this example, the culture solution having a glucose concentration of 2.0% used in the acclimation step was used as the low-concentration culture solution of the present invention, and the culture solution having a glucose concentration of 2.2% to 4.8% was used as the intermediate-concentration culture solution. A culture medium having a glucose concentration of 5.0% corresponds to a high-concentration culture medium, but from a different point of view, a culture medium having a glucose concentration of 2.0% should be regarded as a low-concentration culture medium, and a culture medium having a glucose concentration of 2.2% should be regarded as a high-concentration culture medium. Can be done. In this case, the culture medium having a glucose concentration of 2.2% or 2.4% corresponds to the growth culture medium. If the culture medium having a glucose concentration of 2.0% is a low-concentration culture medium, the culture medium having a glucose concentration of 4.0% is a high-concentration culture solution, and the culture medium having a glucose concentration of 2.2% to 3.8% is an intermediate-concentration culture solution, the glucose concentration is 3.8% or 4.0. % Corresponds to the culture medium for growth. That is, from the results of this example, it can be seen that Euglena having a glucose concentration higher than 2% and resistance to a culture solution of 5% or less can be produced.

[実施例2]
本発明の増殖工程における培養条件を検討するため、培養液の液量、培地のpH、培地に含まれる炭素源(C)と窒素源(N)との比率(C/N)を異ならせた複数種類の培養液を用いて、耐性株の培養を行った。耐性株としては、実施例1の馴化工程で得られたNIES48の耐性株(選抜株)を用いた。
1.液量の影響
実施例1の増殖工程において、耐性株に用いた培養液と同じ組成の培養液を、それぞれ5mL、10mL、15mL、20mL、25mL、30mLずつ、それぞれ別のバッフル付きフラスコに入れ、実施例1の増殖工程と同じ条件でNIES48の耐性株を培養した。24時間培養を継続した後、そこから採取した1.0mLの培養液を、同じ液量の新たな培養液に植え継ぐ(継代)という作業を繰り返した。植え継ぐ際に各培養液をサンプルとして採取し、バイオマス収量(1Lあたりの乾燥藻体重量)、濁度(OD660)の測定に供した。濁度は、増殖率を表す指標であり、濁度が大きいほど耐性株が増殖したこと(増殖率が大きいこと)を示す。
[Example 2]
In order to examine the culture conditions in the growth step of the present invention, the amount of the culture solution, the pH of the medium, and the ratio (C / N) of the carbon source (C) and the nitrogen source (N) contained in the medium were different. Resistant strains were cultivated using a plurality of types of culture media. As the resistant strain, a resistant strain (selected strain) of NIES48 obtained in the acclimation step of Example 1 was used.
1. 1. Effect of liquid volume In the growth step of Example 1, 5 mL, 10 mL, 15 mL, 20 mL, 25 mL, and 30 mL of the culture solution having the same composition as the culture solution used for the resistant strain were placed in separate flasks with baffles. A resistant strain of NIES48 was cultured under the same conditions as the growth step of Example 1. After continuing the culture for 24 hours, the work of substituting 1.0 mL of the culture solution collected from the culture solution into a new culture solution of the same amount (passage) was repeated. At the time of subculture, each culture solution was collected as a sample and used for measuring the biomass yield (dry algae weight per 1 L) and turbidity (OD 660 ). The turbidity is an index showing the growth rate, and the larger the turbidity, the more the resistant strain has grown (the higher the growth rate).

図5は培養液量とバイオマス収量との関係を示している。同図から分かるように、バイオマス収量が最も高い値を示したのは培養液量が5mLの試験区であり、Tukeyの多重比較法の結果、その他の試験区に比べて有意に高かった(p<0.05)。一方、バイオマス収量が最も低い値を示したのは培養液量が30mLの試験区であり、培養液量が25mLの試験区との間には有意差が認められなかったが、その他の試験区と比べると有意に低い値を示した(p<0.05)。つまり、培養液量が少ないほどバイオマス収量が高くなる傾向を示した。培養液量が少ないほど培養液中への空気供給量が多くなり、その結果、バイオマス収量が増加したものと思われる。 FIG. 5 shows the relationship between the amount of culture medium and the biomass yield. As can be seen from the figure, the highest biomass yield was shown in the test plot with a culture solution volume of 5 mL, which was significantly higher than the other test plots as a result of Tukey's multiple comparison method (p). <0.05). On the other hand, the test group with the culture solution volume of 30 mL showed the lowest biomass yield, and no significant difference was observed between the test group with the culture solution volume of 25 mL, but the other test groups. The value was significantly lower than that of (p <0.05). In other words, the smaller the amount of culture medium, the higher the biomass yield tended to be. It is considered that the smaller the amount of the culture solution, the larger the amount of air supplied into the culture solution, and as a result, the biomass yield increased.

また、図6は24時間毎に測定したOD660の結果を示している。同図から分かるように、培養48時間までは、全ての試験区でOD660がほぼ同様に増加し、同様に増殖していることが確認された。培養72時間以降では、培養液量が25mL及び30mLの試験区で、OD660の数値が横ばいになり増殖が停滞する傾向を示したが、その他の試験区では、培養72時間以降もOD660が増加する傾向を示した。以上より、培養液量が少ないほど培養後期において良好な増殖を示すことが示唆された。 In addition, FIG. 6 shows the result of OD 660 measured every 24 hours. As can be seen from the figure, it was confirmed that OD 660 increased in almost the same manner in all the test plots and proliferated in the same manner up to 48 hours of culture. After 72 hours of culturing, the OD 660 values tended to level off and growth stagnated in the test plots with 25 mL and 30 mL of culture solution , but in the other test plots, OD 660 was still present after 72 hours of culturing. It showed a tendency to increase. From the above, it was suggested that the smaller the amount of the culture solution, the better the growth in the late stage of the culture.

2.pHの影響
実施例1の増殖工程において、耐性株に用いた培養液と同じ組成の培養液のpHを、それぞれ2.5、3.5、4.5、5.5、6.5、7.5に調整し、各培養液をバッフル付きフラスコに入れ、実施例1の増殖工程と同じ条件でNIES48の耐性株を培養した。24時間培養を継続した後、そこから採取した1.0mLの培養液を、同じ液量の新たな培養液に植え継ぐ作業を繰り返し、植え継ぐ際に5mLの培養液をサンプルとして採取し、バイオマス収量、濁度(OD660)の測定に供した。また、72時間、96時間、120時間培養した後の培養液5mLを回収し、それぞれ遠心分離(6000rpm、5min)した後、上清を回収し、pHを測定した。
2. Effect of pH In the growth step of Example 1, the pH of the culture solution having the same composition as the culture solution used for the resistant strain was adjusted to 2.5, 3.5, 4.5, 5.5, 6.5 and 7.5, respectively, and each culture solution was baffled. The strain was placed in a flask and a resistant strain of NIES48 was cultured under the same conditions as in the growth step of Example 1. After continuing the culture for 24 hours, the work of substituting 1.0 mL of the culture solution collected from the culture solution into a new culture solution of the same amount was repeated, and at the time of substituting, 5 mL of the culture solution was collected as a sample, and the biomass yield was obtained. , Used for measurement of turbidity (OD 660). In addition, 5 mL of the culture solution after culturing for 72 hours, 96 hours, and 120 hours was collected, centrifuged (6000 rpm, 5 min), respectively, and then the supernatant was collected and the pH was measured.

図7は培養液のpHとバイオマス収量との関係を示している。同図から分かるように、バイオマス収量が最も高い値を示したのはpHが7.5の試験区であった。Tukeyの多重比較法の結果、pHが7.5の試験区とpHが6.5の試験区との間には有意差がみられなかったが、その他の試験区との間には有意差がみられた(p<0.05)。また、pHが3.5及び4.5の試験区の間では有意差は認められず、pHが2.5の試験区はその他の試験区に比べ有意に低い値を示した。以上より、pHが高い試験区ほどバイオマス収量が高くなる傾向を示すことが示唆された。 FIG. 7 shows the relationship between the pH of the culture solution and the biomass yield. As can be seen from the figure, the highest biomass yield was shown in the test plot with a pH of 7.5. As a result of Tukey's multiple comparison method, there was no significant difference between the test group with pH 7.5 and the test group with pH 6.5, but there was a significant difference between the other test groups. (P <0.05). In addition, no significant difference was observed between the test groups having a pH of 3.5 and 4.5, and the test group having a pH of 2.5 showed a significantly lower value than the other test groups. From the above, it was suggested that the higher the pH of the test plot, the higher the biomass yield tended to be.

また、図8は24時間毎に測定したOD660の結果を示している。同図から分かるように、pHが3.5、4.5、5.5、6.5、7.5の試験区では、培養96時間で定常期に達し増殖が停滞した。pHが2.5の試験区は、その他の試験区に比べて増殖速度が遅く、培養120時間に達しても増殖する傾向が見られた。
また、初発培養液のpHと培養後の培養液のpHを表7に示す。この表から分かるように、初発培養液のpHが2.5〜6.5の試験区ではいずれも培養後のpHが3.0以下に低下していた。また、初発培養液のpHが7.5の試験区では培養後のpHが3.59に低下し、pHが2.5の試験区では培養後のpHが1.77に低下していた。以上より、全ての試験区において培養後のpHは酸性に偏る傾向が示された。
In addition, FIG. 8 shows the result of OD 660 measured every 24 hours. As can be seen from the figure, in the test plots having pHs of 3.5, 4.5, 5.5, 6.5 and 7.5, the steady state was reached and the growth stagnated after 96 hours of culturing. The test group having a pH of 2.5 had a slower growth rate than the other test groups, and tended to grow even after reaching 120 hours of culturing.
Table 7 shows the pH of the initial culture solution and the pH of the culture solution after culturing. As can be seen from this table, in all the test groups in which the pH of the initial culture solution was 2.5 to 6.5, the pH after culturing was lowered to 3.0 or less. In addition, the pH after culturing decreased to 3.59 in the test group having a pH of 7.5 in the initial culture solution, and the pH after culturing decreased to 1.77 in the test group having a pH of 2.5. From the above, it was shown that the pH after culturing tended to be biased toward acidity in all the test plots.

Figure 2021166510
Figure 2021166510

3.C/Nの影響
実施例1の増殖工程において、耐性株に用いた培養液と同じ組成の培養液に、グルコース量は変えずに窒素源としてポリペプトンを添加し、C/Nをそれぞれ10、20、30、40、50に調整して培養試験を行った。なお、実施例1の増殖工程において、耐性株に用いた培養液のC/Nは22.9である。
3. 3. Effect of C / N In the growth step of Example 1, polypeptone was added as a nitrogen source to the culture solution having the same composition as the culture solution used for the resistant strain without changing the amount of glucose, and C / N was added to 10 and 20, respectively. , 30, 40, 50 and the culture test was carried out. In the growth step of Example 1, the C / N of the culture solution used for the resistant strain was 22.9.

図9は培養液のC/Nとバイオマス収量との関係を示している。Tukeyの多重比較の結果、バイオマス収量が最も高い値を示したC/N40の試験区は、C/N50の試験区との間では有意差は見られなかったが、それ以外の試験区(C/N10、20、30)に比べ有意差が認められた。また、C/Nが高い試験区ほどバイオマス収量が高くなる傾向を示した(p<0.05)。 FIG. 9 shows the relationship between the C / N of the culture solution and the biomass yield. As a result of Tukey's multiple comparison, the C / N40 test group showing the highest biomass yield was not significantly different from the C / N50 test group, but the other test groups (C). A significant difference was observed as compared with / N10, 20, 30). In addition, the higher the C / N of the test plot, the higher the biomass yield tended to be (p <0.05).

また、各試験区のパラミロン含量及び含有率に関しては、Tukeyの多重比較の結果、全ての試験区の間で有意差が認められ、C/Nが高い試験区ほどパラミロン含量が高くなる傾向を示した(p<0.05)。 In addition, regarding the paramylon content and content of each test group, as a result of Tukey's multiple comparison, a significant difference was observed among all test groups, and the higher the C / N of the test group, the higher the paramylon content tended to be. (P <0.05).

また、図10に24時間毎に測定したOD660の結果を示している。同図から分かるように、培養48時間の時点では、C/N10の試験区では、その他の試験区に比べてOD660の値が低かったが、培養96時間の時点では、C/N10の試験区でOD660の値が最も高くなり、C/N50の試験区でOD660の値が最も低い値を示した。よって、培養後半ではC/Nが低いほどOD660の値が高くなる傾向が示された。 Further, FIG. 10 shows the result of OD 660 measured every 24 hours. As can be seen from the figure, at 48 hours of culture, the value of OD 660 was lower in the C / N10 test group than in the other test groups, but at 96 hours of culture, the C / N10 test was performed. The value of OD 660 was the highest in the plot, and the value of OD 660 was the lowest in the C / N 50 test plot. Therefore, in the latter half of the culture, the lower the C / N, the higher the value of OD 660 tended to be.

表8は、培養後の上清に含まれる残糖量とC/Nとの関係を示している。この表から分かるように、培養106時間の時点では全ての試験区で培養液中にグルコースが残っていた。また、培養120時間の時点では、C/Nが10、20、30の試験区ではグルコース濃度は1%ほどしか確認できなかったが、C/N40の試験区ではグルコース濃度が3%、C/Nが50の試験区ではグルコース濃度が7%残っていることが確認された。さらに、培養144時間の時点では、C/N50以外の試験区では培養液中のグルコースは枯渇していた。以上より、C/Nが低い試験区ほど糖の消費が速く、C/Nが高いほど糖の消費が遅くなる傾向が示された。

Figure 2021166510
Table 8 shows the relationship between the amount of residual sugar contained in the supernatant after culturing and C / N. As can be seen from this table, glucose remained in the culture medium in all test groups at 106 hours of culture. In addition, at 120 hours of culturing, the glucose concentration was only about 1% in the test groups having C / N of 10, 20, and 30, but the glucose concentration was 3% in the test group of C / N 40, and C / It was confirmed that 7% of the glucose concentration remained in the test group having N of 50. Furthermore, at 144 hours of culturing, glucose in the culture broth was depleted in the test plots other than C / N50. From the above, it was shown that the lower the C / N in the test group, the faster the sugar consumption, and the higher the C / N, the slower the sugar consumption.
Figure 2021166510

表9は、バイオマス収量が最も高い値を示したC/N40の試験区の上清に含まれる窒素及びリンの定量結果を示している。この表から、培養106時間の時点で上清には窒素が0.13mg/ml、リンが0.15mg/ml含まれていたことが分かった。これは、初発培養液に含まれる窒素及びリンの含量の26.0%、55.6%に相当する。

Figure 2021166510
Table 9 shows the quantitative results of nitrogen and phosphorus contained in the supernatant of the C / N40 test group, which showed the highest biomass yield. From this table, it was found that the supernatant contained 0.13 mg / ml of nitrogen and 0.15 mg / ml of phosphorus at 106 hours of culturing. This corresponds to 26.0% and 55.6% of the nitrogen and phosphorus contents contained in the initial culture medium.
Figure 2021166510

[実施例3]
培養液に含まれるグルコース濃度を6%、7%、8%、9%、10%に調整した以外は、実施例1と同じ条件で増殖工程における耐性株の培養を行った。耐性株としては、実施例1の馴化工程で得られたNIES48の耐性株(選抜株)を用いた。
[Example 3]
The resistant strains in the growth step were cultured under the same conditions as in Example 1 except that the glucose concentration contained in the culture solution was adjusted to 6%, 7%, 8%, 9%, and 10%. As the resistant strain, a resistant strain (selected strain) of NIES48 obtained in the acclimation step of Example 1 was used.

実施例1、2と同様、24時間培養を継続した後、そこから採取した1.0mLの培養液を、同じ液量の新たな培養液に植え継ぐ作業を繰り返し、植え継ぐ際に培養液を採取して、乾燥藻体重量を測定した。培養液中のグルコースが枯渇した時点で培養を終了した。 Similar to Examples 1 and 2, after continuing the culture for 24 hours, the work of substituting 1.0 mL of the culture solution collected from the culture solution into a new culture solution of the same amount is repeated, and the culture solution is collected at the time of substituting. Then, the weight of the dried algae was measured. The culture was terminated when the glucose in the culture solution was depleted.

図11はグルコース濃度と1Lあたりの乾燥藻体重量(バイオマス収量(g/L))との関係を示すグラフを、図12はOD660の時間的変化をそれぞれ示している。図11から分かるように、乾燥藻体重量が最も高い値を示したのはグルコース濃度が7%の試験区で、その他の試験区との間に有意差がみられた。乾燥藻体重量が最も低い値を示したのはグルコース濃度が9%の試験区で、グルコース濃度が8%、10%の試験区との間には有意差が認められなかったが、他の試験区との間で有意差がみられた。 FIG. 11 shows a graph showing the relationship between the glucose concentration and the dry algae weight per 1 L (biomass yield (g / L)), and FIG. 12 shows the temporal change of OD 660. As can be seen from FIG. 11, the test group having the highest glucose concentration showed the highest value in the dry algae weight, and a significant difference was observed from the other test groups. The test group with the lowest glucose concentration showed the lowest dry algae weight, and no significant difference was observed between the test groups with glucose concentrations of 8% and 10%, but other groups. There was a significant difference from the test plot.

図12は、OD660の値で表した増殖曲線である。図12には、増殖速度の比較のため、グルコース濃度が2%での増殖曲線も示した。図12より、グルコース濃度が6%では、グルコース濃度が2%の培養液とほぼ同じ増殖速度を示し、グルコース濃度が7%ではグルコース濃度が2%の培養液よりも若干遅い増殖速度を示した。また、グルコース濃度が8〜10%の試験区ではほとんど増殖しなかった。 FIG. 12 is a growth curve represented by a value of OD 660. FIG. 12 also shows a growth curve at a glucose concentration of 2% for comparison of growth rates. From FIG. 12, when the glucose concentration was 6%, the growth rate was almost the same as that of the culture solution having a glucose concentration of 2%, and when the glucose concentration was 7%, the growth rate was slightly slower than that of the culture solution having a glucose concentration of 2%. .. In addition, there was almost no growth in the test group having a glucose concentration of 8 to 10%.

[実施例4]
実施例1の馴化工程で得られたNIES48の耐性株(選抜株)を、グルコース濃度を8%に調整した培養液を使って培養する増殖工程を行った。グルコース濃度を8%に調整した培養液の組成を以下の表10に示す。

Figure 2021166510
[Example 4]
The NIES48 resistant strain (selected strain) obtained in the acclimation step of Example 1 was subjected to a growth step of culturing using a culture solution having a glucose concentration adjusted to 8%. The composition of the culture broth adjusted to 8% glucose concentration is shown in Table 10 below.
Figure 2021166510

本実施例では、上記の培養液50mLを100mL容量のバッフル付きフラスコに入れ、そこに実施例1の馴化工程で得られたNIES48の耐性株を含む培養液を約1mL(前記グルコース濃度8%の培養液の2%相当量L)加え、温度28℃、撹拌速度100rpm、暗黒下の条件で458時間、回転振とう培養を行った。培養を開始してから適宜のタイミングで培養液を採取して、その濁度(OD660)、残糖量(糖濃度)、バイオマス収量(g/L)(1Lあたりの乾燥藻体重量)を測定した。残糖量、バイオマス収量の測定方法は、実施例1で説明した通りである。 In this example, 50 mL of the above culture solution was placed in a flask with a baffle having a capacity of 100 mL, and about 1 mL of the culture solution containing the NIES48 resistant strain obtained in the acclimation step of Example 1 was placed therein (the glucose concentration was 8%). 2% equivalent amount of the culture solution L) was added, and rotary shaking culture was carried out under the conditions of a temperature of 28 ° C., a stirring speed of 100 rpm and a dark condition for 458 hours. After starting the culture, collect the culture solution at an appropriate timing to determine its turbidity (OD 660 ), residual sugar amount (sugar concentration), biomass yield (g / L) (dry algae weight per 1 L). It was measured. The method for measuring the residual sugar amount and the biomass yield is as described in Example 1.

表11に、培養液の濁度(OD660)、糖濃度、バイオマス収量(g/L)、対糖収率(%)を培養時間とともに示す。また、図13は、培養液の濁度(OD660)および糖濃度の時間的変化を示すグラフである。

Figure 2021166510
Table 11 shows the turbidity (OD 660 ), sugar concentration, biomass yield (g / L), and sugar yield (%) of the culture solution together with the culture time. In addition, FIG. 13 is a graph showing the turbidity (OD 660 ) of the culture solution and the temporal change of the sugar concentration.
Figure 2021166510

表11および図13から分かるように、培養95時間まではほとんど濁度の変化が見られなかったが、培養95時間を超えたあたりから濁度が徐々に上昇し始め、培養212時間以降、濁度が大きく上昇し、耐性株の増殖が観察された。つまり、実施例3では、培養216時間までの間、グルコース濃度が8%の培養液の試験区での耐性株の増殖は観察されなかったが、本実施例では、培養95時間を超えたあたりから耐性株の増殖が観察され、特に培養216時間以降では増殖速度が上昇した。また、培養361時間、406時間、458時間における糖濃度は、それぞれ7.32%、6.37%、6.07%であり、培養液中のグルコースが消費されていたことからも耐性株の増殖が裏付けられた。以上の結果から、グルコース濃度が8%以上の培養液を用いた場合でも耐性株が増殖することが確認された。また、グルコース濃度が8%以上の培養液を用いる場合は、グルコース濃度が8%未満の培養液を用いる場合よりも増殖工程を長くすることが耐性株を増殖させるうえで有効であることが推測された。 As can be seen from Table 11 and FIG. 13, almost no change in turbidity was observed up to 95 hours of culture, but the turbidity began to gradually increase after 95 hours of culture, and became turbid after 212 hours of culture. The degree increased significantly, and proliferation of resistant strains was observed. That is, in Example 3, the growth of the resistant strain in the test group of the culture solution having a glucose concentration of 8% was not observed until the culture time was 216 hours, but in this example, the culture time exceeded 95 hours. Growth of resistant strains was observed from the above, and the growth rate increased especially after 216 hours of culturing. In addition, the sugar concentrations at 361 hours, 406 hours, and 458 hours of culture were 7.32%, 6.37%, and 6.07%, respectively, and the consumption of glucose in the culture solution also supported the growth of resistant strains. From the above results, it was confirmed that resistant strains proliferate even when a culture medium having a glucose concentration of 8% or more is used. In addition, when using a culture medium having a glucose concentration of 8% or more, it is speculated that a longer growth step is more effective in growing resistant strains than when using a culture medium having a glucose concentration of less than 8%. Was done.

一方、培養406時間と培養458時間のバイオマス収量は、いずれも10.0g/Lであり、対糖収率は59.6%、50.6%であった。この結果から、培養406時間程度で耐性株の増殖はほぼ定常期に達したものと思われた。 On the other hand, the biomass yields of 406 hours of culture and 458 hours of culture were both 10.0 g / L, and the yields with respect to sugar were 59.6% and 50.6%. From this result, it was considered that the growth of the resistant strain reached almost the stationary phase in about 406 hours of culture.

また、上述した回転振とう培養に用いたものと同じNIES48の耐性株を、グルコース濃度を8%に調整した寒天培地に植藻し、暗黒条件、明条件下で培養したところ、いずれも生育が観察された。さらに、暗黒条件下、明条件下のいずれの培養においても、耐性株の緑化機能(光合成機能)は喪失しなかった。図14に、暗黒条件、及び明条件で培養した後の耐性株を示す。 In addition, the same NIES48-resistant strain used for the above-mentioned rotary shaking culture was planted on an agar medium having a glucose concentration adjusted to 8% and cultured under dark and light conditions, and all of them grew. Observed. Furthermore, the greening function (photosynthetic function) of the resistant strain was not lost in either the dark condition or the light condition. FIG. 14 shows resistant strains after culturing under dark and light conditions.

以上の結果より、耐性株の培養液のグルコース濃度は5〜8%が好ましいことが分かった。また、馴化工程で用いられた高濃度培養液のグルコース濃度(5%)と同じか若しくはそれよりも高いグルコース濃度である5%以上且つ8%以下の培養液に対する耐性を有するユーグレナを作出できることが分かる。さらに、詳しい理由は不明であるが、実施例3、4の結果から分かるように、同じグルコース濃度の培養液であっても、増殖工程の条件によって、耐性株の増殖開始時期や、増殖率に違いが出る。このことから、実際にユーグレナを大量培養するときは、温度、培地組成等の培養条件に応じた適切なグルコース濃度の内容液を使用することが望ましい。 From the above results, it was found that the glucose concentration of the culture solution of the resistant strain is preferably 5 to 8%. In addition, it is possible to produce Euglena having resistance to a culture solution having a glucose concentration of 5% or more and 8% or less, which is the same as or higher than the glucose concentration (5%) of the high-concentration culture solution used in the acclimation step. I understand. Further, although the detailed reason is unknown, as can be seen from the results of Examples 3 and 4, even if the culture medium has the same glucose concentration, the growth start time and the growth rate of the resistant strain may vary depending on the conditions of the growth step. It makes a difference. For this reason, when actually culturing Euglena in large quantities, it is desirable to use a content solution having an appropriate glucose concentration according to the culture conditions such as temperature and medium composition.

以上、本発明の実施形態について具体的な実施例を挙げて詳細に説明したが、本発明は上述した実施例に限定されず、種々の変形が可能である。例えば、実施例1では、馴化工程によりユーグレナをグルコース濃度が2%から5%までの複数種類の馴化用培養液で培養することにより該ユーグレナをグルコース濃度が5%以上の培養液に馴化させてから増殖工程に移行したが、グルコース濃度が5%以上の培養液に対する耐性を有しているユーグレナ(糖耐性ユーグレナ)であれば、馴化工程は省略することができる。糖耐性ユーグレナは、グルコース濃度が2%の培養液及び5%の培養液を含む、2%から5%までの間の複数種類の馴化用培養液でユーグレナを順に培養する工程を有する製造方法によって製造することができる。また、糖耐性ユーグレナは、天然の淡水中又は海水中から採取した、天然のユーグレナの中から所定の条件を満たすものを選抜し分離することで取得しても良く、天然のユーグレナ若しくは微生物保存機関から取得したユーグレナの継代培養を続けるなかで現れた自然変異種であっても良い。また、糖耐性ユーグレナは、公知の方法で突然変異を誘導させたり、遺伝子組み換えやゲノム編集等の技術を利用したりして人為的に作出することもできる。 Although the embodiments of the present invention have been described in detail with reference to specific examples, the present invention is not limited to the above-described examples, and various modifications are possible. For example, in Example 1, Euglena is acclimated to a culture solution having a glucose concentration of 5% or more by culturing Euglena in a plurality of types of acclimation culture solutions having a glucose concentration of 2% to 5% by an acclimatization step. However, if the euglena (sugar-tolerant euglena) has resistance to a culture medium having a glucose concentration of 5% or more, the acclimation step can be omitted. Sugar-tolerant Euglena is produced by a production method comprising a step of sequentially culturing Euglena in a plurality of types of acclimation culture mediums ranging from 2% to 5%, which comprises a culture solution having a glucose concentration of 2% and a culture solution having a glucose concentration of 5%. Can be manufactured. In addition, sugar-tolerant euglena may be obtained by selecting and separating euglena that meets predetermined conditions from natural euglena collected from natural fresh water or seawater, and is obtained by natural euglena or a microbial preservation institution. It may be a natural variant that appeared while continuing the subculture of Euglena obtained from. In addition, sugar-resistant Euglena can be artificially produced by inducing mutations by a known method or by using techniques such as gene recombination and genome editing.

Claims (10)

グルコース濃度が0%から2%までの間の所定の濃度である低濃度培養液と、グルコース濃度が2%よりも高く且つ8%以下の所定の濃度である高濃度培養液とから成る、グルコース濃度が異なる複数種類の馴化用培養液を用意し、グルコース濃度が低い馴化用培養液から順に該馴化用培養液を使ってユーグレナを培養する馴化工程と、
前記馴化工程で得られたユーグレナを、グルコース濃度が前記高濃度培養液と同じか、前記高濃度培養液よりも高く且つ8%以下である増殖用培養液を使って培養する増殖工程と
を有する、ユーグレナの培養方法。
A glucose consisting of a low-concentration culture medium having a glucose concentration of a predetermined concentration between 0% and 2% and a high-concentration culture medium having a glucose concentration of more than 2% and a predetermined concentration of 8% or less. An acclimatization step in which multiple types of acclimatization culture solutions having different concentrations are prepared, and Euglena is cultured using the acclimatization culture medium in order from the acclimatization culture medium having the lowest glucose concentration.
It has a growth step of culturing Euglena obtained in the acclimation step using a growth culture solution having the same glucose concentration as the high-concentration culture solution, or higher than the high-concentration culture solution and 8% or less. , Euglena culture method.
グルコース濃度が0%から2%までの間の所定の濃度である低濃度培養液と、グルコース濃度が2%よりも高く且つ8%以下の所定の濃度である高濃度培養液と、グルコース濃度が前記低濃度培養液よりも高く、前記高濃度培養液よりも低い濃度である中間濃度培養液とから成る、グルコース濃度が異なる複数種類の馴化用培養液を用意し、グルコース濃度が低い馴化用培養液から順に該馴化用培養液を使ってユーグレナを培養する馴化工程と、
前記馴化工程で得られたユーグレナを、グルコース濃度が前記高濃度培養液と同じか、前記高濃度培養液よりも高く且つ8%以下である増殖用培養液を使って培養する増殖工程と
を有する、ユーグレナの培養方法。
A low-concentration culture medium having a glucose concentration of a predetermined concentration between 0% and 2%, a high-concentration culture medium having a glucose concentration higher than 2% and a predetermined concentration of 8% or less, and a glucose concentration Prepare a plurality of types of acclimation culture solutions having different glucose concentrations, which consist of an intermediate concentration culture solution having a concentration higher than that of the low-concentration culture solution and a concentration lower than that of the high-concentration culture solution. The acclimation step of culturing Euglena using the acclimation culture solution in order from the solution,
It has a growth step of culturing Euglena obtained in the acclimation step using a growth culture solution having the same glucose concentration as the high-concentration culture solution, or higher than the high-concentration culture solution and 8% or less. , Euglena culture method.
請求項2に記載のユーグレナの培養方法において、
前記中間濃度培養液が、濃度が異なる複数種類の培養液から成る、ユーグレナの培養方法。
In the method for culturing Euglena according to claim 2,
A method for culturing Euglena, wherein the intermediate concentration culture solution comprises a plurality of types of culture solutions having different concentrations.
請求項1に記載のユーグレナの培養方法において、
前記馴化用培養液が、グルコース濃度が2%の低濃度培養液と、グルコース濃度が5%の高濃度培養液と、グルコース濃度が2%から5%までの間の複数種類の中間濃度培養液を含む、ユーグレナの培養方法。
In the method for culturing Euglena according to claim 1,
The culturing solution for acclimation is a low-concentration culture solution having a glucose concentration of 2%, a high-concentration culture solution having a glucose concentration of 5%, and a plurality of types of intermediate-concentration culture solutions having a glucose concentration of 2% to 5%. A method for culturing Euglena, including.
請求項4に記載のユーグレナの培養方法において、
前記複数種類の中間濃度培養液のグルコース濃度が、2%から5%までの範囲を等分した値に設定されている、ユーグレナの培養方法。
In the method for culturing Euglena according to claim 4,
A method for culturing Euglena, wherein the glucose concentration of the plurality of types of intermediate concentration culture solutions is set to a value obtained by equally dividing the range from 2% to 5%.
請求項4又は5に記載のユーグレナの培養方法において、
前記増殖用培養液のグルコース濃度が5%〜8%の間の所定の濃度である、ユーグレナの培養方法。
In the method for culturing Euglena according to claim 4 or 5.
A method for culturing Euglena, wherein the glucose concentration of the growth culture solution is a predetermined concentration between 5% and 8%.
請求項1〜6のいずれかに記載のユーグレナの培養方法において、
前記馴化工程と前記増殖工程の間に、該馴化工程において得られたユーグレナの中から増殖率の高いユーグレナを選抜する選抜工程を有する、ユーグレナの培養方法。
In the method for culturing Euglena according to any one of claims 1 to 6.
A method for culturing Euglena, which comprises a selection step of selecting Euglena having a high growth rate from Euglena obtained in the acclimatization step between the acclimatization step and the growth step.
グルコース濃度が2%よりも高く、且つ8%以下である所定の濃度の増殖用培養液を使ってユーグレナを培養し、増殖させる、ユーグレナの製造方法。 A method for producing Euglena, which comprises culturing and growing Euglena using a growth culture medium having a glucose concentration of more than 2% and 8% or less. グルコース濃度が0%から2%までの間の所定の濃度である低濃度培養液と、グルコース濃度が2%よりも高く且つ8%以下の所定の濃度である高濃度培養液とから成る、グルコース濃度が異なる複数種類の馴化用培養液を用意し、グルコース濃度が低い馴化用培養液から順に該馴化用培養液を使ってユーグレナを培養する工程を有する、糖耐性ユーグレナの製造方法。 A glucose consisting of a low-concentration culture medium having a glucose concentration of a predetermined concentration between 0% and 2% and a high-concentration culture medium having a glucose concentration of more than 2% and a predetermined concentration of 8% or less. A method for producing sugar-tolerant euglena, which comprises a step of preparing a plurality of types of acclimation culture solutions having different concentrations and culturing euglena using the acclimation culture solution in order from the acclimation culture solution having the lowest glucose concentration. グルコース濃度が0%から2%までの間の所定の濃度である低濃度培養液と、グルコース濃度が2%よりも高く且つ8%以下の所定の濃度である高濃度培養液と、グルコース濃度が前記低濃度培養液よりも高く、前記高濃度培養液よりも低い濃度である中間濃度培養液とから成る、グルコース濃度が異なる複数種類の馴化用培養液を用意し、グルコース濃度が低い馴化用培養液から順に該馴化用培養液を使ってユーグレナを培養する工程を有する、糖耐性ユーグレナの製造方法。 A low-concentration culture medium having a glucose concentration of a predetermined concentration between 0% and 2%, a high-concentration culture medium having a glucose concentration higher than 2% and a predetermined concentration of 8% or less, and a glucose concentration Prepare a plurality of types of acclimation culture solutions having different glucose concentrations, which consist of an intermediate concentration culture solution having a concentration higher than that of the low-concentration culture solution and a concentration lower than that of the high-concentration culture solution. A method for producing glucose-tolerant euglena, which comprises a step of culturing euglena using the conditioned culture solution in order from the solution.
JP2021066518A 2020-04-10 2021-04-09 Euglena culture method Active JP7286183B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020071338 2020-04-10
JP2020071338 2020-04-10

Publications (2)

Publication Number Publication Date
JP2021166510A true JP2021166510A (en) 2021-10-21
JP7286183B2 JP7286183B2 (en) 2023-06-05

Family

ID=78079156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021066518A Active JP7286183B2 (en) 2020-04-10 2021-04-09 Euglena culture method

Country Status (1)

Country Link
JP (1) JP7286183B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59118090A (en) * 1982-12-22 1984-07-07 Shozaburo Kitaoka Preparation of wax ester, higher fatty alcohol and higher fatty acid
JPH06113819A (en) * 1992-10-01 1994-04-26 Harima Chem Inc Culture of euglena
WO2014157077A1 (en) * 2013-03-27 2014-10-02 国立大学法人筑波大学 Euglena spp. microalgae, polysaccharide manufacturing method, and organic compound manufacturing method
CN106591136A (en) * 2016-12-28 2017-04-26 昆明藻能生物科技有限公司 High-glucose-tolerance crypthecodinium cohnii obtained from orient domestication, and preparation method and application thereof
CN109913513A (en) * 2018-11-29 2019-06-21 厦门大学 A method of domestication schizochytrium limacinum Lipid-producing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59118090A (en) * 1982-12-22 1984-07-07 Shozaburo Kitaoka Preparation of wax ester, higher fatty alcohol and higher fatty acid
JPH06113819A (en) * 1992-10-01 1994-04-26 Harima Chem Inc Culture of euglena
WO2014157077A1 (en) * 2013-03-27 2014-10-02 国立大学法人筑波大学 Euglena spp. microalgae, polysaccharide manufacturing method, and organic compound manufacturing method
CN106591136A (en) * 2016-12-28 2017-04-26 昆明藻能生物科技有限公司 High-glucose-tolerance crypthecodinium cohnii obtained from orient domestication, and preparation method and application thereof
CN109913513A (en) * 2018-11-29 2019-06-21 厦门大学 A method of domestication schizochytrium limacinum Lipid-producing

Also Published As

Publication number Publication date
JP7286183B2 (en) 2023-06-05

Similar Documents

Publication Publication Date Title
Qiang et al. Enhancement of eicosapentaenoic acid (EPA) and γ‐linolenic acid (GLA) production by manipulating algal density of outdoor cultures of Monodus subterraneus (Eustigmatophyta) and Spirulina platensis (Cyanobacteria)
CN107287252B (en) Omega-7 fatty acid composition, method for culturing chrysophyceae to produce composition and application
CN105803010B (en) A method of based on heterotrophic microalgae oil and fat accumulation
KR20140033490A (en) Novel strain of microalgae of the odontella genus for the production of epa and dha in mixotrophic cultivation mode
CN114286856A (en) Method for producing astaxanthin by culturing haematococcus pluvialis
JP6888035B2 (en) Production of omega-3 fatty acids from phytium species
CN113773963A (en) High-density high-yield porphyridium culture method
CN114729297B (en) Method for producing astaxanthin by heterotrophic culture of haematococcus pluvialis
JP5746796B1 (en) Method for producing fat and oil component and method for producing higher unsaturated fatty acid
RU2523606C1 (en) STRAIN Gluconacetobacter sucrofermentans - PRODUCER OF BACTERIAL CELLULOSE
CN106916748B (en) Golden algae and its culture method
CN107646674B (en) Method for producing cultured roots of mountain ginseng by adopting bioreactor
JP2021166510A (en) Euglena culture method
Sakata et al. Colony formation and fatty acid composition of marine labyrinthulid isolates grown on agar media
CN111548942B (en) Method for culturing microalgae by using benzoic acid
CN110089623B (en) Scenedesmus and its application as bait/bait additive
KR101855733B1 (en) Chlorella sp. ABC-001 strain having excellent lipid productivity and cell growth rate under high carbon dioxide and salt concentration condition and uses thereof
Kumar et al. Effect of Organic Carbon Compounds on the Growth and Pigment Composition of Microalga-Nannochloropsis salina
JP2007006763A (en) Aquatic animal feed and method for producing the same
JP6434268B2 (en) Chlorella rich in chlorophyll and carotenoids
CN103642830B (en) Protonema engineering blue algae with high fat content and high essential fatty acid content and constructed by adopting reverse vector method
JP2023053647A (en) Culture method of euglena
Noor et al. Spirulina culture in Bangladesh XII. Effects of different culture media, different culture vessels and different cultural conditions on coiled and straight filament characteristics of Spirulina
CN110964641B (en) Brine alga culture method for controlling phytoplankton
JP3042672B2 (en) Culture method of snow algae

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20210421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210421

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220420

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20220420

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220901

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230106

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20230106

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230116

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20230117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230517

R150 Certificate of patent or registration of utility model

Ref document number: 7286183

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150