JPH06110198A - Method for lowering reflectivity of substrate surface - Google Patents

Method for lowering reflectivity of substrate surface

Info

Publication number
JPH06110198A
JPH06110198A JP25811692A JP25811692A JPH06110198A JP H06110198 A JPH06110198 A JP H06110198A JP 25811692 A JP25811692 A JP 25811692A JP 25811692 A JP25811692 A JP 25811692A JP H06110198 A JPH06110198 A JP H06110198A
Authority
JP
Japan
Prior art keywords
substrate
titanium nitride
nitride film
reflectance
reflectivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25811692A
Other languages
Japanese (ja)
Inventor
Katsuhiko Iimura
勝彦 飯村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP25811692A priority Critical patent/JPH06110198A/en
Publication of JPH06110198A publication Critical patent/JPH06110198A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To lower the reflectivity on the surface of a substrate by directly subjecting a titanium nitride film deposited on a substrate in order to lower the reflectivity to an oxygen plasma treatment by using a device, such as asher to be used for a resist ashing treatment. CONSTITUTION:The titanium nitride film deposited on the substrate is subjected to the oxygen plasma treatment, by which the surface of the titanium nitride film is oxidized. The surface reflectivity is further lowered by an increase in interference effect. The probable reason thereof lies in that the TiOxNy is formed on the front layer of the titanium nitride film (TiN) deposited on the substrate. This TiOxNy serves an effective antireflection film. After the metallic film is formed by sputtering on the semiconductor substrate, the titanium nitride film having 1000Angstrom film thickness is formed by sputtering in such a manner that the reflectivity is confined within a specified range. The results obtd. by subjecting this evaluating substrate to the oxygen plasma treatment under prescribed conditions are then shown in Fig. The reflectivity is lowered from 21.6% down to 16.6% according to the results of such experiment.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は半導体基板の製造技術
に関し、特、にフォトリソグラフィにおける露光の際の
基板反射率を低減させる基板表面の反射率低減方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor substrate manufacturing technique, and more particularly to a method of reducing the reflectance of a substrate surface for reducing the reflectance of the substrate during exposure in photolithography.

【0002】[0002]

【従来の技術】最近、ICの高集積化に伴い、フォトリ
ソグラフィにおける高精度微細金属配線の形成技術が必
須となってきている。この技術は例えば半導体等の基板
上に金属膜を形成し、この金属膜上にフォトレジストを
回転塗布した後、光パターンに露光され現像される。そ
して、このフォトレジストの開口部分にあたる金属をエ
ッチングして残った残留フォトレジストを除去し、金属
配線パターンを得る技術である。
2. Description of the Related Art Recently, with the high integration of ICs, a technique for forming highly accurate fine metal wiring in photolithography has become indispensable. In this technique, for example, a metal film is formed on a substrate such as a semiconductor, a photoresist is spin-coated on the metal film, and then exposed to a light pattern and developed. Then, the metal corresponding to the opening portion of the photoresist is etched to remove the remaining photoresist, thereby obtaining a metal wiring pattern.

【0003】しかし、例えば半導体等の基板上にスパッ
タで形成され、高反射率を有する金属膜表面では定在波
効果やハレーション効果が著しいため、フォトレジスト
パターンの配線ピッチを上げること(フォトレジストパ
ターン形成)が困難になってきた。
However, since the standing wave effect and the halation effect are remarkable on the surface of a metal film formed by sputtering on a substrate such as a semiconductor and having a high reflectance, the wiring pitch of the photoresist pattern should be increased (photoresist pattern Formation) has become difficult.

【0004】そこで、このフォトレジストパターンの配
線ピッチを上げるため、基板上に形成された金属膜表面
の反射率を低減させる方法が報告されている。例えば、
昭和62年度応用物理学会講演会(29a−B−2,
3)には、金属膜上に窒化チタン膜をスパッタして形成
することが有効である旨示されており、また、特開昭6
3−316053号公報にはこの窒化チタン膜の膜厚を
限定することにより、該窒化チタン膜を被着させること
による反射率低減効果を最大にできることが示されてい
る。
Therefore, there has been reported a method of reducing the reflectance of the surface of the metal film formed on the substrate in order to increase the wiring pitch of the photoresist pattern. For example,
1987 Japan Society of Applied Physics (29a-B-2,
3) shows that it is effective to form a titanium nitride film on a metal film by sputtering, and see Japanese Patent Laid-Open No.
Japanese Unexamined Patent Publication No. 3-316053 discloses that by limiting the film thickness of the titanium nitride film, the effect of reducing the reflectance by depositing the titanium nitride film can be maximized.

【0005】[0005]

【発明が解決しようとする課題】従来、基板上に形成さ
れた金属膜表面の光反射を低減させてフォトレジストパ
ターンの配線ピッチを向上させる方法として、この金属
膜上に窒化チタン膜を被着させていた。しかし、例えば
特開昭63−316053号公報によると、水銀スペク
トルのうちg線ステッパーの露光波長(436nm)
で、基板反射率を最も低くするように窒化チタン膜の膜
厚を300Åにする場合、図2に示すように(図中に示
した基板反射率は、bare Siの反射率を100%
として示している)、窒化チタン膜についてこの膜厚の
基板面内均一性を±10Å程度に制御しなければ、この
表面反射率のバラツキによりフォトリソグラフィにおけ
るパターン寸法もバラツイてしまうという課題があっ
た。
Conventionally, as a method of reducing the light reflection on the surface of a metal film formed on a substrate and improving the wiring pitch of a photoresist pattern, a titanium nitride film is deposited on the metal film. I was letting it. However, for example, according to JP-A-63-316053, the exposure wavelength (436 nm) of a g-line stepper in the mercury spectrum.
Then, when the film thickness of the titanium nitride film is set to 300 Å so that the substrate reflectance is the lowest, as shown in FIG. 2 (the substrate reflectance shown in the figure is 100% that of bare Si.
However, if the in-plane uniformity of this film thickness of the titanium nitride film is not controlled to about ± 10Å, there is a problem that the pattern dimension in photolithography also varies due to the variation in the surface reflectance. .

【0006】この発明は基板上に窒化チタン膜を被着さ
せることによる基板表面の反射率の低減効果を容易に向
上させることを目的とする。
An object of the present invention is to easily improve the effect of reducing the reflectance of the substrate surface by depositing a titanium nitride film on the substrate.

【0007】[0007]

【課題を解決するための手段】この発明に係る基板表面
の反射率低減方法は、反射率を低減させるべく被着させ
た窒化チタン膜に対し、レジスト灰化処理に使われるア
ッシャー等の装置を用いて酸素プラズマ処理を直接行う
ようにしたことを特徴としている。
A method for reducing the reflectance of a substrate surface according to the present invention uses a device such as an asher used for a resist ashing process for a titanium nitride film deposited to reduce the reflectance. The feature is that the oxygen plasma treatment is directly performed by using the oxygen plasma treatment.

【0008】また、この酸素プラズマ処理は基板上に被
着された窒化チタン膜表面の反射率低下が一定範囲に収
束するまで行われる。
Further, this oxygen plasma treatment is carried out until the decrease in the reflectance of the surface of the titanium nitride film deposited on the substrate converges within a certain range.

【0009】[0009]

【作用】この発明における基板表面の反射率低減方法
は、基板上に被着させた窒化チタン膜に対して酸素プラ
ズマ処理を行うことにより、この窒化チタン膜の表面を
酸化させ、干渉効果の増加によりさらに表面反射率を低
減させる。
In the method of reducing the reflectance of the substrate surface according to the present invention, the titanium nitride film deposited on the substrate is subjected to oxygen plasma treatment to oxidize the surface of the titanium nitride film and increase the interference effect. Further reduces the surface reflectance.

【0010】これは、基板上に被着させた窒化チタン膜
(TiN)の表層にTiOX y が形成されたことによ
ると考えられ、特に、このTiOX y が有効な反射防
止膜となることが、例えば昭和63年応用物理学会予稿
集(28p−D−5)に報告されている(特に、膜厚を
300Åに制御した場合の結果について報告)。
It is considered that this is because TiO X N y was formed on the surface layer of the titanium nitride film (TiN) deposited on the substrate. In particular, this TiO X N y was an effective antireflection film. It has been reported, for example, in 1988 Proceedings of the Japan Society of Applied Physics (28p-D-5) (particularly the result when the film thickness is controlled to 300Å).

【0011】ただし、このTiOX y の形成方法とし
ては、従来からO2 ガス雰囲気中でスパッタリングする
ことにより形成していた。これは従来のフォトリソグラ
フィにおいては行われなかった酸化処理を新たに実施し
なければならないことであり、この発明のように、フォ
トレジストのエッチングのための酸素プラズマ処理をそ
のまま酸化処理として利用することによりこのTiOX
y が形成されることは今まで知られていなかった。
However, as a method of forming this TiO X N y , it has been conventionally formed by sputtering in an O 2 gas atmosphere. This means that an oxidation treatment, which has not been performed in conventional photolithography, must be newly performed. Therefore, as in the present invention, the oxygen plasma treatment for etching the photoresist can be directly used as the oxidation treatment. By this TiO X
It was not previously known that N y was formed.

【0012】[0012]

【実施例】以下、この発明の一実施例を図について説明
するが、この発明では、例えば半導体等の基板上に被着
された窒化チタン膜の表面をレジスト灰化処理に使われ
ているアッシャー等の酸素プラズマ処理を施すことによ
り行う。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. In the present invention, the surface of a titanium nitride film deposited on a substrate such as a semiconductor is used as a resist ashing treatment for the asher. Etc. by performing oxygen plasma treatment.

【0013】この実施例において、評価基板として使用
する試料は、半導体基板(bareSi)上に金属膜と
して膜厚8000ÅのAl−1%Cu膜をスパッタで形
成した上に、同じく膜厚1000Åの窒化チタン膜をス
パッタで形成したものを採用する。
In this example, the sample used as the evaluation substrate was an Al-1% Cu film having a film thickness of 8000Å formed as a metal film on a semiconductor substrate (bareSi) by sputtering, and a nitride film having a film thickness of 1000Å. A titanium film formed by sputtering is used.

【0014】これは、図2からも分かるように、窒化チ
タン膜が膜厚増大に伴って基板反射率が一定範囲に収束
するため、この窒化チタン膜の膜厚が500Å以上にな
るように設定したものである。
As can be seen from FIG. 2, this is set so that the film thickness of the titanium nitride film becomes 500 Å or more because the substrate reflectance converges within a certain range as the film thickness increases. It was done.

【0015】次に、この評価基板をレジスト灰化処理に
使われるアッシャーの処理室に収め、以下の条件に従っ
て酸素プラズマ処理を施す。
Next, this evaluation substrate is placed in a processing chamber of an asher used for resist ashing treatment, and oxygen plasma treatment is performed under the following conditions.

【0016】 基板温度 : 150(℃) 室内圧力 : 0.8(mTorr) 酸素キャリア : 250(sccm) マイクロ波パワー: 1000(W) 以上の条件で酸素プラズマ処理を施した結果を図1に示
す(図中に示した基板反射率は、bare Siの反射
率を100%として示している)。
Substrate temperature: 150 (° C.) Room pressure: 0.8 (mTorr) Oxygen carrier: 250 (sccm) Microwave power: 1000 (W) The results of oxygen plasma treatment under the above conditions are shown in FIG. (The substrate reflectance shown in the figure is based on the reflectance of bare Si being 100%).

【0017】従来、この評価基板の基板反射率は21.
6%もあり、300Åで最大効果を得る前述の特開昭6
3−316053号公報に示された13.2%(課題の
欄でも述べたが、基板面内均一性を維持する制御が必
要)と比較すると8.4%も高いのに対し、この実験結
果によると反射率を21.6%から16.6%にまで低
減させられることが確認できた。さらに、以上の条件で
酸素プラズマ処理を40秒以上施すことにより、反射率
が一定値に収束することも確認できた。
Conventionally, the substrate reflectance of this evaluation substrate is 21.
It is 6% and the maximum effect is obtained at 300Å.
This is 8.4% higher than the 13.2% disclosed in Japanese Patent Laid-Open No. 3-316053 (as mentioned in the section on the subject, but control to maintain the in-plane uniformity of the substrate is required), while this experimental result is high. According to the above, it was confirmed that the reflectance can be reduced from 21.6% to 16.6%. Further, it was confirmed that the reflectance converges to a constant value by performing the oxygen plasma treatment for 40 seconds or more under the above conditions.

【0018】[0018]

【発明の効果】以上のようにこの発明によれば、反射率
を低減させるべく被着させた窒化チタン膜表面に対し、
レジスト灰化処理に使われるアッシャー等の装置を用い
て酸素プラズマ処理を行うようにし、さらに、この酸素
プラズマ処理を基板上に被着された窒化チタン膜表面の
反射率の低下が一定範囲に収束するまで行うようにした
ので、この窒化チタン膜表面を酸化させ、基板ごとのバ
ラツきをなくすと共に、従来よりも容易に基板表面の反
射率を低減できる効果がある。
As described above, according to the present invention, the surface of the titanium nitride film deposited to reduce the reflectance is
Oxygen plasma treatment is performed using an apparatus such as an asher used for resist ashing treatment. Furthermore, the oxygen plasma treatment is performed within a certain range in which the reflectance of the titanium nitride film surface deposited on the substrate is reduced. Since the titanium nitride film surface is oxidized to eliminate the variation between the substrates, the reflectance of the substrate surface can be reduced more easily than before.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明に係る基板表面の反射率低減方法を実
施した実験結果による基板反射率と酸素プラズマ処理時
間との関係を示す図である。
FIG. 1 is a diagram showing a relationship between a substrate reflectance and an oxygen plasma treatment time, which is an experimental result of carrying out a substrate surface reflectance reducing method according to the present invention.

【図2】従来の基板表面の反射率低減方法を実施した実
験結果による基板反射率と窒化チタン膜厚との関係を示
す図である。
FIG. 2 is a diagram showing a relationship between a substrate reflectance and a titanium nitride film thickness, which is an experimental result of a conventional substrate surface reflectance reducing method.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 基板上に窒化チタン膜を被着させる基板
表面の反射率低減方法において、 前記基板上に被着している窒化チタン膜に対して酸素プ
ラズマ処理を行うことを特徴とする基板表面の反射率低
減方法。
1. A method for reducing the reflectance of a substrate surface, comprising depositing a titanium nitride film on a substrate, wherein the titanium nitride film deposited on the substrate is subjected to oxygen plasma treatment. Surface reflectance reduction method.
【請求項2】 前記基板上に被着させた窒化チタン膜に
対し、該窒化チタン膜表面の反射率の低下が一定範囲に
収束するまで前記酸素プラズマ処理を施すことを特徴と
する請求項1記載の基板表面の反射率低減方法。
2. The oxygen plasma treatment is performed on the titanium nitride film deposited on the substrate until the decrease in reflectance on the surface of the titanium nitride film converges within a certain range. A method for reducing the reflectance of a substrate surface as described above.
JP25811692A 1992-09-28 1992-09-28 Method for lowering reflectivity of substrate surface Pending JPH06110198A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25811692A JPH06110198A (en) 1992-09-28 1992-09-28 Method for lowering reflectivity of substrate surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25811692A JPH06110198A (en) 1992-09-28 1992-09-28 Method for lowering reflectivity of substrate surface

Publications (1)

Publication Number Publication Date
JPH06110198A true JPH06110198A (en) 1994-04-22

Family

ID=17315730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25811692A Pending JPH06110198A (en) 1992-09-28 1992-09-28 Method for lowering reflectivity of substrate surface

Country Status (1)

Country Link
JP (1) JPH06110198A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0855853A (en) * 1994-08-15 1996-02-27 Yamaha Corp Formation method of conductive layer
US5877031A (en) * 1994-07-07 1999-03-02 Hyundai Electronics Industries Co, Ltd Method for forming a metallic barrier layer in semiconductor device
US6211078B1 (en) * 1997-08-18 2001-04-03 Micron Technology, Inc. Method of improving resist adhesion for use in patterning conductive layers

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5877031A (en) * 1994-07-07 1999-03-02 Hyundai Electronics Industries Co, Ltd Method for forming a metallic barrier layer in semiconductor device
JPH0855853A (en) * 1994-08-15 1996-02-27 Yamaha Corp Formation method of conductive layer
US6211078B1 (en) * 1997-08-18 2001-04-03 Micron Technology, Inc. Method of improving resist adhesion for use in patterning conductive layers
US6429525B2 (en) 1997-08-18 2002-08-06 Micron Technology, Inc. Interconnect structure having improved resist adhesion

Similar Documents

Publication Publication Date Title
US5286608A (en) TiOx as an anti-reflection coating for metal lithography
US6326231B1 (en) Use of silicon oxynitride ARC for metal layers
JP2000040671A (en) Method for forming metallic wiring of semiconductor element using titanium aluminum nitride anti-reflection film
KR100524450B1 (en) Methods and compositions for post-etch layer stack treatment in semiconductor fabrication
JP3348454B2 (en) Antioxidant method
JPH06110198A (en) Method for lowering reflectivity of substrate surface
US6627387B2 (en) Method of photolithography
JP3185871B2 (en) Method for manufacturing semiconductor device
JPH07281445A (en) Semiconductor device
US6903007B1 (en) Process for forming bottom anti-reflection coating for semiconductor fabrication photolithography which inhibits photoresist footing
JPH05114558A (en) Manufacture of semiconductor device
JP2002231724A (en) Method of forming wiring
KR100532737B1 (en) Method for forming a anti reflective coating in a semiconductor manufacturing procedure
JP2517357B2 (en) How to reduce the amount of light
JPH08274099A (en) Wiring forming method
US5888908A (en) Method for reducing reflectivity of a metal layer
JPH10178018A (en) Manufacture of semiconductor device
JP3319157B2 (en) Method for manufacturing semiconductor device
KR0137813B1 (en) Metal wiring method of mosfet
JPH10321606A (en) Method of forming wiring
JP3387034B2 (en) Metal film surface treatment process and semiconductor metallization manufacturing process
JPH0677182A (en) Flattening method of rugged insulating film
TW388938B (en) Method for increasing etch selectivity of metal wire
JPH05218023A (en) Method of forming pattern of semiconductor device
GB2145539A (en) Optical preparation of molybdenum surfaces