JPH06109976A - Lens with large power variation - Google Patents

Lens with large power variation

Info

Publication number
JPH06109976A
JPH06109976A JP9435792A JP9435792A JPH06109976A JP H06109976 A JPH06109976 A JP H06109976A JP 9435792 A JP9435792 A JP 9435792A JP 9435792 A JP9435792 A JP 9435792A JP H06109976 A JPH06109976 A JP H06109976A
Authority
JP
Japan
Prior art keywords
group
lens
object side
variable
wide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9435792A
Other languages
Japanese (ja)
Other versions
JP3288422B2 (en
Inventor
Shinichi Mihara
三原伸一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP9435792A priority Critical patent/JP3288422B2/en
Publication of JPH06109976A publication Critical patent/JPH06109976A/en
Application granted granted Critical
Publication of JP3288422B2 publication Critical patent/JP3288422B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Abstract

PURPOSE:To obtain the lens with large power variation which is not large in front-lens diameter and short in overall length, and has excellent image formation characteristics and reduces the quantity of movement of a group for focus correction even when the power variation range is extended to the wide-angle side. CONSTITUTION:This lens consists of a 1st positive group G1, a 2nd negative group G2 which is movable at the time of power variation, a 3rd group G3 which is movable toward an object side along a convex track when the power is varied from the wide-angle end to the telephoto end, a 4th positive group G4 which is so movable as to correct focus movement at the time of power variation and due to a shift in object point position, and a 5th group G5 which is always fixed; and an aperture stop is arranged between the most image side surface of the 2nd group G2 and the most object-side surface of the 4th group G4 and (1) 1.0<beta5<2.0 holds, where beta5 is the lateral power of the 5th group G5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高変倍レンズに関し、
特に、5群構成でリアフォーカス方式の全長の短い、大
口径比、高変倍比の変倍レンズに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high zoom lens,
In particular, the present invention relates to a variable focal length lens having a large rear diameter and a large aperture ratio and a high zoom ratio, which is composed of five groups.

【0002】[0002]

【従来の技術】最近のビデオカメラの小型軽量化、低コ
スト化の進展は著しく、カムコーダー市場は大幅に活性
化し、一般ユーザーに急速に普及しつつある。ビデオカ
メラは、主に、電気回路基板、アクチュエーター(メ
カ)系、そして、光学系からなっており、従来、特に電
気系を中心に小型・低コスト化が進められてきたが、こ
こ最近になって、撮像光学系の大幅な小型化が急進展し
ている。撮像光学系の小型・低コスト化は、イメージャ
ーの小型化技術、回転対称非球面加工技術、TTL自動
合焦技術の進展を効果的に利用した新しいズーム(変
倍)タイプの開発によってなされつつあるのが現状であ
る。その新しいズームレンズの例として、特開昭62−
178917号のものがある。この引用例に示された変
倍レンズは、物体側から順に、正の屈折力を有する第1
群、負の屈折力を有する第2群からなる変倍系と、正の
屈折力を有し、常時固定の第3群、変倍時及び被写体距
離変化等による焦点位置調節のために可動の第4群から
なる結像系とから構成されるものであるが、このように
コンペンセーターを兼ねたリアフォーカスや非球面を採
用することにより、構成枚数を10枚以下に減らせ、そ
れによって余分なスペースを減らすことができるので、
大幅に前玉径を小さくでき、かつ、全長を短くすること
が可能となった。オートフォーカスを高速かつ小電力で
行えるリアフォーカスのメリットと小型・低コスト化の
メリットから、この種のレンズが現在のカムコーダー用
のレンズの主流になりつつある。
2. Description of the Related Art Recently, the progress of downsizing, weight reduction and cost reduction of video cameras has been remarkable, and the camcorder market has been remarkably activated and is rapidly spreading to general users. A video camera mainly consists of an electric circuit board, an actuator (mechanical) system, and an optical system. Conventionally, the miniaturization and cost reduction have been promoted mainly in the electric system, but recently these days. Therefore, the drastic downsizing of the imaging optical system is rapidly progressing. The reduction in size and cost of the imaging optical system is being made possible by the development of a new zoom type that effectively utilizes the advances in imager miniaturization technology, rotationally symmetric aspherical surface processing technology, and TTL automatic focusing technology. It is the current situation. As an example of the new zoom lens, Japanese Patent Laid-Open No. 62-
178917 is available. The variable power lens shown in this reference example has a first refractive power in order from the object side.
And a third lens unit having a positive refractive power, and a third lens unit having a positive refractive power, and a third lens unit having a positive refractive power. It is composed of an image forming system composed of a fourth group, but by adopting a rear focus and an aspherical surface which also serve as a compensator in this way, the number of constituent elements can be reduced to 10 or less. Space can be reduced,
The front lens diameter can be greatly reduced and the total length can be shortened. This type of lens is becoming the mainstream of current camcorder lenses due to the advantages of rear focus, which allows autofocus at high speed and low power, and the advantages of small size and low cost.

【0003】このような小型軽量化、低コスト化が徹底
追求されてくると、次は、高機能化へと進展して行く。
その1つが、撮影レンズの高変倍化であり、さらには、
映像信号のディジタル処理による電子ズームの導入であ
る。しかし、カムコーダー用レンズの高変倍化は、専ら
望遠側の延長によるものばかりである。これに前記電子
ズームを導入しても、望遠側がさらに延長されるだけで
あり、広角側の延長は、相変わらずフロントコンバージ
ョンレンズの着脱による旧態然とした方法に頼る外はな
い。上記引用例に示された方式の変倍レンズを用いたの
では、変倍レンジを広角側に延長すベく設計した場合、
前玉径が著しく大きくなり、その分不足してしまう前玉
正レンズの縁肉を確保すべく肉厚化すると、それにより
入射瞳が深くなり、さらに前玉径が大きくなるという悪
循環が生じ、その実現が極めて難しい。
When such a reduction in size and weight and a reduction in cost have been thoroughly pursued, next, progress is made to high functionality.
One of them is the high zoom ratio of the shooting lens, and further,
This is the introduction of electronic zoom by digital processing of video signals. However, the high zoom ratio of lenses for camcorders is solely due to the extension on the telephoto side. Even if the electronic zoom is introduced to this, only the telephoto side is further extended, and the extension on the wide angle side still depends on the old method of attaching and detaching the front conversion lens. When the variable power lens of the method shown in the above cited example is used, when the variable power range is designed to be extended to the wide angle side,
If the front lens diameter is significantly increased, and the thickness is increased to secure the edge thickness of the front lens positive lens that will be insufficient by that amount, the entrance pupil will be deeper due to that, and a vicious cycle will occur in which the front lens diameter becomes larger, That is extremely difficult to achieve.

【0004】このような欠点に対し、新たな試みがなさ
れたものとして、特開平3−215810号のものがあ
る。これは、前記特開昭62−178917号のもので
用いられている変倍方式に対し、第3群を物体側に凸状
の軌跡に沿って可動とし、開口絞りもそれにならうよう
に移動するようにすることで、広角化ができることを示
している。しかし、この例のように第3群を物体側に凸
状の軌跡に沿って可動とし、開口絞りもそれにならうよ
うに移動する方式を用いると、第1群から第3群までに
よる変倍時のピント移動を補正するように動く第4群の
移動軌跡は、移動量がかなり大きなものとなり、第4群
の移動を制御するステッピングモーターの容量を大きく
せざるを得ず、コストアップにつながると同時に、電力
消費も多くなりやすい。この引用例の実施例のものの変
倍比は8程度であるが、さらに高変倍比化すると、第4
群の移動軌跡はさらに急速に移動量の多いカーブになっ
てしまい、実用化が難しくなる。
In order to solve such a drawback, a new attempt has been made in JP-A-3-215810. This is different from the variable magnification method used in Japanese Patent Laid-Open No. 62-178917, in which the third lens unit is movable along the convex locus toward the object side, and the aperture stop is also moved accordingly. By doing so, it is shown that a wide angle can be achieved. However, if the system in which the third lens unit is moved along the convex locus toward the object side and the aperture stop also moves in a similar manner as in this example, the zooming by the first to third lens units is used. The movement locus of the fourth group, which moves so as to correct the focus movement at the time, has a considerably large movement amount, and the capacity of the stepping motor for controlling the movement of the fourth group has to be increased, which leads to an increase in cost. At the same time, power consumption tends to increase. The zoom ratio of the embodiment of this reference is about 8, but when the zoom ratio is further increased,
The locus of movement of the group becomes a curve with a large amount of movement even more rapidly, which makes practical application difficult.

【0005】[0005]

【発明が解決しようとする課題】本発明はこのような状
況に鑑みてなされたものであり、その目的は、上記従来
例(特開昭62−178917号、特開平3−2158
10号等)の長所を活かしつつ、変倍レンジを広角側へ
延長しても、前玉径がさほど大きくならず、全長も短
く、結像特性も良好で、焦点補正用の第4群の移動量が
少なくてすむ高変倍レンズを提供することである。
SUMMARY OF THE INVENTION The present invention has been made in view of such a situation, and its object is the above-mentioned conventional examples (JP-A-62-178917 and JP-A-3-2158).
(No. 10 etc.), the front lens diameter is not so large even when the variable power range is extended to the wide angle side, the overall length is short, the imaging characteristics are good, and the fourth lens group for focus correction is used. It is an object of the present invention to provide a high zoom lens that requires a small amount of movement.

【0006】具体的には、例えば、広角端画角63°、
変倍比12、全長15.5fW (fW :広角端における
全系の焦点距離)、Fナンバー1.8、構成枚数12枚
程度の大口径比、高変倍比、広画角の小型の変倍レンズ
を提供することである。
Specifically, for example, the wide-angle end angle of view 63 °,
Variable ratio 12, total length 15.5 f W (f W : focal length of the entire system at wide-angle end), F number 1.8, large aperture ratio with about 12 components, high variable ratio, wide angle of view, compact size Is to provide a variable power lens.

【0007】[0007]

【課題を解決するための手段】上記目的を達成する本発
明の高変倍レンズは、物体側から順に、正の屈折力を有
する第1群、負の屈折力を有し、変倍時可動の第2群、
正の屈折力を有し、広角端から望遠端へ変倍する際、物
体側に凸状の軌跡に沿って可動の第3郡、正の屈折力を
有し、変倍時及び物点位置の変化によるピント移動を補
正するように移動可能な第4群、負の屈折力を有し、常
時固定の第5群から構成されると共に、前記第2群の最
も像側の面と前記第4群の最も物体側の面の間に開口絞
りを有し、第5群の横倍率をβ5 とすると、 (1)1.0<β5 <2.0 の条件を満足することを特徴とするものである。
A high variable power lens of the present invention which achieves the above object has, in order from the object side, a first group having a positive refractive power and a negative refractive power, and is movable during zooming. The second group of
It has a positive refracting power and is movable along a convex locus on the object side when zooming from the wide-angle end to the telephoto end. The fourth lens group is movable so as to correct the focus movement due to the change of the second lens group and the fifth lens group having a negative refracting power and being always fixed. When an aperture stop is provided between the surfaces of the fourth group that are closest to the object side and the lateral magnification of the fifth group is β 5 , (1) 1.0 <β 5 <2.0 is satisfied. It is what

【0008】[0008]

【作用】以下、本発明において上記構成をとる理由と作
用について説明する。本発明の小型な高変倍レンズは、
前記の目的を達成するために、物体側から順に、正の屈
折力を有する第1群、負の屈折力を有し、変倍時可動で
ある第2群、正の屈折力を有し、広角端から望遠端へ変
倍する際、物体側に凸状の軌跡に沿って可動である第3
群、正の屈折力を有し、変倍時及び物点位置の変化によ
るピント移動を補正するように移動可能な第4群、負の
屈折力を有し、常時固定である第5群から構成されると
共に、前記第2群の最も像側の面と前記第4群の最も物
体側の面の間に開口絞りを有するもので、高変倍レンズ
の広角端をより広角側に設定した場合、広角端の画面周
辺部の光線が従来例の第1群又は第2群にてケラレやす
くなり、それぞれの群の径を大きくしなくてはならな
い。それを防止するには、入射瞳位置が極力浅くなるよ
うなレンズ構成としなくてはならない。しかし、高変倍
レンズの場合、変倍のために移動する第2群の移動スペ
ースが多く必要であり、入射瞳位置が必然的に深くな
り、さらに、変倍比を高めるとよりその傾向は強まる。
この移動スペースを小さくするには、第2群のパワーを
強めればよいが、その分第1群のパワーもある程度強め
なくてはならいないで、その効果も薄くなるし、また、
望遠端付近での結像性能が悪化する。
The reason why the above structure is adopted and the function of the present invention will be described below. The small high-magnification lens of the present invention is
In order to achieve the above object, in order from the object side, a first group having a positive refracting power, a negative refracting power, a second group movable during zooming, a positive refracting power, When zooming from the wide-angle end to the telephoto end, it is possible to move along a convex locus on the object side.
From the fourth group, which has a positive refracting power and is movable so as to correct the focus movement due to the change of the magnification and the change of the object point position, and the fifth group which has a negative refracting power and is always fixed. With the construction, an aperture stop is provided between the most image-side surface of the second group and the most object-side surface of the fourth group, and the wide-angle end of the high-magnification lens is set to the wider-angle side. In this case, light rays around the screen at the wide-angle end are likely to be vignetted by the first group or the second group of the conventional example, and the diameter of each group must be increased. To prevent this, the lens structure must be such that the entrance pupil position is as shallow as possible. However, in the case of a high variable power lens, a large movement space is required for the second lens group that moves for variable power, and the entrance pupil position inevitably becomes deeper. Get stronger.
In order to reduce this movement space, the power of the second group should be increased, but the power of the first group must be increased to that extent, and the effect will be weakened.
Imaging performance near the telephoto end deteriorates.

【0009】そこで、第2群のパワーを強めずに、特に
光線のケラレが発生しやすい広角端から少し望遠側へシ
フトした付近の焦点距離において、入射瞳位置を浅くす
るように、広角端から望遠端へ変倍する際に、開口絞り
を物体側に凸状の軌跡に沿って移動するようにしてい
る。
Therefore, without increasing the power of the second lens group, from the wide-angle end so that the entrance pupil position is shallow at the focal length near the wide-angle end where light vignetting is likely to occur and slightly shifted to the telephoto side. When the magnification is changed to the telephoto end, the aperture stop is moved along a locus that is convex toward the object side.

【0010】しかし、単に開口絞りを移動するだけであ
ると、変倍に際して絞りより後ろのレンズ系への光線高
の変化が大きくなり、収差変動が発生しやすいので、第
3群も、開口絞りの移動軌跡同様、物体側に凸状の軌跡
に沿って移動する方式を採用している。
However, if the aperture stop is simply moved, the change in the height of the light beam to the lens system behind the stop becomes large during zooming, and aberration fluctuations tend to occur. Similar to the movement locus, the method of moving along a locus that is convex toward the object side is adopted.

【0011】本発明では、変倍のために発生する焦点位
置の移動や、物点位置の移動のために発生する焦点位置
の移動を第4群を用いて補正するが、この方式では、あ
る一定の物点に対し、変倍による焦点位置の変動を補正
する場合の移動軌跡(トラッキングカーブ)が変倍比が
大きくなるにつれて急速に急峻となり、そのアクチュエ
ーターへの負担が大きくなる傾向にあり、また、移動ス
ペースを多く要し、コンパクト化の障害となり、しか
も、前記のごとく第3群を物体側へ凸状の軌跡に沿って
移動させると、その傾向はさらに強まる。そこで、第4
群の像側に負の屈折力を有する第5群を加えることによ
り、その傾向を大幅に緩和させることができ、第4群ア
クチュエーターへの負担が軽減されると同時に、移動ス
ペースを小さくすることができ、全長の短縮化も容易と
なる。なお、前記第5群は以下の条件を満たさなくては
ならない。
In the present invention, the movement of the focal position caused by the magnification change and the movement of the focal position caused by the movement of the object point position are corrected by using the fourth lens group. For a fixed object point, the movement locus (tracking curve) when correcting the fluctuation of the focus position due to zooming becomes steep rapidly as the zooming ratio increases, and the load on the actuator tends to increase. Further, it requires a large movement space, which is an obstacle to downsizing, and when the third group is moved toward the object side along the convex locus as described above, the tendency is further strengthened. Therefore, the fourth
By adding the fifth lens unit having negative refracting power to the image side of the lens unit, the tendency can be remarkably alleviated, the load on the fourth lens unit actuator is reduced, and at the same time, the moving space is reduced. And the total length can be shortened easily. The fifth group must satisfy the following conditions.

【0012】(1)1.0<β5 <2.0 この条件は、第5群の倍率を規定したもので、その下限
を越えると、第5群を加えた効果が収差補正のみとな
り、第4群の移動軌跡は急峻で、その移動スペースは大
きく、好ましくない。また、その上限を越えると、第4
群の移動量は少なくなるが、第4群の駆動精度が厳しく
なりすぎ、実用的でない。
(1) 1.0 <β 5 <2.0 This condition defines the magnification of the fifth lens unit, and if the lower limit is exceeded, the effect of adding the fifth lens unit will be aberration correction only. The movement locus of the fourth group is steep, and its movement space is large, which is not preferable. If the upper limit is exceeded, the fourth
Although the amount of movement of the group becomes small, the driving accuracy of the fourth group becomes too severe, which is not practical.

【0013】なお、本発明のように、後ろの群に負のパ
ワーを持たせると、射出瞳位置が浅くなるが、最近のマ
イクロレンズ付きの撮像デバイスを用いた時、それが問
題となることがある。そこで、撮像面の直前に正レンズ
を加えるとよい。こうすると、トータルパワーをほとん
ど変えることなく、射出瞳位置を深くできる。また、負
になりがちなペッツバール和を小さくすることも容易と
なる。この正レンズは要求精度が低くてすむので、安価
なプラスチックレンズで構成するのがよい。
It should be noted that, as in the present invention, when the negative power is given to the rear group, the exit pupil position becomes shallow, but this becomes a problem when a recent image pickup device with a microlens is used. There is. Therefore, it is advisable to add a positive lens immediately before the imaging surface. In this way, the exit pupil position can be deepened without changing the total power. Also, it becomes easy to reduce the Petzval sum that tends to be negative. Since this positive lens requires less accuracy, it is preferable to use an inexpensive plastic lens.

【0014】以上、開口絞りと正の屈折力を有する第3
群を、変倍に際し、物体側に凸状の軌跡に沿って移動す
るようにすることで、従来例に比べ、広画角をカバーし
つつも、高いズーム比を得ることができ、これにより移
動軌跡が急峻となった第4群の動きを緩和するために、
条件(1)を満足する負の屈折力を有する第5群を導入
し、場合によっては、撮像面の直前に正レンズを加える
ことによって、全長が短く、トラッキングの制御性もよ
く、マイクロレンズ付撮像デバイスを用いても問題のな
い射出瞳位置が確保できる高変倍レンズを得ることがで
きる。
As described above, the third aperture having an aperture stop and a positive refracting power.
By moving the group along a locus that is convex toward the object side during zooming, it is possible to obtain a high zoom ratio while covering a wider angle of view than in the conventional example. In order to mitigate the movement of the fourth group, which has a sharp movement trajectory,
By introducing the fifth lens group having a negative refractive power that satisfies the condition (1), and in some cases, by adding a positive lens immediately in front of the imaging surface, the total length is short, the tracking controllability is good, and the micro lens is provided. It is possible to obtain a high-magnification lens that can secure the exit pupil position without any problem even if an imaging device is used.

【0015】さらに、良好な収差性能を維持しつつ、前
玉径のコンパクト化を図るために、以下の条件(2)を
満足するように構成することが望ましい。 (2)0.25<fIII /fI <1.3 ただし、fI は第1群、fIII は第3群の焦点距離であ
る。
Further, in order to keep the diameter of the front lens compact while maintaining good aberration performance, it is desirable that the following condition (2) be satisfied. (2) 0.25 <f III / f I <1.3 where f I is the focal length of the first lens group and f III is the focal length of the third lens group.

【0016】上記条件(2)は、第1群と第3群の焦点
距離の比を規定したものである。この条件の下限を越え
ると、第4群、第5群の合成の焦点距離が短くなるた
め、開口絞りを通過する軸外光束の角度が大きくなりや
すく、前玉径が大きくなってしまい、好ましくない。ま
た、この条件の上限を越えると、コンパクト化と収差補
正の両立が難しくなり、好ましくない。
The condition (2) defines the ratio of the focal lengths of the first lens unit and the third lens unit. When the value goes below the lower limit of this condition, the combined focal length of the fourth lens unit and the fifth lens unit becomes short, so that the angle of the off-axis light flux passing through the aperture stop tends to be large, and the front lens diameter becomes large, which is preferable. Absent. Further, if the upper limit of this condition is exceeded, it becomes difficult to achieve both compactness and aberration correction, which is not preferable.

【0017】また、本発明は、開口絞りよりも物体側に
は必ず正の屈折力を有する第1群と負の屈折力を有する
第2群とが存在するため、この第1群と第2群それぞれ
の屈折力を強くしすぎると、入射瞳位置が深くなりやす
く、そのため前玉径が大きくなってしまう。したがっ
て、上記条件(2)の代わりに、以下の条件(3)を満
足するようにすることによっても前玉径のコンパクト化
が図れる。 (3)0.25<fS /fI <0.9 ただし、広角端での全系の焦点距離をfW 、望遠端での
焦点距離をfT とする時、fS =(fW ・fT 1/2
ある。
Further, according to the present invention, the first group having the positive refracting power and the second group having the negative refracting power always exist on the object side of the aperture stop. Therefore, the first group and the second group are present. If the refracting power of each group is too strong, the entrance pupil position tends to be deep, and therefore the front lens diameter becomes large. Therefore, the front lens diameter can be made compact by satisfying the following condition (3) instead of the above condition (2). (3) 0.25 <f S / f I <0.9 However, when the focal length of the entire system at the wide-angle end is f W and the focal length at the telephoto end is f T , f S = (f W · f T) is 1/2.

【0018】上記条件(3)の上限を越えると、変倍比
を大きくするためには有利であるが、前玉径が大きくな
りやすいため、好ましくない。また、上記条件(3)の
下限を越えると、高変倍比を得るのが難しく、好ましく
ない。
Exceeding the upper limit of the condition (3) is advantageous for increasing the variable power ratio, but is not preferred because the front lens diameter tends to increase. If the lower limit of the condition (3) is exceeded, it is difficult to obtain a high zoom ratio, which is not preferable.

【0019】また、上記条件(3)は、第1群の焦点距
離を規定することによって前玉径のコンパクト化を図っ
ているが、第1群の代わりに、第2群の焦点距離を以下
の条件(4)を満足するように規定することによって
も、同様の効果を奏することができる。 (4)1.2<fS /|fII|<4.0 ただし、fIIは第2群の焦点距離である。
Further, the above condition (3) aims to make the front lens diameter compact by defining the focal length of the first lens unit, but instead of the first lens unit, the focal length of the second lens unit is set as follows. Even if the condition (4) is satisfied, the same effect can be obtained. (4) 1.2 <f S / | f II | <4.0 where f II is the focal length of the second lens unit.

【0020】上記条件(4)の上限を越えると、変倍比
を大きくするためには有利であるが、前玉径が大きくな
りやすいため、好ましくない。また、上記条件(4)の
下限を越えると、高変倍比を得るのが難しく、好ましく
ない。
Exceeding the upper limit of the condition (4) is advantageous for increasing the variable power ratio, but is not preferable because the front lens diameter tends to increase. If the lower limit of the condition (4) is exceeded, it is difficult to obtain a high zoom ratio, which is not preferable.

【0021】なお、上記条件(2)〜(4)は、それぞ
れ単独でも上記効果を有するものであるが、これらの条
件の複数を同時に満足することによって、各群に加わる
負荷が減少するため、収差性能の向上が比較的容易に行
え、設計の自由度も向上する。
The above-mentioned conditions (2) to (4) have the above-mentioned effects independently, but if a plurality of these conditions are simultaneously satisfied, the load applied to each group is reduced. Aberration performance can be improved relatively easily, and design flexibility is also improved.

【0022】また、上記条件(2)〜(4)の規定は、
何れも前玉径の縮小に着目してなされたものであるが、
フォーカシングによる収差変動を抑えるためには、上記
条件(2)〜(4)の代わりに、以下の条件(5)を満
足するようにすることが望ましい。 (5)fS /|fI-III |<0.7 ただし、fI-III は全系の焦点距離がfS 時の第1群か
ら第3群までの合成の焦点距離である。
The above conditions (2) to (4) are defined as follows.
Both were made with a focus on reducing the diameter of the front lens,
In order to suppress aberration variation due to focusing, it is desirable to satisfy the following condition (5) instead of the above conditions (2) to (4). (5) f S / | f I-III | <0.7 where f I-III is the combined focal length of the first group to the third group when the focal length of the entire system is f S.

【0023】上記条件(5)の上限を越えると、焦点調
節時の収差変動が大きくなりすぎ、特に球面収差が悪化
しやすく、好ましくない。
When the value exceeds the upper limit of the condition (5), fluctuations in aberrations during focus adjustment become too large, and particularly spherical aberrations tend to deteriorate, which is not preferable.

【0024】さらに、上記条件(5)を上記条件(2)
〜(4)の少なくとも1つの条件と共に満足させれば、
前玉径の縮小と共にフォーカシングによる収差変動を小
さく抑え、収差性能の良好な光学系が得られる。
Furthermore, the above condition (5) is replaced with the above condition (2).
If at least one of the conditions (4) is satisfied,
Along with the reduction of the front lens diameter, the fluctuation of aberration due to focusing is suppressed to be small, and an optical system with good aberration performance can be obtained.

【0025】なお、各群の構成としては、物体側から順
に、第1群は、物体側に凸面を向けた負メニスカスレン
ズ、正レンズ、正レンズ、第2群は、像側に強い凹面を
向けた負レンズ、両凹レンズ、正レンズ、第3群は、非
球面を含む正レンズ、第4群は、両凸レンズと負メニス
カスレンズの接合、あるいは、分離されたダブレット、
第5群は、曲率の強い面同士を向かい合わせた正レンズ
と負レンズ、そして、必要に応じ、撮像面の直前に正レ
ンズを1枚加えた形とするのがよい。その場合、以下の
条件を満足するように構成するのが望ましい。 (6)0.25<n6 −n5 <0.4 (7)0.15<n4 −n5 <0.4 ただし、n4 、n5 、n6 はそれぞれ第2群の負レン
ズ、両凹レンズ、正レンズの屈折率である。
As for the construction of each group, in order from the object side, the first group has a negative meniscus lens having a convex surface facing the object side, the positive lens, the positive lens, and the second group has a strong concave surface on the image side. Negative lens, a biconcave lens, a positive lens, a third group is a positive lens including an aspherical surface, and a fourth group is a cemented doublet lens and a negative meniscus lens, or a separated doublet,
It is preferable that the fifth lens unit has a positive lens and a negative lens in which surfaces having strong curvatures face each other, and if necessary, one positive lens is added immediately before the imaging surface. In that case, it is desirable to configure so as to satisfy the following conditions. (6) 0.25 <n 6 −n 5 <0.4 (7) 0.15 <n 4 −n 5 <0.4 where n 4 , n 5 and n 6 are negative lenses of the second group, respectively. , Refractive index of biconcave lens, positive lens.

【0026】条件(6)は、第2群の両凹レンズと正レ
ンズの屈折率差を規定したものである。変倍比が大きく
なるに従い、第2群の移動による収差変動を十分小さく
抑える必要がある。この2つのレンズによる空気レンズ
もしくは接合面が、そのための重要な役割を果している
が、逆に、高次収差も発生させる要因ともなっている。
したがって、両レンズの屈折率差を十分に大きくとるこ
とによって、前記空気レンズもしくは接合面の曲率半径
を大きくし、高次収差の発生を緩和することができる。
この条件(6)の下限を越えると、変倍時の高次収差の
変動が大きくなりやすい。一方、その上限を越えると、
現実の硝材では構成し難い問題がある。条件(7)は、
前記両凹レンズが必然的に低屈折率となり、弱まる第2
群の負のパワーを補う意味で、第2群の像面に強い凹面
を向けた負レンズの屈折率を十分に高くとることを意味
する条件である。この条件の下限を越えると、第2群の
負のパワーが不足し、十分な変倍比の確保がし難くなる
か、又は、ペッツバール和が負の大きな値になりやす
い。その上限を越えると、現実の硝材では構成し難い。
The condition (6) defines the difference in refractive index between the biconcave lens and the positive lens of the second lens group. As the zoom ratio increases, it is necessary to suppress the aberration variation due to the movement of the second lens unit to be sufficiently small. The air lens or the cemented surface formed by these two lenses plays an important role for that purpose, but on the contrary, it also causes high-order aberrations.
Therefore, by making the difference in refractive index between both lenses sufficiently large, the radius of curvature of the air lens or the cemented surface can be increased, and the occurrence of higher-order aberrations can be mitigated.
When the value goes below the lower limit of the condition (6), fluctuations of higher-order aberrations during zooming tend to increase. On the other hand, if the upper limit is exceeded,
There is a problem that it is difficult to construct with real glass materials. Condition (7) is
The biconcave lens inevitably has a low refractive index and weakens
In order to compensate for the negative power of the group, it is a condition that means that the refractive index of the negative lens having a strong concave surface facing the image surface of the second group is sufficiently high. If the lower limit of this condition is exceeded, the negative power of the second lens group becomes insufficient, and it becomes difficult to secure a sufficient variable power ratio, or the Petzval sum tends to have a large negative value. If the upper limit is exceeded, it will be difficult to construct with a real glass material.

【0027】[0027]

【実施例】次に、本発明の高変倍レンズの実施例1〜1
1について説明する。各実施例のレンズデータは後に示
すが、実施例1〜11の広角端におけるレンズ断面をそ
れぞれ図1〜図11に示す。各図中、各群の移動軌跡を
示す実線は、無限遠撮影時における広角端から望遠端ま
でのズーム時の移動軌跡を示しており、点線の軌跡は、
物体距離1mの近接撮影時における広角端から望遠端ま
でのズーム時の第4群G4の移動軌跡を示している。ま
た、本発明の高変倍レンズは、第4群G4の移動によっ
て物点位置変化によるピント移動の補正を行っている
が、各図の実線から点線へ向かうフォーカシングによっ
てこのピント移動の補正を行っている。
EXAMPLES Examples 1 to 1 of the high variable power lens of the present invention will now be described.
1 will be described. Although the lens data of each example will be shown later, FIGS. 1 to 11 show lens cross sections of Examples 1 to 11 at the wide-angle end, respectively. In each figure, the solid line indicating the movement locus of each group indicates the movement locus during zooming from the wide-angle end to the telephoto end when shooting at infinity, and the dotted line locus is
The movement locus of the fourth group G4 during zooming from the wide-angle end to the telephoto end during close-up photography with an object distance of 1 m is shown. Further, the high variable power lens of the present invention corrects the focus movement due to the change of the object point position by the movement of the fourth group G4, but the focus movement is corrected by the focusing from the solid line to the dotted line in each figure. ing.

【0028】まず、各実施例の各群の構成について説明
する。第1群G1と第2群G2の構成は何れの実施例の
同様であり、第1群G1は、物体側に凸面を向けた負メ
ニスカスレンズと物体側に凸面を向けた正メニスカスレ
ンズとの接合レンズと、物体側に凸面を向けた正メニス
カスレンズの計3枚からなり、第2群G2は、物体側に
凸面を向けた負メニスカスレンズと、両凹レンズと物体
側に凸面を向けた正メニスカスレンズとの接合レンズの
計3枚からなる。
First, the structure of each group in each embodiment will be described. The configurations of the first group G1 and the second group G2 are the same as in any of the embodiments, and the first group G1 includes a negative meniscus lens having a convex surface facing the object side and a positive meniscus lens having a convex surface facing the object side. The second lens group G2 includes a cemented lens and a positive meniscus lens having a convex surface directed toward the object side. The second lens group G2 includes a negative meniscus lens having a convex surface directed toward the object side, a biconcave lens, and a positive lens having a convex surface directed toward the object side. It consists of a total of 3 cemented lenses with a meniscus lens.

【0029】第3群G3から第5群の構成については、
実施例1の場合、第3群G3は、開口絞りを前側に一体
に有し、両凸レンズ1枚からなり、第4群G4は、物体
側に凸面を向けた負メニスカスレンズと両凸レンズの接
合レンズの計2枚からなり、第5群G5は、物体側に凸
面を向けた負メニスカスレンズと、物体側に凸面を向け
た正メニスカスレンズの計2枚からなる。したがって、
この実施例は全体で11枚のレンズからなる。なお、無
限遠撮影時には、第3群G3と第4群G4は一体に同じ
軌跡に沿って移動する。非球面は、第3群G3の両凸レ
ンズの前面、第4群G4の最終面、及び、第5群G5の
正メニスカスレンズの前面の計3面に用いている。
Regarding the constitution of the third group G3 to the fifth group,
In the case of the first embodiment, the third group G3 integrally has an aperture stop on the front side and is composed of one biconvex lens, and the fourth group G4 is a cemented lens of a negative meniscus lens having a convex surface facing the object side and a biconvex lens. The fifth lens group G5 includes a total of two lenses, and includes a negative meniscus lens having a convex surface directed toward the object side and a positive meniscus lens having a convex surface directed toward the object side. Therefore,
This embodiment consists of 11 lenses in total. Note that during infinity shooting, the third group G3 and the fourth group G4 move integrally along the same locus. The aspherical surfaces are used on the front surface of the biconvex lens of the third group G3, the final surface of the fourth group G4, and the front surface of the positive meniscus lens of the fifth group G5, a total of three surfaces.

【0030】実施例2においては、第3群G3は、開口
絞りを前側に一体に有し、両凸レンズ1枚からなり、第
4群G4は、物体側に凸面を向けた負メニスカスレンズ
と両凸レンズの接合レンズの計2枚からなり、第5群G
5は、物体側に凸面を向けた負メニスカスレンズと、物
体側に凸面を向けた正メニスカスレンズと、撮像面の直
前に配置された両凸レンズの計3枚からなる。したがっ
て、この実施例は全体で12枚のレンズからなる。な
お、無限遠撮影時には、第3群G3と第4群G4は一体
に同じ軌跡に沿って移動する。非球面は、第3群G3の
両凸レンズの前面、第4群G4の最終面、及び、第5群
G5の正メニスカスレンズの前面、両凸レンズの前面の
計4面に用いている。
In the second embodiment, the third lens group G3 integrally includes an aperture stop on the front side and is composed of one biconvex lens, and the fourth lens group G4 includes a negative meniscus lens having a convex surface directed toward the object side. Consists of a total of two cemented lenses of convex lens, 5th group G
Reference numeral 5 includes a negative meniscus lens having a convex surface directed toward the object side, a positive meniscus lens having a convex surface directed toward the object side, and a biconvex lens arranged immediately in front of the imaging surface. Therefore, this embodiment consists of 12 lenses in total. Note that during infinity shooting, the third group G3 and the fourth group G4 move integrally along the same locus. The aspherical surfaces are used for the front surface of the biconvex lens of the third group G3, the final surface of the fourth group G4, the front surface of the positive meniscus lens of the fifth group G5, and the front surface of the biconvex lens, for a total of four surfaces.

【0031】実施例3においては、第3群G3は、開口
絞りを前側に一体に有し、両凸レンズ1枚からなり、第
4群G4は、物体側に凸面を向けた負メニスカスレンズ
と両凸レンズの接合レンズの計2枚からなり、第5群G
5は、物体側に凸面を向けた負メニスカスレンズと、物
体側に凸面を向けた正メニスカスレンズと、撮像面の直
前に配置された物体側に凸面を向けた正メニスカスレン
ズの計3枚からなる。したがって、この実施例は全体で
12枚のレンズからなる。非球面は、第3群G3の両凸
レンズの前面、第4群G4の最終面、及び、第5群G5
の両正メニスカスレンズの前面の計4面に用いている。
In the third embodiment, the third lens group G3 integrally has an aperture stop on the front side and is composed of one biconvex lens, and the fourth lens group G4 includes a negative meniscus lens having a convex surface directed toward the object side. Consists of a total of two cemented lenses of convex lens, 5th group G
5 includes a negative meniscus lens having a convex surface directed toward the object side, a positive meniscus lens having a convex surface directed toward the object side, and a positive meniscus lens having a convex surface directed toward the object side, which is disposed immediately before the image pickup surface. Become. Therefore, this embodiment consists of 12 lenses in total. The aspherical surface is the front surface of the biconvex lens of the third group G3, the final surface of the fourth group G4, and the fifth group G5.
It is used on a total of 4 surfaces in front of the bi-positive meniscus lens.

【0032】実施例4においては、第3群G3は、開口
絞りを前側に一体に有し、両凸レンズ1枚からなり、第
4群G4は、物体側に凸面を向けた負メニスカスレンズ
と両凸レンズの接合レンズの計2枚からなり、第5群G
5は、物体側に凸面を向けた負メニスカスレンズと、物
体側に凸面を向けた正メニスカスレンズと、撮像面の直
前に配置された物体側に凸面を向けた正メニスカスレン
ズの計3枚からなる。したがって、この実施例は全体で
12枚のレンズからなる。非球面は、第2群G2の最終
面、第3群G3の両凸レンズの前面、第4群G4の最終
面、及び、第5群G5の両正メニスカスレンズの前面の
計5面に用いている。
In the fourth embodiment, the third lens group G3 integrally has an aperture stop on the front side and is composed of one biconvex lens, and the fourth lens group G4 includes a negative meniscus lens having a convex surface directed toward the object side. Consists of a total of two cemented lenses of convex lens, 5th group G
5 includes a negative meniscus lens having a convex surface directed toward the object side, a positive meniscus lens having a convex surface directed toward the object side, and a positive meniscus lens having a convex surface directed toward the object side, which is disposed immediately before the image pickup surface. Become. Therefore, this embodiment consists of 12 lenses in total. The aspherical surfaces are used for the final surface of the second group G2, the front surface of the biconvex lens of the third group G3, the final surface of the fourth group G4, and the front surface of the bipositive meniscus lens of the fifth group G5, for a total of five surfaces. There is.

【0033】実施例5においては、第3群G3は、開口
絞りを前側に一体に有し、両凸レンズ1枚からなり、第
4群G4は、両凸レンズと像側に凸面を向けた負メニス
カスレンズの接合レンズの計2枚からなり、第5群G5
は、物体側に凸面を向けた負メニスカスレンズと、物体
側に凸面を向けた正メニスカスレンズと、撮像面の直前
に配置された物体側に凸面を向けた正メニスカスレンズ
の計3枚からなる。したがって、この実施例は全体で1
2枚のレンズからなる。非球面は、第2群G2の最終
面、第3群G3の両凸レンズの前面、第4群G4の第1
面、及び、第5群G5の両正メニスカスレンズの前面の
計5面に用いている。
In the fifth embodiment, the third lens group G3 integrally has an aperture stop on the front side and is composed of one biconvex lens, and the fourth lens group G4 is a negative meniscus lens having a biconvex lens and a convex surface directed toward the image side. Consists of a total of two cemented lenses, the fifth group G5
Consists of a negative meniscus lens having a convex surface facing the object side, a positive meniscus lens having a convex surface facing the object side, and a positive meniscus lens having a convex surface facing the object side, which is arranged immediately before the imaging surface. . Therefore, this embodiment has a total of 1
It consists of two lenses. The aspherical surface is the last surface of the second group G2, the front surface of the biconvex lens of the third group G3, the first surface of the fourth group G4.
It is used for a total of five surfaces, and the front surface of the double positive meniscus lens of the fifth group G5.

【0034】実施例6においては、第3群G3は、開口
絞りを前側に一体に有し、両凸レンズ1枚からなり、第
4群G4は、物体側に凸面を向けた負メニスカスレンズ
と両凸レンズの接合レンズの計2枚からなり、第5群G
5は、物体側に凸面を向けた負メニスカスレンズと、撮
像面の直前に配置された物体側に凸面を向けた正メニス
カスレンズの計2枚からなる。したがって、この実施例
は全体で11枚のレンズからなる。非球面は、第2群G
2の最終面、第3群G3の両凸レンズの前面、第4群G
4の最終面、及び、第5群G5の負メニスカスレンズの
後面、正メニスカスレンズの前面の計5面に用いてい
る。
In the sixth embodiment, the third group G3 has an aperture stop integrally on the front side and is composed of one biconvex lens, and the fourth group G4 is a negative meniscus lens having a convex surface directed toward the object side. Consists of a total of two cemented lenses of convex lens, 5th group G
Reference numeral 5 includes a negative meniscus lens having a convex surface directed toward the object side and a positive meniscus lens having a convex surface directed toward the object side, which is disposed immediately before the imaging surface. Therefore, this embodiment consists of a total of 11 lenses. The aspherical surface is the second group G
2, the last surface, the front surface of the biconvex lens in the third group G3, the fourth group G
4 is used as the final surface, the rear surface of the negative meniscus lens of the fifth group G5, and the front surface of the positive meniscus lens as a total of 5 surfaces.

【0035】実施例7においては、第3群G3は、開口
絞りを前側に一体に有し、両凸レンズと、物体側に凸面
を向けた負メニスカスレンズの2枚からなり、第4群G
4は、両凸レンズと像側に凸面を向けた負メニスカスレ
ンズの接合レンズの計2枚からなり、第5群G5は、物
体側に凸面を向けた負メニスカスレンズと、撮像面の直
前に配置された物体側に凸面を向けた正メニスカスレン
ズの計2枚からなる。したがって、この実施例は全体で
12枚のレンズからなる。非球面は、第2群G2の最終
面、第3群G3の両凸レンズの前面、第4群G4の第1
面、及び、第5群G5の負メニスカスレンズの後面、正
メニスカスレンズの前面の計5面に用いている。
In the seventh embodiment, the third lens group G3 integrally has an aperture stop on the front side, and comprises a biconvex lens and a negative meniscus lens having a convex surface facing the object side.
The fourth lens unit G5 includes a cemented lens including a biconvex lens and a negative meniscus lens having a convex surface directed toward the image side. The fifth group G5 includes a negative meniscus lens having a convex surface directed toward the object side and a lens immediately before the imaging surface. It consists of a total of two positive meniscus lenses with the convex surface facing the object side. Therefore, this embodiment consists of 12 lenses in total. The aspherical surface is the last surface of the second group G2, the front surface of the biconvex lens of the third group G3, the first surface of the fourth group G4.
It is used for a total of five surfaces, the rear surface of the negative meniscus lens of the fifth group G5 and the front surface of the positive meniscus lens.

【0036】実施例8においては、第3群G3は、開口
絞りを前側に一体に有し、両凸レンズと、両凸レンズ
と、物体側に凸面を向けた負メニスカスレンズの3枚か
らなり、第4群G4は、両凸レンズ1枚からなり、第5
群G5は、物体側に凸面を向けた負メニスカスレンズ
と、撮像面の直前に配置された物体側に凸面を向けた正
メニスカスレンズの計2枚からなる。したがって、この
実施例は全体で12枚のレンズからなる。非球面は、第
2群G2の最終面、第3群G3の第1の両凸レンズの前
面、第4群G4の両凸レンズの前面、及び、第5群G5
の負メニスカスレンズの後面、正メニスカスレンズの前
面の計5面に用いている。
In the eighth embodiment, the third lens unit G3 integrally has an aperture stop on the front side, and comprises a biconvex lens, a biconvex lens, and a negative meniscus lens having a convex surface directed toward the object side. The fourth lens group G4 includes one biconvex lens, and includes a fifth lens.
The group G5 is composed of a negative meniscus lens having a convex surface directed toward the object side and a positive meniscus lens having a convex surface directed toward the object side, which is arranged immediately in front of the imaging surface. Therefore, this embodiment consists of 12 lenses in total. The aspherical surface is the final surface of the second group G2, the front surface of the first biconvex lens of the third group G3, the front surface of the biconvex lens of the fourth group G4, and the fifth group G5.
The negative meniscus lens is used for the rear surface and the positive meniscus lens is used for the front surface in total of 5 surfaces.

【0037】実施例9においては、開口絞りは第3群G
3の前側に配置されているが、図示のように、変倍時に
第2群G2、第3群G3と異なる軌跡に沿って移動す
る。第3群G3は、両凸レンズ1枚からなり、第4群G
4は、物体側に凸面を向けた負メニスカスレンズと両凸
レンズの接合レンズの計2枚からなり、第5群G5は、
物体側に凸面を向けた負メニスカスレンズと、撮像面の
直前に配置された物体側に凸面を向けた正メニスカスレ
ンズの計2枚からなる。したがって、この実施例は全体
で11枚のレンズからなる。非球面は、第2群G2の最
終面、第3群G3の両凸レンズの前面、第4群G4の最
終面、及び、第5群G5の負メニスカスレンズの後面、
正メニスカスレンズの前面の計5面に用いている。
In the ninth embodiment, the aperture stop is the third group G.
Although it is arranged on the front side of the third lens group 3, it moves along a locus different from that of the second lens group G2 and the third lens group G3 during zooming, as illustrated. The third group G3 includes one biconvex lens, and the fourth group G3
The fourth lens group G5 includes a negative meniscus lens having a convex surface directed toward the object side and a cemented lens having a biconvex lens.
The negative meniscus lens has a convex surface directed toward the object side, and the positive meniscus lens having a convex surface directed toward the object side is arranged immediately in front of the imaging surface. Therefore, this embodiment consists of a total of 11 lenses. The aspherical surface is the final surface of the second group G2, the front surface of the biconvex lens of the third group G3, the final surface of the fourth group G4, and the rear surface of the negative meniscus lens of the fifth group G5.
It is used for a total of 5 front faces of the positive meniscus lens.

【0038】実施例10においては、第3群G3は、両
凸レンズ、一体に配置された開口絞り、物体側に凸面を
向けた正メニスカスレンズ、両凹レンズの計3枚からな
り、第4群G4は、両凸レンズ1枚からなり、第5群G
5は、物体側に凸面を向けた負メニスカスレンズと、撮
像面の直前に配置された物体側に凸面を向けた正メニス
カスレンズの計2枚からなる。したがって、この実施例
は全体で12枚のレンズからなる。非球面は、第2群G
2の最終面、第3群G3の両凸レンズの前面、第4群G
4の両凸レンズの前面、及び、第5群G5の負メニスカ
スレンズの後面、正メニスカスレンズの前面の計5面に
用いている。
In the tenth embodiment, the third group G3 is composed of a biconvex lens, an aperture stop integrally arranged, a positive meniscus lens having a convex surface directed toward the object side, and a biconcave lens. Is composed of one biconvex lens, and is in the fifth group G
Reference numeral 5 includes a negative meniscus lens having a convex surface directed toward the object side and a positive meniscus lens having a convex surface directed toward the object side, which is disposed immediately before the imaging surface. Therefore, this embodiment consists of 12 lenses in total. The aspherical surface is the second group G
2, the last surface, the front surface of the biconvex lens in the third group G3, the fourth group G
The front surface of the biconvex lens of No. 4, the rear surface of the negative meniscus lens of the fifth group G5, and the front surface of the positive meniscus lens are used for a total of five surfaces.

【0039】実施例11においては、第3群G3は、両
凸レンズと、その後側に一体に配置された開口絞りから
なり、第4群G4は、物体側に凸面を向けた負メニスカ
スレンズと両凸レンズの接合レンズの計2枚からなり、
第5群G5は、物体側に凸面を向けた負メニスカスレン
ズと、物体側に凸面を向けた正メニスカスレンズと、撮
像面の直前に配置された物体側に凸面を向けた正メニス
カスレンズの計3枚からなる。したがって、この実施例
は全体で12枚のレンズからなる。非球面は、第2群G
2の最終面、第3群G3の両凸レンズの前面、第4群G
4の最終面、及び、第5群G5の両正メニスカスレンズ
の前面の計5面に用いている。
In the eleventh embodiment, the third group G3 is composed of a biconvex lens and an aperture stop integrally arranged on the rear side thereof, and the fourth group G4 is composed of a negative meniscus lens having a convex surface directed toward the object side and a biconvex lens. Consists of a total of 2 cemented lenses made up of convex lenses,
The fifth group G5 includes a negative meniscus lens having a convex surface directed toward the object side, a positive meniscus lens having a convex surface directed toward the object side, and a positive meniscus lens having a convex surface directed toward the object side, which is disposed immediately before the imaging surface. It consists of 3 sheets. Therefore, this embodiment consists of 12 lenses in total. The aspherical surface is the second group G
2, the last surface, the front surface of the biconvex lens in the third group G3, the fourth group G
The final surface of No. 4 and the front surface of the bi-positive meniscus lens of the fifth group G5 are used in total of five surfaces.

【0040】各実施例の第5群G5の前後、及び、その
中に配置された平行平面板は、フィルター等の光学部材
を示す。
The front and rear surfaces of the fifth group G5 of each embodiment and the plane-parallel plates arranged therein represent optical members such as filters.

【0041】なお、以下において、記号は、上記の外、
fは全系の焦点距離、FNOはFナンバー、ωは半画角、
1 、r2 …は各レンズ面の曲率半径、d1 、d2 …は
各レンズ面間の間隔、nd1、nd2…は各レンズのd線の
屈折率、νd1、νd2…は各レンズのアッベ数であり、ま
た、非球面形状は、光軸方向をx、光軸に直交する方向
をyとした時、次の式で表される。 x=(y2/r)/[1+{1-P( y2/r2)}1/2 ] +A44 +A66 +A88 + A1010 ただし、rは近軸曲率半径、Pは円錐係数、A4、A6
A8、A10 は非球面係数である。
In the following, the symbols are those other than the above,
f is the focal length of the entire system, F NO is the F number, ω is the half angle of view,
r 1 , r 2 ... Radius of curvature of each lens surface, d 1 , d 2 ... Distance between each lens surface, n d1 , n d2 ..., Refractive index of d-line of each lens, v d1 , v d2 . Is the Abbe number of each lens, and the aspherical shape is expressed by the following equation, where x is the optical axis direction and y is the direction orthogonal to the optical axis. x = (y 2 / r) / [1+ {1-P (y 2 / r 2)} 1/2] + A 4 y 4 + A 6 y 6 + A 8 y 8 + A 10 y 10 where, r is near Axial radius of curvature, P is the conic coefficient, A 4 , A 6 ,
A 8 and A 10 are aspherical coefficients.

【0042】実施例1 f = 5.15 〜 17.58 〜 60.00 FNO= 1.85 〜 2.06 〜 2.01 ω = 31.5 °〜 10.2 ° 3.0 ° r1 = 41.2268 d1 = 1.1000 nd1 =1.84666 νd1 =23.78 r2 = 25.4265 d2 = 6.0000 nd2 =1.56873 νd2 =63.16 r3 = 166.2931 d3 = 0.1500 r4 = 32.0995 d4 = 3.4000 nd3 =1.66672 νd3 =48.32 r5 = 143.3074 d5 = (可変) r6 = 132.6620 d6 = 0.9000 nd4 =1.85026 νd4 =32.28 r7 = 7.5882 d7 = 3.8000 r8 = -32.2691 d8 = 0.8000 nd5 =1.48749 νd5 =70.20 r9 = 9.0937 d9 = 3.0000 nd6 =1.84666 νd6 =23.78 r10= 32.7182 d10= (可変) r11= ∞(絞り) d11= 1.5000 r12= 11.7702(非球面) d12= 2.7000 nd7 =1.58913 νd7 =61.18 r13= -139.5648 d13= 3.3000 r14= 10.5081 d14= 0.8000 nd8 =1.84666 νd8 =23.78 r15= 6.5810 d15= 4.0000 nd9 =1.58913 νd9 =61.18 r16= -17.1548(非球面) d16= (可変) r17= 166.1652 d17= 0.8000 nd10=1.80610 νd10=40.95 r18= 7.7713 d18= 0.4000 r19= 14.8726(非球面) d19= 2.0000 nd11=1.58913 νd11=61.18 r20= 43.8112 d20= 1.0000 r21= ∞ d21= 6.3000 nd12=1.54771 νd12=62.83 r22= ∞ d22= 1.2100 r23= ∞ d23= 0.6000 nd13=1.48749 νd13=70.20 r24= ∞ 非球面係数 第12面 P = 1 A4 =-0.84987×10-4 A6 =-0.20058×10-5 A8 = 0.14067×10-6 A10=-0.30366×10-8 第16面 P = 1 A4 = 0.42220×10-3 A6 =-0.13230×10-5 A8 =-0.52250×10-7 A10=-0.54602×10-8 第19面 P = 1 A4 =-0.45934×10-4 A6 = 0.20354×10-4 A8 =-0.50297×10-6 A10=-0.12090×10-6 β5 =1.616 fIII /fI =0.409 fS /fI =0.388 fS /|fII|=1.922 fS /fI-III =0.459 n6 −n5 =0.359 n4 −n5 =0.363
Example 1 f = 5.15 ~ 17.58 ~ 60.00 F NO = 1.85 ~ 2.06 ~ 2.01 ω = 31.5 ° ~ 10.2 ° 3.0 ° r 1 = 41.2268 d 1 = 1.1000 n d1 = 1.84666 ν d1 = 23.78 r 2 = 25.4265 d 2 = 6.0000 n d2 = 1.56873 ν d2 = 63.16 r 3 = 166.2931 d 3 = 0.1500 r 4 = 32.0995 d 4 = 3.4000 n d3 = 1.66672 ν d3 = 48.32 r 5 = 143.3074 d 5 = ( variable) r 6 = 132.6620 d 6 = 0.9000 n d4 = 1.85026 ν d4 = 32.28 r 7 = 7.5882 d 7 = 3.8000 r 8 = -32.2691 d 8 = 0.8000 n d5 = 1.48749 ν d5 = 70.20 r 9 = 9.0937 d 9 = 3.0000 n d6 = 1.84666 ν d6 = 23.78 r 10 = 32.7182 d 10 = (variable) r 11 = ∞ (aperture) d 11 = 1.5000 r 12 = 11.7702 (aspherical surface) d 12 = 2.7000 n d7 = 1.58913 ν d7 = 61.18 r 13 = -139.5648 d 13 = 3.3000 r 14 = 10.5081 d 14 = 0.8000 n d8 = 1.84666 ν d8 = 23.78 r 15 = 6.5810 d 15 = 4.0000 n d9 = 1.58913 ν d9 = 61.18 r 16 = -17.1548 (aspherical surface) d 16 = (variable) r 17 = 166.1652 d 17 = 0.8000 n d10 = 1.80610 ν d10 = 40.95 r 18 = 7.7713 d 18 = 0.4000 r 19 = 14.8726 (aspherical surface) d 19 = 2.0000 n d11 = 1.58913 ν d11 = 61.18 r 20 = 43.8112 d 20 = 1.0000 r 21 = ∞ d 21 = 6.3000 n d12 = 1.54771 ν d12 = 62.83 r 22 = ∞ d 22 = 1.2100 r 23 = ∞ d 23 = 0.6000 n d13 = 1.48749 ν d13 = 70.20 r 24 = ∞ Aspheric coefficient 12th surface P = 1 A 4 = -0.84987 × 10 -4 A 6 = -0.20058 × 10 -5 A 8 = 0.14067 × 10 -6 A 10 = -0.30366 × 10 -8 16th surface P = 1 A 4 = 0.42220 × 10 -3 A 6 = -0.13230 × 10 -5 A 8 = -0.52250 × 10 -7 A 10 = -0.54602 × 10 -8 19th surface P = 1 A 4 = -0.45934 × 10 -4 A 6 = 0.20354 × 10 -4 A 8 = -0.50297 × 10 -6 A 10 = -0.120 90 × 10 -6 β 5 = 1.616 f III / f I = 0.409 f S / f I = 0.388 f S / | f II │ = 1.922 f S / f I-III = 0.459 n 6 -n 5 = 0.359 n 4 -n 5 = 0.363
.

【0043】実施例2 f = 5.15 〜 17.58 〜 60.00 FNO= 1.85 〜 2.09 〜 2.04 ω = 31.5 °〜 10.2 ° 3.0 ° r1 = 41.5179 d1 = 1.1000 nd1 =1.84666 νd1 =23.78 r2 = 25.2499 d2 = 6.0000 nd2 =1.56873 νd2 =63.16 r3 = 165.9358 d3 = 0.1500 r4 = 32.6393 d4 = 3.4000 nd3 =1.66672 νd3 =48.32 r5 = 168.1081 d5 = (可変) r6 = 173.3201 d6 = 0.9000 nd4 =1.83400 νd4 =37.16 r7 = 7.8302 d7 = 3.8000 r8 = -29.8723 d8 = 0.8000 nd5 =1.48749 νd5 =70.20 r9 = 9.3391 d9 = 3.0000 nd6 =1.84666 νd6 =23.78 r10= 31.2051 d10= (可変) r11= ∞(絞り) d11= 1.5000 r12= 12.8162(非球面) d12= 2.4000 nd7 =1.58913 νd7 =61.18 r13= -416.9902 d13= 3.3000 r14= 10.6561 d14= 0.8000 nd8 =1.84666 νd8 =23.78 r15= 6.6821 d15= 4.2000 nd9 =1.58913 νd9 =61.18 r16= -16.9807(非球面) d16= (可変) r17= 197.8083 d17= 0.8000 nd10=1.80610 νd10=40.95 r18= 7.9701 d18= 0.4000 r19= 13.8850(非球面) d19= 1.8000 nd11=1.58913 νd11=61.18 r20= 53.8060 d20= 1.0000 r21= ∞ d21= 6.3000 nd12=1.54771 νd12=62.83 r22= ∞ d22= 0.4000 r23= 30.9673(非球面) d23= 1.9000 nd13=1.49241 νd13=57.66 r24= -33.5176 d24= 1.2100 r25= ∞ d25= 0.6000 nd14=1.48749 νd14=70.20 r26= ∞ 非球面係数 第12面 P = 1 A4 =-0.67246×10-4 A6 =-0.22699×10-5 A8 = 0.15482×10-6 A10=-0.31594×10-8 第16面 P = 1 A4 = 0.33631×10-3 A6 =-0.17566×10-5 A8 = 0.15173×10-7 A10=-0.27686×10-8 第19面 P = 1 A4 =-0.58468×10-4 A6 = 0.18208×10-4 A8 =-0.19845×10-5 A10= 0.82199×10-7 第23面 P =16.7315 A4 = 0.94606×10-4 A6 = 0.12180×10-4 A8 =-0.96495×10-6 A10= 0 β5 =1.543 fIII /fI =0.468 fS /fI =0.389 fS /|fII|=1.944 fS /fI-III =0.325 n6 −n5 =0.359 n4 −n5 =0.347
[0043] Example 2 f = 5.15 ~ 17.58 ~ 60.00 F NO = 1.85 ~ 2.09 ~ 2.04 ω = 31.5 ° ~ 10.2 ° 3.0 ° r 1 = 41.5179 d 1 = 1.1000 n d1 = 1.84666 ν d1 = 23.78 r 2 = 25.2499 d 2 = 6.0000 n d2 = 1.56873 ν d2 = 63.16 r 3 = 165.9358 d 3 = 0.1500 r 4 = 32.6393 d 4 = 3.4000 n d3 = 1.66672 ν d3 = 48.32 r 5 = 168.1081 d 5 = ( variable) r 6 = 173.3201 d 6 = 0.9000 n d4 = 1.83400 ν d4 = 37.16 r 7 = 7.8302 d 7 = 3.8000 r 8 = -29.8723 d 8 = 0.8000 n d5 = 1.48749 ν d5 = 70.20 r 9 = 9.3391 d 9 = 3.0000 n d6 = 1.84666 ν d6 = 23.78 r 10 = 31.2051 d 10 = (variable) r 11 = ∞ (aperture) d 11 = 1.5000 r 12 = 12.8162 (aspherical surface) d 12 = 2.4000 n d7 = 1.58913 ν d7 = 61.18 r 13 = -416.9902 d 13 = 3.3000 r 14 = 10.6561 d 14 = 0.8000 n d8 = 1.84666 ν d8 = 23.78 r 15 = 6.6821 d 15 = 4.2000 nd 9 = 1.58913 ν d9 = 61.18 r 16 = -16.9807 (aspherical surface) d 16 = (variable) r 17 = 197.8083 d 17 = 0.8000 n d10 = 1.80610 ν d10 = 40.95 r 18 = 7.9701 d 18 = 0.4000 r 19 = 13.8850 (aspherical surface) d 19 = 1.8000 n d11 = 1.58913 ν d11 = 61.18 r 20 = 53.8060 d 20 = 1.0000 r 21 = ∞ d 21 = 6.3000 n d12 = 1.54771 ν d12 = 62.83 r 22 = ∞ d 22 = 0.4000 r 23 = 30.9673 (aspherical surface) d 23 = 1.9000 n d13 = 1.49241 ν d13 = 57.66 r 24 = -33.5176 d 24 = 1.2100 r 25 = ∞ d 25 = 0.6000 n d14 = 1.48749 ν d14 = 70.20 r 26 = ∞ Aspheric coefficient 12th surface P = 1 A 4 = -0.67246 × 10 -4 A 6 = -0.22699 × 10 -5 A 8 = 0.15482 × 10 -6 A 10 = -0.31594 × 10 -8 16th surface P = 1 A 4 = 0.33631 × 10 -3 A 6 = -0.17566 × 10 -5 A 8 = 0.15173 × 10 -7 A 10 = -0.27686 × 10 -8 Surface 19 P = 1 A 4 = -0.58468 × 10 -4 A 6 = 0.18208 × 10 -4 A 8 = -0.19845 × 10 -5 A 10 = 0.82199 × 10 -7 23rd surface P = 16.7315 A 4 = 0.94606 × 10 -4 A 6 = 0.12180 × 10 -4 A 8 =- 0.96495 × 10 -6 A 10 = 0 β 5 = 1.543 f III / f I = 0.468 f S / f I = 0.389 f S / | f II | = 1.944 f S / f I-III = 0.325 n 6 −n 5 = 0.359 n 4 -n 5 = 0.347
.

【0044】実施例3 f = 5.15 〜 17.58 〜 60.00 FNO= 1.86 〜 2.18 〜 2.15 ω = 31.5 °〜 10.2 ° 3.0 ° r1 = 48.6449 d1 = 1.1000 nd1 =1.84666 νd1 =23.78 r2 = 26.5764 d2 = 5.1000 nd2 =1.56873 νd2 =63.16 r3 = 1433.1905 d3 = 0.1500 r4 = 27.5358 d4 = 3.7000 nd3 =1.66672 νd3 =48.32 r5 = 109.7352 d5 = (可変) r6 = 110.4877 d6 = 0.9000 nd4 =1.83400 νd4 =37.16 r7 = 6.9198 d7 = 3.5000 r8 = -14.1237 d8 = 0.8000 nd5 =1.48749 νd5 =70.20 r9 = 9.3009 d9 = 2.6000 nd6 =1.84666 νd6 =23.78 r10= 40.7111 d10= (可変) r11= ∞(絞り) d11= 1.5000 r12= 23.6424(非球面) d12= 2.1000 nd7 =1.58913 νd7 =61.18 r13= -65.2226 d13= (可変) r14= 11.2463 d14= 0.8000 nd8 =1.84666 νd8 =23.78 r15= 7.3097 d15= 4.5000 nd9 =1.58913 νd9 =61.18 r16= -19.8581(非球面) d16= (可変) r17= 31.1671 d17= 0.8000 nd10=1.83400 νd10=37.16 r18= 8.3648 d18= 1.0000 r19= 10.0709(非球面) d19= 2.1000 nd11=1.58913 νd11=61.18 r20= 36.7454 d20= 2.2357 r21= ∞ d21= 6.3000 nd12=1.54771 νd12=62.83 r22= ∞ d22= 0.4000 r23= 24.5145(非球面) d23= 1.7000 nd13=1.49241 νd13=57.66 r24= 99.4003 d24= 1.2100 r25= ∞ d25= 0.6000 nd14=1.48749 νd14=70.20 r26= ∞ 非球面係数 第12面 P = 1 A4 =-0.81707×10-4 A6 = 0.25973×10-5 A8 =-0.87485×10-7 A10= 0.10448×10-8 第16面 P = 1A4 = 0.57528×10-4 A6 = 0.86689×10-5 A8 =-0.43159×10-6 A10= 0.71730×10-8 第19面 P = 1 A4 =-0.11655×10-3 A6 = 0.10038×10-4 A8 =-0.44848×10-6 A10= 0.14924×10-7 第23面 P = 1 A4 = 0.14779×10-3 A6 =-0.48255×10-4 A8 = 0.32113×10-5 A10=-0.13812×10-6 β5 =1.271 fIII /fI =0.731 fS /fI =0.432 fS /|fII|=2.413 fS /fI-III =-0.0557 n6 −n5 =0.359 n4 −n5 =0.347
Example 3 f = 5.15 ~ 17.58 ~ 60.00 F NO = 1.86 ~ 2.18 ~ 2.15 ω = 31.5 ° ~ 10.2 ° 3.0 ° r 1 = 48.6449 d 1 = 1.1000 n d1 = 1.84666 v d1 = 23.78 r 2 = 26.5764 d 2 = 5.1000 n d2 = 1.56873 ν d2 = 63.16 r 3 = 1433.1905 d 3 = 0.1500 r 4 = 27.5358 d 4 = 3.7000 n d3 = 1.66672 ν d3 = 48.32 r 5 = 109.7352 d 5 = ( variable) r 6 = 110.4877 d 6 = 0.9000 n d4 = 1.83400 ν d4 = 37.16 r 7 = 6.9198 d 7 = 3.5000 r 8 = -14.1237 d 8 = 0.8000 n d5 = 1.48749 ν d5 = 70.20 r 9 = 9.3009 d 9 = 2.6000 n d6 = 1.84666 ν d6 = 23.78 r 10 = 40.7111 d 10 = (variable) r 11 = ∞ (aperture) d 11 = 1.5000 r 12 = 23.6424 (aspherical surface) d 12 = 2.1000 n d7 = 1.58913 ν d7 = 61.18 r 13 = -65.2226 d 13 = (variable) r 14 = 11.2463 d 14 = 0.8000 n d8 = 1.84666 ν d8 = 23.78 r 15 = 7.3097 d 15 = 4.5000 n d9 = 1.58913 ν d9 = 61.18 r 16 = -19.8581 (aspherical surface) d 16 = ( Variable) r 17 = 31.1671 d 17 = 0.8000 n d10 = 1.83400 ν d10 = 37.16 r 18 = 8.3648 d 18 = 1.0000 r 19 = 10.0709 (aspherical surface) d 19 = 2.1000 n d11 = 1.58913 ν d11 = 61.18 r 20 = 36.7454 d 20 = 2.2357 r 21 = ∞ d 21 = 6.3000 n d12 = 1.54771 ν d12 = 62.83 r 22 = ∞ d 22 = 0.4000 r 23 = 24.5145 (aspherical surface) d 23 = 1.7000 n d13 = 1.49241 ν d13 = 57.66 r 24 = 99.4003 d 24 = 1.2100 r 25 = ∞ d 25 = 0.6000 n d14 = 1.48749 ν d14 = 70.20 r 26 = ∞ Aspherical coefficient 12th surface P = 1 A 4 = -0.81707 × 10 -4 A 6 = 0.25973 × 10 -5 A 8 = -0.887485 × 10 -7 A 10 = 0.10448 × 10 -8 16th surface P = 1A 4 = 0.57528 × 10 -4 A 6 = 0.86689 × 10 -5 A 8 = -0.43159 × 10 -6 A 10 = 0.71730 × 10 -8 19th surface P = 1 A 4 = -0.11655 × 10 -3 A 6 = 0.10038 × 10 -4 A 8 = -0.44848 × 10 -6 A 10 = 0.14924 × 10 -7 23rd surface P = 1 A 4 = 0.14779 × 10 -3 A 6 = -0.48255 × 10 -4 A 8 = 0.32113 × 10 -5 A 10 = -0.13812 × 10 -6 β 5 = 1.271 f III / f I = 0.731 f S / f I = 0.432 f S / | f II | = 2.413 f S / f I-III = -0.0557 n 6 -N 5 = 0.359 n 4 -n 5 = 0.347
.

【0045】実施例4 f = 5.15 〜 17.58 〜 60.00 FNO= 1.86 〜 2.18 〜 2.15 ω = 31.5 °〜 10.2 ° 3.0 ° r1 = 48.9829 d1 = 1.1000 nd1 =1.84666 νd1 =23.78 r2 = 26.4056 d2 = 5.1000 nd2 =1.56873 νd2 =63.16 r3 = 2980.0458 d3 = 0.1500 r4 = 27.4720 d4 = 3.7000 nd3 =1.67003 νd3 =47.25 r5 = 112.5276 d5 = (可変) r6 = 111.5576 d6 = 0.9000 nd4 =1.80100 νd4 =34.97 r7 = 6.5701 d7 = 3.5000 r8 = -13.2640 d8 = 0.8000 nd5 =1.48749 νd5 =70.20 r9 = 9.4809 d9 = 2.6000 nd6 =1.84666 νd6 =23.78 r10= 45.8500(非球面) d10= (可変) r11= ∞(絞り) d11= 1.5000 r12= 23.5662(非球面) d12= 2.1000 nd7 =1.58913 νd7 =61.18 r13= -70.1401 d13= (可変) r14= 11.1680 d14= 0.8000 nd8 =1.84666 νd8 =23.78 r15= 7.3776 d15= 4.5000 nd9 =1.58913 νd9 =61.18 r16= -20.2708(非球面) d16= (可変) r17= 32.6113 d17= 0.8000 nd10=1.83400 νd10=37.16 r18= 8.4427 d18= 1.0000 r19= 9.9291(非球面) d19= 2.1000 nd11=1.58913 νd11=61.18 r20= 36.9166 d20= 2.4023 r21= ∞ d21= 6.3000 nd12=1.54771 νd12=62.83 r22= ∞ d22= 0.4000 r23= 24.2370(非球面) d23= 1.7000 nd13=1.49241 νd13=57.66 r24= 85.8387 d24= 1.2100 r25= ∞ d25= 0.6000 nd14=1.48749 νd14=70.20 r26= ∞ 非球面係数 第10面 P = 1 A4 =-0.33777×10-4 A6 = 0.96382×10-6 A8 =-0.16935×10-7 A10= 0 第12面 P = 1 A4 =-0.76667×10-4 A6 = 0.24271×10-5 A8 =-0.94886×10-7 A10= 0.14146×10-8 第16面 P = 1 A4 = 0.90653×10-4 A6 = 0.70656×10-5 A8 =-0.37791×10-6 A10= 0.64935×10-8 第19面 P = 1A =−0.70264×10-4 A6 = 0.15360×10-4 A8 =-0.11677×10-5 A10= 0.37919×10-7 第23面 P = 1 A4 =-0.15728×10-3 A6 =-0.77801×10-4 A8 = 0.51668×10-5 A10=-0.16430×10-6 β5 =1.270 fIII /fI =0.752 fS /fI =0.438 fS /|fII|=2.455 fS /fI-III =-0.0740 n6 −n5 =0.359 n4 −n5 =0.314
[0045] Example 4 f = 5.15 ~ 17.58 ~ 60.00 F NO = 1.86 ~ 2.18 ~ 2.15 ω = 31.5 ° ~ 10.2 ° 3.0 ° r 1 = 48.9829 d 1 = 1.1000 n d1 = 1.84666 ν d1 = 23.78 r 2 = 26.4056 d 2 = 5.1000 n d2 = 1.56873 ν d2 = 63.16 r 3 = 2980.0458 d 3 = 0.1500 r 4 = 27.4720 d 4 = 3.7000 n d3 = 1.67003 ν d3 = 47.25 r 5 = 112.5276 d 5 = ( variable) r 6 = 111.5576 d 6 = 0.9000 n d4 = 1.80100 ν d4 = 34.97 r 7 = 6.5701 d 7 = 3.5000 r 8 = -13.2640 d 8 = 0.8000 n d5 = 1.48749 ν d5 = 70.20 r 9 = 9.4809 d 9 = 2.6000 n d6 = 1.84666 ν d6 = 23.78 r 10 = 45.8500 (aspherical surface) d 10 = (variable) r 11 = ∞ (aperture) d 11 = 1.5000 r 12 = 23.5662 (aspherical surface) d 12 = 2.1000 n d7 = 1.58913 ν d7 = 61.18 r 13 = -70.1401 d 13 = (variable) r 14 = 11.1680 d 14 = 0.8000 n d8 = 1.84666 ν d8 = 23.78 r 15 = 7.3776 d 15 = 4.5000 n d9 = 1.58913 ν d9 = 61.18 r 16 = -20.2708 (aspherical surface) d 16 = (variable) r 17 = 32.6113 d 17 = 0.8000 n d10 = 1.83400 ν d10 = 37.16 r 18 = 8.4427 d 18 = 1.0000 r 19 = 9.9291 (aspherical surface) d 19 = 2.1000 n d11 = 1.58913 ν d11 = 61.18 r 20 = 36.9166 d 20 = 2.4023 r 21 = ∞ d 21 = 6.3000 n d12 = 1.54771 ν d12 = 62.83 r 22 = ∞ d 22 = 0.4000 r 23 = 24.2370 (aspherical surface) d 23 = 1.7000 n d13 = 1.49241 ν d13 = 57.66 r 24 = 85.8387 d 24 = 1.2100 r 25 = ∞ d 25 = 0.6000 n d14 = 1.48749 ν d14 = 70.20 r 26 = ∞ Aspheric coefficient 10th surface P = 1 A 4 = -0.33777 × 10 -4 A 6 = 0.96382 × 10 -6 A 8 = -0.16935 × 10 -7 A 10 = 0 12th surface P = 1 A 4 = -0.76667 × 10 -4 A 6 = 0.24271 × 10 -5 A 8 = -0.94886 × 10 -7 A 10 = 0.14146 × 10 -8 16th surface P = 1 A 4 = 0.90653 × 10 -4 A 6 = 0.70656 × 10 - 5 A 8 = -0.37791 × 10 -6 A 10 = 0.64935 × 10 -8 19th surface P = 1A 4 = -0.70264 × 10 -4 A 6 = 0.15360 × 10 -4 A 8 = -0.11677 × 10 - 5 A 10 = 0.37919 × 10 -7 23rd surface P = 1 A 4 = -0.15728 × 10 -3 A 6 = -0.77801 × 10 -4 A 8 = 0.51668 × 10 -5 A 10 = -0.16430 × 10 -6 β 5 = 1.270 f III / f I = 0.752 f S / f I = 0.438 f S / | f II | = 2.455 f S / f I-III = -0.0740 n 6 -n 5 = 0.359 n 4 -n 5 = 0.314
.

【0046】実施例5 f = 5.15 〜 17.58 〜 60.00 FNO= 1.86 〜 2.21 〜 2.11 ω = 31.5 °〜 10.2 ° 3.0 ° r1 = 49.3029 d1 = 1.1000 nd1 =1.84666 νd1 =23.78 r2 = 26.5580 d2 = 5.1000 nd2 =1.56873 νd2 =63.16 r3 = 1337.9724 d3 = 0.1500 r4 = 27.4225 d4 = 3.7000 nd3 =1.67003 νd3 =47.25 r5 = 105.8052 d5 = (可変) r6 = 104.9194 d6 = 0.9000 nd4 =1.80100 νd4 =34.97 r7 = 6.2340 d7 = 3.5000 r8 = -17.4801 d8 = 0.8000 nd5 =1.48749 νd5 =70.20 r9 = 9.1491 d9 = 2.6000 nd6 =1.84666 νd6 =23.78 r10= 44.4892(非球面) d10= (可変) r11= ∞(絞り) d11= 1.5000 r12= 21.5451(非球面) d12= 2.1000 nd7 =1.58913 νd7 =61.18 r13= -50.4931 d13= (可変) r14= 20.9010(非球面) d14= 4.5000 nd8 =1.58913 νd8 =61.18 r15= -7.7555 d15= 0.8000 nd9 =1.84666 νd9 =23.78 r16= -12.0313 d16= (可変) r17= 39.7400 d17= 0.8000 nd10=1.83400 νd10=37.16 r18= 8.3497 d18= 1.0000 r19= 9.0749(非球面) d19= 2.1000 nd11=1.58913 νd11=61.18 r20= 41.5791 d20= 2.7222 r21= ∞ d21= 6.3000 nd12=1.54771 νd12=62.83 r22= ∞ d22= 0.4000 r23= 25.1729(非球面) d23= 1.7000 nd13=1.49241 νd13=57.66 r24= 58.4007 d24= 1.2100 r25= ∞ d25= 0.6000 nd14=1.48749 νd14=70.20 r26= ∞ 非球面係数 第10面 P = 1 A4 =-0.73438×10-4 A6 = 0.21797×10-5 A8 =-0.70409×10-7 A10= 0 第12面 P = 1 A4 =-0.55870×10-4 A6 = 0.50334×10-6 A8 =-0.32793×10-7 A10= 0.73728×10-9 第14面 P = 1 A4 =-0.10464×10-3 A6 =-0.20783×10-5 A8 = 0.78274×10-7 A10=-0.13763×10-8 第19面 P = 1 A4 =-0.17092×10-4 A6 = 0.74912×10-5 A8 =-0.59054×10-6 A10= 0.24852×10-7 第23面 P = 1A4 =-0.70069×10-4 A6 =-0.69659×10-4 A8 = 0.49173×10-5 A10=-0.17157×10-6 β5 =1.270 fIII /fI =0.630 fS /fI =0.428 fS /|fII|=2.324 fS /fI-III =0.0772 n6 −n5 =0.359 n4 −n5 =0.314
Example 5 f = 5.15 ~ 17.58 ~ 60.00 F NO = 1.86 ~ 2.21 ~ 2.11 ω = 31.5 ° ~ 10.2 ° 3.0 ° r 1 = 49.3029 d 1 = 1.1000 n d1 = 1.84666 ν d1 = 23.78 r 2 = 26.5580 d 2 = 5.1000 n d2 = 1.56873 ν d2 = 63.16 r 3 = 1337.9724 d 3 = 0.1500 r 4 = 27.4225 d 4 = 3.7000 n d3 = 1.67003 ν d3 = 47.25 r 5 = 105.8052 d 5 = ( variable) r 6 = 104.9194 d 6 = 0.9000 n d4 = 1.80100 ν d4 = 34.97 r 7 = 6.2340 d 7 = 3.5000 r 8 = -17.4801 d 8 = 0.8000 n d5 = 1.48749 ν d5 = 70.20 r 9 = 9.1491 d 9 = 2.6000 n d6 = 1.84666 ν d6 = 23.78 r 10 = 44.4892 (aspherical surface) d 10 = (variable) r 11 = ∞ (aperture) d 11 = 1.5000 r 12 = 21.5451 (aspherical surface) d 12 = 2.1000 n d7 = 1.58913 ν d7 = 61.18 r 13 = -50.4931 d 13 = (variable) r 14 = 20.9010 (aspherical surface) d 14 = 4.5000 n d8 = 1.58913 ν d8 = 61.18 r 15 = -7.7555 d 15 = 0.8000 n d9 = 1.84666 ν d9 = 23.78 r 16 =- 12.0313 d 16 = (variable) r 17 = 39.7400 d 17 = 0.8000 n d10 = 1.83400 ν d10 = 37.16 r 18 = 8.3497 d 18 = 1.0000 r 19 = 9.0749 (aspherical surface) d 19 = 2.1000 n d11 = 1.58913 ν d11 = 61.18 r 20 = 41.5791 d 20 = 2.7222 r 21 = ∞ d 21 = 6.3000 n d12 = 1.54771 ν d12 = 62.83 r 22 = ∞ d 22 = 0.4000 r 23 = 25.1729 (aspherical surface) d 23 = 1.7000 n d13 = 1.49241 ν d13 = 57.66 r 24 = 58.4007 d 24 = 1.2100 r 25 = ∞ d 25 = 0.6000 n d14 = 1.48749 ν d14 = 70.20 r 26 = ∞ Aspheric coefficient 10th surface P = 1 A 4 = -0.73438 × 10 -4 A 6 = 0.21797 × 10 -5 A 8 = -0.70409 × 10 -7 A 10 = 0 12th surface P = 1 A 4 = -0.55870 × 10 -4 A 6 = 0.50334 × 10 -6 A 8 = -0.32793 × 10 -7 A 10 = 0.73728 × 10 -9 14th surface P = 1 A 4 = -0.10464 × 10 -3 A 6 = -0.20783 × 10 -5 A 8 = 0.78274 × 10 -7 A 10 = -0.13763 × 10 -8 19th surface P = 1 A 4 = -0.17092 × 10 -4 A 6 = 0.74912 × 10 -5 A 8 = -0.59054 × 10 -6 A 10 = 0.24852 × 10 -7 23rd surface P = 1A 4 = -0.70069 × 10 -4 A 6 = -0.69659 × 10 -4 A 8 = 0.49173 × 10 -5 A 10 = -0.17157 × 10 -6 β 5 = 1.270 f III / f I = 0.630 f S / f I = 0.428 f S / | f II | = 2.324 f S / f I-III = 0.0772 n 6 -n 5 = 0.359 n 4 -n 5 = 0.314
.

【0047】実施例6 f = 5.15 〜 17.58 〜 60.00 FNO= 1.86 〜 2.09 〜 2.15 ω = 31.5 °〜 10.2 ° 3.0 ° r1 = 49.3537 d1 = 1.1000 nd1 =1.84666 νd1 =23.78 r2 = 26.5119 d2 = 5.1000 nd2 =1.56873 νd2 =63.16 r3 = 844.0106 d3 = 0.1500 r4 = 27.0137 d4 = 3.7000 nd3 =1.67003 νd3 =47.25 r5 = 107.4470 d5 = (可変) r6 = 106.3036 d6 = 0.9000 nd4 =1.80100 νd4 =34.97 r7 = 7.2328 d7 = 3.5000 r8 = -11.2733 d8 = 0.8000 nd5 =1.48749 νd5 =70.20 r9 = 8.7754 d9 = 2.6000 nd6 =1.84666 νd6 =23.78 r10= 37.5089(非球面) d10= (可変) r11= ∞(絞り) d11= 1.5000 r12= 21.7729(非球面) d12= 2.1000 nd7 =1.58913 νd7 =61.18 r13= -72.3173 d13= (可変) r14= 11.2938 d14= 0.8000 nd8 =1.84666 νd8 =23.78 r15= 7.3029 d15= 4.5000 nd9 =1.58913 νd9 =61.18 r16= -19.0102(非球面) d16= (可変) r17= 72.2260 d17= 0.8000 nd10=1.58423 νd10=30.49 r18= 15.0212(非球面) d18= 3.9740 r19= ∞ d19= 6.3000 nd11=1.54771 νd11=62.83 r20= ∞ d20= 0.4000 r21= 20.1404(非球面) d21= 1.7000 nd12=1.49241 νd12=57.66 r22= 79.4196 d22= 1.2100 r23= ∞ d23= 0.6000 nd13=1.48749 νd13=70.20 r24= ∞ 非球面係数 第10面 P = 1 A4 = 0.36849×10-4 A6 = 0.85849×10-6 A8 = 0.16305×10-7 A10= 0 第12面 P = 1 A4 =-0.68982×10-4 A6 = 0.22183×10-5 A8 =-0.87033×10-7 A10= 0.12840×10-8 第16面 P = 1 A4 = 0.97893×10-4 A6 = 0.65630×10-5 A8 =-0.35433×10-6 A10= 0.60002×10-8 第18面 P = 1 A4 = 0.96953×10-4 A6 =-0.88180×10-5 A8 = 0.26168×10-6 A10= 0 第21面 P = 1 A4 =-0.50127×10-3 A6 =-0.68751×10-5 A8 =-0.44091×10-6 A10= 0 β5 =1.269 fIII /fI =0.702 fS /fI =0.431 fS /|fII|=2.430 fS /fI-III =0.547 n6 −n5 =0.359 n4 −n5 =0.314
[0047] Example 6 f = 5.15 ~ 17.58 ~ 60.00 F NO = 1.86 ~ 2.09 ~ 2.15 ω = 31.5 ° ~ 10.2 ° 3.0 ° r 1 = 49.3537 d 1 = 1.1000 n d1 = 1.84666 ν d1 = 23.78 r 2 = 26.5119 d 2 = 5.1000 n d2 = 1.56873 ν d2 = 63.16 r 3 = 844.0106 d 3 = 0.1500 r 4 = 27.0137 d 4 = 3.7000 n d3 = 1.67003 ν d3 = 47.25 r 5 = 107.4470 d 5 = ( variable) r 6 = 106.3036 d 6 = 0.9000 n d4 = 1.80100 ν d4 = 34.97 r 7 = 7.2328 d 7 = 3.5000 r 8 = -11.2733 d 8 = 0.8000 n d5 = 1.48749 ν d5 = 70.20 r 9 = 8.7754 d 9 = 2.6000 n d6 = 1.84666 ν d6 = 23.78 r 10 = 37.5089 (aspherical surface) d 10 = (variable) r 11 = ∞ (aperture) d 11 = 1.5000 r 12 = 21.7729 (aspherical surface) d 12 = 2.1000 n d7 = 1.58913 ν d7 = 61.18 r 13 = -72.3173 d 13 = (variable) r 14 = 11.2938 d 14 = 0.8000 n d8 = 1.84666 ν d8 = 23.78 r 15 = 7.3029 d 15 = 4.5000 n d9 = 1.58913 ν d9 = 61.18 r 16 = -19.0102 (aspherical surface) d 16 = (variable) r 17 = 72.2260 17 = 0.8000 n d10 = 1.58423 ν d10 = 30.49 r 18 = 15.0212 ( aspherical) d 18 = 3.9740 r 19 = ∞ d 19 = 6.3000 n d11 = 1.54771 ν d11 = 62.83 r 20 = ∞ d 20 = 0.4000 r 21 = 20.1404 (aspherical) d 21 = 1.7000 n d12 = 1.49241 ν d12 = 57.66 r 22 = 79.4196 d 22 = 1.2100 r 23 = ∞ d 23 = 0.6000 n d13 = 1.48749 ν d13 = 70.20 r 24 = ∞ Aspheric coefficient 10th surface P = 1 A 4 = 0.36849 × 10 -4 A 6 = 0.85849 × 10 -6 A 8 = 0.16305 × 10 -7 A 10 = 0 12th surface P = 1 A 4 = -0.68982 × 10 -4 A 6 = 0.22183 × 10 -5 A 8 = -0.87033 × 10 -7 A 10 = 0.12840 × 10 -8 16th surface P = 1 A 4 = 0.97893 × 10 -4 A 6 = 0.65630 × 10 -5 A 8 = -0.35433 × 10 -6 A 10 = 0.60002 × 10 -8 18th surface P = 1 A 4 = 0.96953 × 10 -4 A 6 = -0.888 180 × 10 -5 A 8 = 0.26168 × 10 -6 A 10 = 0 21st surface P = 1 A 4 = -0.50127 × 10 -3 A 6 = -0.68751 × 10 -5 A 8 = -0.44091 × 10 -6 A 10 = 0 β 5 = 1.269 f III / f I = 0.702 f S / f I = 0.431 f S / | f II | = 2.430 f S / f I-III = 0.547 n 6 -n 5 = 0.359 n 4 -n 5 = 0.314
.

【0048】実施例7 f = 5.15 〜 17.58 〜 60.00 FNO= 1.86 〜 2.04 〜 2.09 ω = 31.5 °〜 10.2 ° 3.0 ° r1 = 48.6479 d1 = 1.1000 nd1 =1.84666 νd1 =23.78 r2 = 27.3067 d2 = 5.1000 nd2 =1.56873 νd2 =63.16 r3 = 432.2291 d3 = 0.1500 r4 = 29.0372 d4 = 3.7000 nd3 =1.65844 νd3 =50.86 r5 = 116.1249 d5 = (可変) r6 = 115.0131 d6 = 0.9000 nd4 =1.83400 νd4 =37.16 r7 = 7.1322 d7 = 3.5000 r8 = -14.8634 d8 = 0.8000 nd5 =1.48749 νd5 =70.20 r9 = 10.7360 d9 = 2.6000 nd6 =1.84666 νd6 =23.78 r10= 88.3413(非球面) d10= (可変) r11= ∞(絞り) d11= 1.5000 r12= 8.9714(非球面) d12= 3.7000 nd7 =1.58913 νd7 =61.18 r13= -34.1315 d13= 0.1500 r14= 26.6219 d14= 0.8000 nd8 =1.80610 νd8 =40.95 r15= 8.7687 d15= (可変) r16= 11.7459(非球面) d16= 4.5000 nd9 =1.58913 νd9 =61.18 r17= -8.0854 d17= 0.8000 nd10=1.80518 νd10=25.43 r18= -13.6671 d18= (可変) r19= 30.0849 d19= 0.8000 nd11=1.58423 νd11=30.49 r20= 9.9473(非球面) d20= 2.5114 r21= ∞ d21= 6.3000 nd12=1.54771 νd12=62.83 r22= ∞ d22= 0.4000 r23= 12.5034(非球面) d23= 1.7000 nd13=1.49241 νd13=57.66 r24= 27.5750 d24= 1.2100 r25= ∞ d25= 0.6000 nd14=1.48749 νd14=70.20 r26= ∞ 非球面係数 第10面 P = 1 A4 =-0.27025×10-4 A6 = 0.14778×10-6 A8 =-0.11989×10-8 A10= 0 第12面 P = 1 A4 =-0.16340×10-3 A6 =-0.17226×10-5 A8 =-0.10592×10-7 A10= 0 第16面 P = 1 A4 =-0.15126×10-3 A6 =-0.12817×10-5 A8 = 0.48361×10-7 A10= 0 第20面 P = 1 A4 = 0.11504×10-3 A6 =-0.87052×10-5 A8 = 0.40211×10-6 A10= 0 第23面 P = 1 A4 = 0.36345×10-3 A6 =-0.22025×10-4 A8 = 0.50014×10-6 A10= 0 β5 =1.270 fIII /fI =0.689 fS /fI =0.401 fS /|fII|=2.128 fS /fI-III =0.448 n6 −n5 =0.359 n4 −n5 =0.347
[0048] Example 7 f = 5.15 ~ 17.58 ~ 60.00 F NO = 1.86 ~ 2.04 ~ 2.09 ω = 31.5 ° ~ 10.2 ° 3.0 ° r 1 = 48.6479 d 1 = 1.1000 n d1 = 1.84666 ν d1 = 23.78 r 2 = 27.3067 d 2 = 5.1000 n d2 = 1.56873 ν d2 = 63.16 r 3 = 432.2291 d 3 = 0.1500 r 4 = 29.0372 d 4 = 3.7000 n d3 = 1.65844 ν d3 = 50.86 r 5 = 116.1249 d 5 = ( variable) r 6 = 115.0131 d 6 = 0.9000 n d4 = 1.83400 ν d4 = 37.16 r 7 = 7.1322 d 7 = 3.5000 r 8 = -14.8634 d 8 = 0.8000 n d5 = 1.48749 ν d5 = 70.20 r 9 = 10.7360 d 9 = 2.6000 n d6 = 1.84666 ν d6 = 23.78 r 10 = 88.3413 (aspherical surface) d 10 = (variable) r 11 = ∞ (aperture) d 11 = 1.5000 r 12 = 8.9714 (aspherical surface) d 12 = 3.7000 n d7 = 1.58913 ν d7 = 61.18 r 13 = -34.1315 d 13 = 0.1500 r 14 = 26.6219 d 14 = 0.8000 n d8 = 1.80610 ν d8 = 40.95 r 15 = 8.7687 d 15 = (variable) r 16 = 11.7459 (aspherical) d 16 = 4.5000 n d9 = 1.58913 ν d9 = 61.18 r 17 = -8.0854 d 17 = 0.8000 n d10 = 1.80518 ν d10 = 25.43 r 18 = -13.6671 d 18 = (variable) r 19 = 30.0849 d 19 = 0.8000 n d11 = 1.58423 ν d11 = 30.49 r 20 = 9.9473 (aspherical surface) d 20 = 2.5114 r 21 = ∞ d 21 = 6.3000 n d12 = 1.54771 ν d12 = 62.83 r 22 = ∞ d 22 = 0.4000 r 23 = 12.5034 (aspherical surface) d 23 = 1.7000 n d13 = 1.49241 ν d13 = 57.66 r 24 = 27.5750 d 24 = 1.2100 r 25 = ∞ d 25 = 0.6000 n d14 = 1.48749 ν d14 = 70.20 r 26 = ∞ Aspherical coefficient 10th surface P = 1 A 4 = -0.270 25 × 10 -4 A 6 = 0.14778 × 10 -6 A 8 = -0.11989 × 10 -8 A 10 = 0 12th surface P = 1 A 4 = -0.16340 × 10 -3 A 6 = -0.17226 × 10 -5 A 8 = -0.1059 2 × 10 -7 A 10 = 0 16th surface P = 1 A 4 = -0.15 126 × 10 -3 A 6 = -0.128 17 × 10 -5 A 8 = 0.48361 × 10 -7 A 10 = 0 20th surface P = 1 A 4 = 0.1150 4 × 10 -3 A 6 = -0.87052 × 10 -5 A 8 = 0.40211 × 10 -6 A 10 = 0 23rd surface P = 1 A 4 = 0.36345 × 10 -3 A 6 = -0.22025 × 10 -4 A 8 = 0.50014 × 10 -6 A 10 = 0 β 5 = 1.270 f III / f I = 0.689 f S / f I = 0.401 f S / | f II | = 2.128 f S / f I-III = 0.448 n 6 -n 5 = 0.359 n 4 -n 5 = 0.347
.

【0049】実施例8 f = 5.15 〜 17.58 〜 60.00 FNO= 1.86 〜 2.04 〜 2.09 ω = 31.5 °〜 10.2 ° 3.0 ° r1 = 46.3320 d1 = 1.1000 nd1 =1.84666 νd1 =23.78 r2 = 27.6061 d2 = 5.1000 nd2 =1.56873 νd2 =63.16 r3 = 651.6182 d3 = 0.1500 r4 = 28.5073 d4 = 3.6000 nd3 =1.62299 νd3 =58.14 r5 = 107.2832 d5 = (可変) r6 = 106.1988 d6 = 0.9000 nd4 =1.77250 νd4 =49.66 r7 = 7.7456 d7 = 3.9000 r8 = -11.2936 d8 = 0.8000 nd5 =1.48749 νd5 =70.20 r9 = 15.0093 d9 = 2.3000 nd6 =1.84666 νd6 =23.78 r10= 150.4581(非球面) d10= (可変) r11= ∞(絞り) d11= 1.5000 r12= 14.9578(非球面) d12= 2.6000 nd7 =1.66524 νd7 =55.12 r13= -76.8064 d13= 0.1500 r14= 16.4932 d14= 2.2000 nd8 =1.58267 νd8 =46.33 r15= -494.6834 d15= 0.8000 r16= 95.7939 d16= 0.8000 nd9 =1.84666 νd9 =23.78 r17= 11.3082 d17= (可変) r18= 10.8619(非球面) d18= 3.3000 nd10=1.58913 νd10=61.18 r19= -19.7402 d19= (可変) r20= 30.7610 d20= 0.8000 nd11=1.58423 νd11=30.49 r21= 9.0104(非球面) d21= 1.4000 r22= ∞ d22= 6.3000 nd12=1.54771 νd12=62.83 r23= ∞ d23= 0.4000 r24= 11.9053(非球面) d24= 1.7000 nd13=1.49241 νd13=57.66 r25= 34.3844 d25= 1.2100 r26= ∞ d26= 0.6000 nd14=1.48749 νd14=70.20 r27= ∞ 非球面係数 第10面 P = 1 A4 =-0.27658×10-4 A6 =-0.35480×10-6 A8 = 0.20967×10-7 A10= 0 第12面 P = 1 A4 =-0.46537×10-4 A6 =-0.99368×10-6 A8 = 0.15703×10-7 A10= 0 第18面 P = 1 A4 =-0.17455×10-3 A6 =-0.33653×10-5 A8 = 0.76028×10-7 A10= 0 第21面 P = 1 A4 = 0.22469×10-3 A6 =-0.27049×10-4 A8 = 0.11262×10-5 A10= 0 第24面 P = 1 A4 = 0.26447×10-3 A6 =-0.50161×10-4 A8 = 0.49950×10-6 A10= 0 β5 =1.270 fIII /fI =0.574 fS /fI =0.409 fS /|fII|=2.200 fS /fI-III =0.780 n6 −n5 =0.359 n4 −n5 =0.285
Example 8 f = 5.15 to 17.58 to 60.00 F NO = 1.86 to 2.04 to 2.09 ω = 31.5 ° to 10.2 ° 3.0 ° r 1 = 46.3320 d 1 = 1.1000 n d1 = 1.84666 v d1 = 23.78 r 2 = 27.6061 d 2 = 5.1000 n d2 = 1.56873 ν d2 = 63.16 r 3 = 651.6182 d 3 = 0.1500 r 4 = 28.5073 d 4 = 3.6000 n d3 = 1.62299 ν d3 = 58.14 r 5 = 107.2832 d 5 = ( variable) r 6 = 106.1988 d 6 = 0.9000 n d4 = 1.77250 ν d4 = 49.66 r 7 = 7.7456 d 7 = 3.9000 r 8 = -11.2936 d 8 = 0.8000 n d5 = 1.48749 ν d5 = 70.20 r 9 = 15.0093 d 9 = 2.3000 n d6 = 1.84666 ν d6 = 23.78 r 10 = 150.4581 (aspherical surface) d 10 = (variable) r 11 = ∞ (aperture) d 11 = 1.5000 r 12 = 14.9578 (aspherical surface) d 12 = 2.6000 n d7 = 1.66524 ν d7 = 55.12 r 13 = -76.8064 d 13 = 0.1500 r 14 = 16.4932 d 14 = 2.2000 n d8 = 1.58267 v d8 = 46.33 r 15 = -494.6834 d 15 = 0.8000 r 16 = 95.7939 d 16 = 0.8000 n d9 = 1.84666 v d9 = 23.78 r 17 = 11.3082 d 17 = (variable) r 18 = 10.8619 (aspherical surface) d 18 = 3.3000 n d10 = 1.58913 ν d10 = 61.18 r 19 = -19.7402 d 19 = (variable) r 20 = 30.7610 d 20 = 0.8000 n d11 = 1.58423 ν d11 = 30.49 r 21 = 9.0104 (Aspherical surface) d 21 = 1.4000 r 22 = ∞ d 22 = 6.3000 n d12 = 1.54771 ν d12 = 62.83 r 23 = ∞ d 23 = 0.4000 r 24 = 11.9053 (aspherical surface) d 24 = 1.7000 n d13 = 1.49241 ν d13 = 57.66 r 25 = 34.3844 d 25 = 1.2100 r 26 = ∞ d 26 = 0.6000 n d14 = 1.48749 ν d14 = 70.20 r 27 = ∞ Aspheric coefficient 10th surface P = 1 A 4 = -0.27658 × 10 -4 A 6 = -0.35480 × 10 -6 A 8 = 0.20967 × 10 -7 A 10 = 0 12th surface P = 1 A 4 = -0.46537 × 10 -4 A 6 = -0.99368 × 10 -6 A 8 = 0.15703 × 10 -7 A 10 = 0 18th surface P = 1 A 4 = -0.17455 × 10 -3 A 6 = -0.33653 × 10 -5 A 8 = 0.76028 × 10 -7 A 10 = 0 21st surface P = 1 A 4 = 0.22469 × 10 -3 A 6 = -0.27049 × 10 -4 A 8 = 0.11262 × 10 -5 A 10 = 0 24th surface P = 1 A 4 = 0.26447 × 10 -3 A 6 = -0.50161 × 10 -4 A 8 = 0.49950 × 10 -6 A 10 = 0 β 5 = 1.270 f III / f I = 0.574 f S / f I = 0.409 f S / | f II | = 2.200 f S / f I-III = 0.780 n 6 -n 5 = 0.359 n 4 -n 5 = 0.285
.

【0050】実施例9 f = 5.15 〜 17.58 〜 60.00 FNO= 1.86 〜 2.11 〜 2.14 ω = 31.5 °〜 10.2 ° 3.0 ° r1 = 50.7458 d1 = 1.1000 nd1 =1.84666 νd1 =23.78 r2 = 25.9574 d2 = 5.1000 nd2 =1.56873 νd2 =63.16 r3 = 647.2871 d3 = 0.1500 r4 = 27.5776 d4 = 3.7000 nd3 =1.68250 νd3 =44.65 r5 = 127.2963 d5 = (可変) r6 = 126.5391 d6 = 0.9000 nd4 =1.80100 νd4 =34.97 r7 = 7.2843 d7 = 3.5000 r8 = -12.0938 d8 = 0.8000 nd5 =1.48749 νd5 =70.20 r9 = 8.8444 d9 = 2.6000 nd6 =1.84666 νd6 =23.78 r10= 37.6677(非球面) d10= (可変) r11= ∞(絞り) d11= (可変) r12= 20.7361(非球面) d12= 2.1000 nd7 =1.58913 νd7 =61.18 r13= -53.6235 d13= (可変) r14= 10.1462 d14= 0.8000 nd8 =1.84666 νd8 =23.78 r15= 6.7238 d15= 4.5000 nd9 =1.58913 νd9 =61.18 r16= -19.3327(非球面) d16= (可変) r17= 73.8493 d17= 0.8000 nd10=1.58423 νd10=30.49 r18= 9.9263(非球面) d18= 2.8105 r19= ∞ d19= 6.3000 nd11=1.54771 νd11=62.83 r20= ∞ d20= 0.4000 r21= 15.1517(非球面) d21= 1.7000 nd12=1.49241 νd12=57.66 r22= 84.8457 d22= 1.2100 r23= ∞ d23= 0.6000 nd13=1.48749 νd13=70.20 r24= ∞ 非球面係数 第10面 P = 1 A4 = 0.26655×10-4 A6 = 0.11457×10-5 A8 = 0.12038×10-7 A10= 0 第12面 P = 1 A4 =-0.60438×10-4 A6 = 0.32146×10-6 A8 = 0.33627×10-7 A10=-0.91890×10-9 第16面 P = 1 A4 = 0.15549×10-3 A6 = 0.55055×10-5 A8 =-0.29328×10-6 A10= 0.44761×10-8 第18面 P = 1 A4 = 0.21739×10-3 A6 =-0.20237×10-4 A8 = 0.75429×10-6 A10= 0 第21面 P = 1 A4 =-0.80460×10-4 A6 =-0.14854×10-4 A8 =-0.63785×10-6 A10= 0 β5 =1.400 fIII /fI =0.625 fS /fI =0.428 fS /|fII|=2.373 fS /fI-III =0.862 n6 −n5 =0.359 n4 −n5 =0.314
[0050] Example 9 f = 5.15 ~ 17.58 ~ 60.00 F NO = 1.86 ~ 2.11 ~ 2.14 ω = 31.5 ° ~ 10.2 ° 3.0 ° r 1 = 50.7458 d 1 = 1.1000 n d1 = 1.84666 ν d1 = 23.78 r 2 = 25.9574 d 2 = 5.1000 n d2 = 1.56873 ν d2 = 63.16 r 3 = 647.2871 d 3 = 0.1500 r 4 = 27.5776 d 4 = 3.7000 n d3 = 1.68250 ν d3 = 44.65 r 5 = 127.2963 d 5 = ( variable) r 6 = 126.5391 d 6 = 0.9000 n d4 = 1.80100 ν d4 = 34.97 r 7 = 7.2843 d 7 = 3.5000 r 8 = -12.0938 d 8 = 0.8000 n d5 = 1.48749 ν d5 = 70.20 r 9 = 8.8444 d 9 = 2.6000 n d6 = 1.84666 ν d6 = 23.78 r 10 = 37.6677 (aspherical surface) d 10 = (variable) r 11 = ∞ (aperture) d 11 = (variable) r 12 = 20.7361 (aspherical surface) d 12 = 2.1000 n d7 = 1.58913 ν d7 = 61.18 r 13 = -53.6235 d 13 = (variable) r 14 = 10.1462 d 14 = 0.8000 n d8 = 1.84666 ν d8 = 23.78 r 15 = 6.7238 d 15 = 4.5000 n d9 = 1.58913 ν d9 = 61.18 r 16 = -19.3327 (non-variable) Spherical surface) d 16 = (variable) r 17 = 73. 8493 d 17 = 0.8000 n d10 = 1.58423 ν d10 = 30.49 r 18 = 9.9263 (aspherical surface) d 18 = 2.8105 r 19 = ∞ d 19 = 6.3000 n d11 = 1.54771 ν d11 = 62.83 r 20 = ∞ d 20 = 0.4000 r 21 = 15.1517 (aspherical) d 21 = 1.7000 n d12 = 1.49241 ν d12 = 57.66 r 22 = 84.8457 d 22 = 1.2100 r 23 = ∞ d 23 = 0.6000 n d13 = 1.48749 ν d13 = 70.20 r 24 = ∞ Aspherical surface 10th surface P = 1 A 4 = 0.26655 × 10 -4 A 6 = 0.11457 × 10 -5 A 8 = 0.12038 × 10 -7 A 10 = 0 12th surface P = 1 A 4 = -0.60438 × 10 -4 A 6 = 0.32146 × 10 -6 A 8 = 0.33627 × 10 -7 A 10 = -0.91890 × 10 -9 16th surface P = 1 A 4 = 0.15549 × 10 -3 A 6 = 0.55055 × 10 -5 A 8 = -0.29328 × 10 -6 A 10 = 0.44761 × 10 -8 18th surface P = 1 A 4 = 0.21739 × 10 -3 A 6 = -0.20237 × 10 -4 A 8 = 0.75429 × 10 -6 A 10 = 0 21st surface P = 1 A 4 = -0.80460 × 10 -4 A 6 = -0.14854 × 10 -4 A 8 = -0.63785 × 10 -6 A 10 = 0 β 5 = 1.400 f III / f I = 0.625 f S / f I = 0.428 f S / | f II | = 2.373 f S / f I-III = 0.862 n 6 -n 5 = 0.359 n 4 -n 5 = 0.314
.

【0051】実施例10 f = 5.15 〜 17.58 〜 60.00 FNO= 1.86 〜 2.04 〜 2.09 ω = 31.5 °〜 10.2 ° 3.0 ° r1 = 48.5865 d1 = 1.1000 nd1 =1.84666 νd1 =23.78 r2 = 27.2588 d2 = 5.1000 nd2 =1.56873 νd2 =63.16 r3 = 455.3065 d3 = 0.1500 r4 = 29.5164 d4 = 3.6000 nd3 =1.65844 νd3 =50.86 r5 = 128.2994 d5 = (可変) r6 = 127.3849 d6 = 0.9000 nd4 =1.80610 νd4 =40.95 r7 = 7.6226 d7 = 3.9000 r8 = -16.7784 d8 = 0.8000 nd5 =1.48749 νd5 =70.20 r9 = 11.5963 d9 = 2.6000 nd6 =1.84666 νd6 =23.78 r10= 60.6529(非球面) d10= (可変) r11= 13.8512(非球面) d11= 2.3000 nd7 =1.66524 νd7 =55.12 r12= -202.0041 d12= 0.6000 r13= ∞(絞り) d13= 1.5000 r14= 15.9995 d14= 1.8000 nd8 =1.67003 νd8 =47.25 r15= 138.4845 d15= 0.8000 r16= -2429.7156 d16= 0.8000 nd9 =1.80518 νd9 =25.43 r17= 10.3949 d17= (可変) r18= 9.5861(非球面) d18= 3.3000 nd10=1.58913 νd10=61.18 r19= -16.6742 d19= (可変) r20= 24.4581 d20= 0.8000 nd11=1.58423 νd11=30.49 r21= 7.8870(非球面) d21= 1.4000 r22= ∞ d22= 6.3000 nd12=1.54771 νd12=62.83 r23= ∞ d23= 0.4000 r24= 10.3762(非球面) d24= 2.2000 nd13=1.49241 νd13=57.66 r25= 38.4791 d25= 1.2100 r26= ∞ d26= 0.6000 nd14=1.48749 νd14=70.20 r27= ∞ 非球面係数 第10面 P = 1 A4 =-0.22286×10-4 A6 =-0.17408×10-6 A8 = 0.31905×10-8 A10= 0 第11面 P = 1 A4 =-0.27644×10-4 A6 =-0.41026×10-6 A8 =-0.52935×10-8 A10= 0 第18面 P = 1 A4 =-0.27803×10-3 A6 =-0.29162×10-5 A8 = 0.58773×10-7 A10= 0 第21面 P = 1 A4 = 0.48928×10-3 A6 =-0.57900×10-4 A8 = 0.27500×10-5 A10= 0 第24面 P = 1 A4 = 0.12110×10-2 A6 =-0.54513×10-4 A8 = 0.10133×10-5 A10= 0 β5 =1.270 fIII /fI =0.698 fS /fI =0.405 fS /|fII|=2.045 fS /fI-III =0.580 n6 −n5 =0.359 n4 −n5 =0.319
Example 10 f = 5.15 ~ 17.58 ~ 60.00 F NO = 1.86 ~ 2.04 ~ 2.09 ω = 31.5 ° ~ 10.2 ° 3.0 ° r 1 = 48.5865 d 1 = 1.1000 n d1 = 1.84666 ν d1 = 23.78 r 2 = 27.2588 d 2 = 5.1000 n d2 = 1.56873 ν d2 = 63.16 r 3 = 455.3065 d 3 = 0.1500 r 4 = 29.5164 d 4 = 3.6000 n d3 = 1.65844 ν d3 = 50.86 r 5 = 128.2994 d 5 = ( variable) r 6 = 127.3849 d 6 = 0.9000 n d4 = 1.80610 ν d4 = 40.95 r 7 = 7.6226 d 7 = 3.9000 r 8 = -16.7784 d 8 = 0.8000 n d5 = 1.48749 ν d5 = 70.20 r 9 = 11.5963 d 9 = 2.6000 n d6 = 1.84666 ν d6 = 23.78 r 10 = 60.6529 (aspherical surface) d 10 = (variable) r 11 = 13.8512 (aspherical surface) d 11 = 2.3000 n d7 = 1.66524 ν d7 = 55.12 r 12 = -202.0041 d 12 = 0.6000 r 13 = ∞ (Aperture) d 13 = 1.5000 r 14 = 15.9995 d 14 = 1.8000 n d8 = 1.67003 ν d8 = 47.25 r 15 = 138.4845 d 15 = 0.8000 r 16 = -2429.7156 d 16 = 0.8000 n d9 = 1.80518 ν d9 = 25.43 r 17 = 10.3949 d 17 = (variable r 18 = 9.5861 (aspherical) d 18 = 3.3000 n d10 = 1.58913 ν d10 = 61.18 r 19 = -16.6742 d 19 = ( Variable) r 20 = 24.4581 d 20 = 0.8000 n d11 = 1.58423 ν d11 = 30.49 r 21 = 7.8870 (aspherical surface) d 21 = 1.4000 r 22 = ∞ d 22 = 6.3000 n d12 = 1.54771 ν d12 = 62.83 r 23 = ∞ d 23 = 0.4000 r 24 = 10.3762 (aspherical surface) d 24 = 2.2000 n d13 = 1.49241 ν d13 = 57.66 r 25 = 38.4791 d 25 = 1.2100 r 26 = ∞ d 26 = 0.6000 n d14 = 1.48749 ν d14 = 70.20 r 27 = ∞ Aspherical coefficient 10th surface P = 1 A 4 = -0.22286 × 10 -4 A 6 = -0.17408 × 10 -6 A 8 = 0.31905 × 10 -8 A 10 = 0 11th surface P = 1 A 4 = -0.27644 × 10 -4 A 6 = -0.41026 × 10 -6 A 8 = -0.52935 × 10 -8 A 10 = 0 18th surface P = 1 A 4 = -0.27803 × 10 -3 A 6 = -0.29162 × 10 -5 A 8 = 0.58773 × 10 -7 A 10 = 0 21st surface P = 1 A 4 = 0.48928 × 10 -3 A 6 = -0.57900 × 10 -4 A 8 = 0.27500 × 10 -5 A 10 = 0 24th surface P = 1 A 4 = 0.121 10 × 10 -2 A 6 = -0.545 13 × 10 -4 A 8 = 0.10133 × 10 -5 A 10 = 0 β 5 = 1.270 f III / f I = 0.698 f S / f I = 0.405 f S / | f II | = 2.045 f S / f I-III = 0.580 n 6 -n 5 = 0.359 n 4 -n 5 = 0.319
.

【0052】実施例11 f = 5.15 〜 17.58 〜 60.00 FNO= 1.86 〜 2.18 〜 2.15 ω = 31.5 °〜 10.2 ° 3.0 ° r1 = 48.4331 d1 = 1.1000 nd1 =1.84666 νd1 =23.78 r2 = 26.7655 d2 = 5.1000 nd2 =1.56873 νd2 =63.16 r3 = 17050.4298 d3 = 0.1500 r4 = 27.6169 d4 = 3.7000 nd3 =1.66672 νd3 =48.32 r5 = 110.0610 d5 = (可変) r6 = 108.2896 d6 = 0.9000 nd4 =1.80100 νd4 =34.97 r7 = 6.9714 d7 = 3.5000 r8 = -14.0637 d8 = 0.8000 nd5 =1.48749 νd5 =70.20 r9 = 9.4503 d9 = 2.6000 nd6 =1.84666 νd6 =23.78 r10= 39.3635(非球面) d10= (可変) r11= 20.9972(非球面) d11= 2.1000 nd7 =1.58913 νd7 =61.18 r12= -86.8208 d12= 0.8000 r13= ∞(絞り) d13= (可変) r14= 11.1717 d14= 0.8000 nd8 =1.84666 νd8 =23.78 r15= 7.4201 d15= 4.5000 nd9 =1.58913 νd9 =61.18 r16= -20.1319(非球面) d16= (可変) r17= 31.9705 d17= 0.8000 nd10=1.80100 νd10=34.97 r18= 7.8159 d18= 1.0000 r19= 11.0842(非球面) d19= 2.1000 nd11=1.58913 νd11=61.18 r20= 95.2442 d20= 2.0790 r21= ∞ d21= 6.3000 nd12=1.54771 νd12=62.83 r22= ∞ d22= 0.4000 r23= 15.1381(非球面) d23= 1.7000 nd13=1.49241 νd13=57.66 r24= 495.7590 d24= 1.2100 r25= ∞ d25= 0.6000 nd14=1.48749 νd14=70.20 r26= ∞ 非球面係数 第10面 P = 1 A4 =-0.15672×10-4 A6 = 0.16675×10-6 A8 = 0.11985×10-7 A10= 0 第11面 P = 1 A4 =-0.71017×10-4 A6 = 0.19429×10-5 A8 =-0.14798×10-6 A10= 0.33691×10-8 第16面 P = 1 A4 = 0.11912×10-3 A6 = 0.56770×10-5 A8 =-0.40152×10-6 A10= 0.82922×10-8 第19面 P = 1 A4 =-0.60065×10-4 A6 = 0.20930×10-4 A8 =-0.24113×10-5 A10= 0.96736×10-7 第23面 P = 1 A4 = 0.35380×10-3 A6 =-0.52968×10-4 A8 = 0.48508×10-5 A10=-0.16920×10-6 β5 =1.222 fIII /fI =0.724 fS /fI =0.440f/|fII|=2.349 fS /fI-III =0.499 n6 −n5 =0.359 n4 −n5 =0.314
Example 11 f = 5.15 to 17.58 to 60.00 F NO = 1.86 to 2.18 to 2.15 ω = 31.5 ° to 10.2 ° 3.0 ° r 1 = 48.4331 d 1 = 1.1000 n d1 = 1.84666 ν d1 = 23.78 r 2 = 26.7655 d 2 = 5.1000 n d2 = 1.56873 ν d2 = 63.16 r 3 = 17050.4298 d 3 = 0.1500 r 4 = 27.6169 d 4 = 3.7000 n d3 = 1.66672 ν d3 = 48.32 r 5 = 110.0610 d 5 = ( variable) r 6 = 108.2896 d 6 = 0.9000 n d4 = 1.80100 ν d4 = 34.97 r 7 = 6.9714 d 7 = 3.5000 r 8 = -14.0637 d 8 = 0.8000 n d5 = 1.48749 ν d5 = 70.20 r 9 = 9.4503 d 9 = 2.6000 n d6 = 1.84666 ν d6 = 23.78 r 10 = 39.3635 (aspherical surface) d 10 = (variable) r 11 = 20.9972 (aspherical surface) d 11 = 2.1000 n d7 = 1.58913 ν d7 = 61.18 r 12 = -86.8208 d 12 = 0.8000 r 13 = ∞ (Aperture) d 13 = (Variable) r 14 = 11.1717 d 14 = 0.8000 n d8 = 1.84666 ν d8 = 23.78 r 15 = 7.4201 d 15 = 4.5000 n d9 = 1.58913 ν d9 = 61.18 r 16 = -20.1319 (aspheric) d 16 = (variable) r 17 = 31.9 705 d 17 = 0.8000 n d10 = 1.80100 ν d10 = 34.97 r 18 = 7.8159 d 18 = 1.0000 r 19 = 11.0842 (aspherical surface) d 19 = 2.1000 n d11 = 1.58913 ν d11 = 61.18 r 20 = 95.2442 d 20 = 2.0790 r 21 = ∞ d 21 = 6.3000 n d12 = 1.54771 ν d12 = 62.83 r 22 = ∞ d 22 = 0.4000 r 23 = 15.1381 (aspherical) d 23 = 1.7000 n d13 = 1.49241 ν d13 = 57.66 r 24 = 495.7590 d 24 = 1.2100 r 25 = ∞ d 25 = 0.6000 n d14 = 1.48749 ν d14 = 70.20 r 26 = ∞ Aspheric coefficient 10th surface P = 1 A 4 = -0.15672 × 10 -4 A 6 = 0.16675 × 10 -6 A 8 = 0.11985 × 10 -7 A 10 = 0 11th surface P = 1 A 4 = -0.71017 × 10 -4 A 6 = 0.19429 × 10 -5 A 8 = -0.14798 × 10 -6 A 10 = 0.33691 × 10 -8 16th surface P = 1 A 4 = 0.11912 × 10 -3 A 6 = 0.56770 × 10 -5 A 8 = -0.40152 × 10 -6 A 10 = 0.82922 × 10 -8 19th surface P = 1 A 4 = -0.60065 × 10 -4 A 6 = 0.20930 × 10 -4 A 8 = -0.24113 × 10 -5 A 10 = 0.96736 × 10 -7 23rd surface P = 1 A 4 = 0.35380 × 10 -3 A 6 = -0.52968 × 10 -4 A 8 = 0.48508 × 10 -5 A 10 = -0.16920 × 10 -6 β 5 = 1.222 f III / f I = 0.724 f S / f I = 0.440 f S / | f II | = 2.349 f S / f I-III = 0.499 n 6 -n 5 = 0.359 n 4 -n 5 = 0.314
.

【0053】上記実施例1〜11の無限遠撮影時の広角
端(a)、標準状態(b)、望遠端(c)、及び、物体
距離1mでの撮影時の望遠端(d)における球面収差、
非点収差、歪曲収差、倍率色収差を示す収差図をそれぞ
れ図12〜図22に示す。
Spherical surfaces at the wide-angle end (a), the standard state (b), the telephoto end (c), and the telephoto end (d) at the object distance of 1 m in Examples 1 to 11 when shooting at infinity. aberration,
Aberration diagrams showing astigmatism, distortion, and chromatic aberration of magnification are shown in FIGS. 12 to 22, respectively.

【0054】[0054]

【発明の効果】以上の説明から明らかなように、本発明
の高変倍レンズによると、正の屈折力を有する第1群、
負の屈折力する第2群、正の屈折力を有する第3群、正
の屈折力を有する第4群で構成され、第2群を移動する
ことで変倍を行い、第4群で変倍や物点の移動に伴う焦
点移動を補正するように移動させる変倍レンズにおい
て、第2群の最も像側の面と第4群の最も物体側の面の
間に開口絞りを配置し、開口絞りと第3群を変倍時に物
体側に凸状のほぼ同様な形状の軌跡に沿って移動させる
ことで、前玉径を大きくせずに、焦点距離を広角側に延
長した高変倍比の変倍レンズを得ることができると同時
に、第3群の移動や高変倍比化に伴う第4群の移動量の
増大を緩和し、移動スペースを節約するために、負の屈
折力を有する第5群を付け加えて、第4群の移動量を少
なくし、節約した移動スペース分だけ全長を短くするこ
とができる。また、最も像側の群が負の屈折力を有する
ために、射出瞳が浅くなり、シェーディングの問題が発
生しやすいが、撮像素子の直前に正レンズを1枚付加す
ることによりこの問題は解決できる。
As is apparent from the above description, according to the high variable power lens of the present invention, the first group having a positive refractive power,
It is composed of a second group having a negative refracting power, a third group having a positive refracting power, and a fourth group having a positive refracting power. In a variable power lens that moves so as to correct the focal point movement due to the magnification and the movement of the object point, an aperture stop is arranged between the most image side surface of the second group and the most object side surface of the fourth group, By moving the aperture stop and the third lens unit along a locus of a similar shape that is convex toward the object side during zooming, it is possible to achieve high zooming with the focal length extended to the wide-angle side without increasing the front lens diameter. It is possible to obtain a variable power lens with a high ratio, and at the same time, to reduce the amount of movement of the fourth lens unit due to the movement of the third lens unit and the high zoom ratio, and to save the moving space, a negative refractive power is used. It is possible to reduce the amount of movement of the fourth group by adding the fifth group having the above, and to shorten the total length by the saved moving space. Further, since the lens group closest to the image side has a negative refracting power, the exit pupil becomes shallow and a problem of shading is likely to occur, but this problem is solved by adding one positive lens immediately before the image sensor. it can.

【0055】最終的には、本発明によると、広角端画角
2ω=63°、変倍比12倍、F値1.8(広角端)、
全長15fW 、前玉径5.8fW と、超小型で高い仕様
でありながら、結像特性の良好な変倍レンズが得られ
る。
Finally, according to the present invention, the angle of view at the wide-angle end is 2ω = 63 °, the zoom ratio is 12 times, the F value is 1.8 (wide-angle end),
Full length 15f W, and front lens diameter 5.8F W, yet high specification in a very small, good zoom lens of the imaging characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1の高変倍レンズの広角端にお
ける断面図である。
FIG. 1 is a sectional view of a high variable power lens according to a first exemplary embodiment of the present invention at a wide-angle end.

【図2】実施例2の高変倍レンズの広角端における断面
図である。
FIG. 2 is a sectional view of a high variable power lens according to a second exemplary embodiment at a wide-angle end.

【図3】実施例3の高変倍レンズの広角端における断面
図である。
FIG. 3 is a sectional view of a high variable power lens according to a third exemplary embodiment at a wide-angle end.

【図4】実施例4の高変倍レンズの広角端における断面
図である。
FIG. 4 is a sectional view of a high variable power lens according to a fourth example at a wide-angle end.

【図5】実施例5の高変倍レンズの広角端における断面
図である。
FIG. 5 is a sectional view of a high variable power lens according to a fifth exemplary embodiment at a wide-angle end.

【図6】実施例6の高変倍レンズの広角端における断面
図である。
FIG. 6 is a sectional view of a high variable power lens according to a sixth example at a wide-angle end.

【図7】実施例7の高変倍レンズの広角端における断面
図である。
FIG. 7 is a sectional view of a high variable power lens according to a seventh example at a wide-angle end.

【図8】実施例8の高変倍レンズの広角端における断面
図である。
FIG. 8 is a sectional view of a high variable power lens according to an eighth example at a wide-angle end.

【図9】実施例9の高変倍レンズの広角端における断面
図である。
FIG. 9 is a sectional view of a high variable power lens of a ninth example at a wide-angle end.

【図10】実施例10の高変倍レンズの広角端における
断面図である。
FIG. 10 is a sectional view of a high variable power lens of the tenth example at a wide-angle end.

【図11】実施例11の高変倍レンズの広角端における
断面図である。
FIG. 11 is a sectional view of a high variable power lens according to an example 11 at a wide-angle end.

【図12】実施例1の無限遠撮影時の広角端(a)、標
準状態(b)、望遠端(c)、及び、物体距離1mでの
撮影時の望遠端(d)における球面収差、非点収差、歪
曲収差、倍率色収差を示す収差図である。
FIG. 12 is a spherical aberration at the wide-angle end (a), the standard state (b), the telephoto end (c), and the telephoto end (d) at the time of shooting at an object distance of 1 m in Example 1 at infinity shooting; FIG. 6 is an aberration diagram showing astigmatism, distortion, and chromatic aberration of magnification.

【図13】実施例2の図12と同様な収差図である。FIG. 13 is an aberration diagram similar to FIG. 12 of Example 2.

【図14】実施例3の図12と同様な収差図である。FIG. 14 is an aberration diagram similar to FIG. 12 of Example 3;

【図15】実施例4の図12と同様な収差図である。FIG. 15 is an aberration diagram similar to FIG. 12 of Example 4.

【図16】実施例5の図12と同様な収差図である。FIG. 16 is an aberration diagram similar to FIG. 12 of Example 5.

【図17】実施例6の図12と同様な収差図である。FIG. 17 is an aberration diagram similar to FIG. 12 of Example 6.

【図18】実施例7の図12と同様な収差図である。FIG. 18 is an aberration diagram similar to FIG. 12 of Example 7.

【図19】実施例8の図12と同様な収差図である。FIG. 19 is an aberration diagram similar to FIG. 12 of Example 8;

【図20】実施例9の図12と同様な収差図である。FIG. 20 is an aberration diagram similar to FIG. 12 of Example 9.

【図21】実施例10の図12と同様な収差図である。FIG. 21 is an aberration diagram similar to FIG. 12 of Example 10.

【図22】実施例11の図12と同様な収差図である。22 is an aberration diagram similar to FIG. 12 of Example 11. FIG.

【符号の説明】[Explanation of symbols]

G1…第1群 G2…第2群 G3…第3群 G4…第4群 G5…第5群 G1 ... 1st group G2 ... 2nd group G3 ... 3rd group G4 ... 4th group G5 ... 5th group

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年10月26日[Submission date] October 26, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Name of item to be corrected] Brief description of the drawing

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1の高変倍レンズの広角端にお
ける断面図である。
FIG. 1 is a sectional view of a high variable power lens according to a first exemplary embodiment of the present invention at a wide-angle end.

【図2】実施例2の高変倍レンズの広角端における断面
図である。
FIG. 2 is a sectional view of a high variable power lens according to a second exemplary embodiment at a wide-angle end.

【図3】実施例3の高変倍レンズの広角端における断面
図である。
FIG. 3 is a sectional view of a high variable power lens according to a third exemplary embodiment at a wide-angle end.

【図4】実施例4の高変倍レンズの広角端における断面
図である。
FIG. 4 is a sectional view of a high variable power lens according to a fourth example at a wide-angle end.

【図5】実施例5の高変倍レンズの広角端における断面
図である。
FIG. 5 is a sectional view of a high variable power lens according to a fifth exemplary embodiment at a wide-angle end.

【図6】実施例6の高変倍レンズの広角端における断面
図である。
FIG. 6 is a sectional view of a high variable power lens according to a sixth example at a wide-angle end.

【図7】実施例7の高変倍レンズの広角端における断面
図である。
FIG. 7 is a sectional view of a high variable power lens according to a seventh example at a wide-angle end.

【図8】実施例8の高変倍レンズの広角端における断面
図である。
FIG. 8 is a sectional view of a high variable power lens according to an eighth example at a wide-angle end.

【図9】実施例9の高変倍レンズの広角端における断面
図である。
FIG. 9 is a sectional view of a high variable power lens of a ninth example at a wide-angle end.

【図10】実施例10の高変倍レンズの広角端における
断面図である。
FIG. 10 is a sectional view of a high variable power lens of the tenth example at a wide-angle end.

【図11】実施例11の高変倍レンズの広角端における
断面図である。
FIG. 11 is a sectional view of a high variable power lens according to an example 11 at a wide-angle end.

【図12a】実施例1の無限遠撮影時の広角端における
球面収差、非点収差、歪曲収差、倍率色収差を示す収差
図である。
12A is an aberration diagram showing spherical aberration, astigmatism, distortion, and chromatic aberration of magnification at the wide-angle end during infinity imaging in Example 1. FIG.

【図12b】実施例1の無限遠撮影時の標準状態におけ
る球面収差、非点収差、歪曲収差、倍率色収差を示す収
差図である。
12B is an aberration diagram showing spherical aberration, astigmatism, distortion, and lateral chromatic aberration in the standard state at the time of infinity imaging in Example 1. FIG.

【図12c】実施例1の望遠端における球面収差、非点
収差、歪曲収差、倍率色収差を示す収差図である。
12C is an aberration diagram showing spherical aberration, astigmatism, distortion, and chromatic aberration of magnification at the telephoto end of Example 1. FIG.

【図12d】実施例1の物体距離1mでの撮影時の望遠
端における球面収差、非点収差、歪曲収差、倍率色収差
を示す収差図である。
FIG. 12d is an aberration diagram showing spherical aberration, astigmatism, distortion, and lateral chromatic aberration at the telephoto end at the time of shooting with an object distance of 1 m in Example 1.

【図13a】実施例2の図12aと同様な収差図であ
る。
13a is an aberration diagram similar to FIG. 12a of Example 2. FIG.

【図13b】実施例2の図12bと同様な収差図であ
る。
13b is an aberration diagram similar to FIG. 12b of Example 2. FIG.

【図13c】実施例2の図12cと同様な収差図であ
る。
13c is an aberration diagram similar to FIG. 12c of Example 2. FIG.

【図13d】実施例2の図12dと同様な収差図であ
る。
13d is an aberration diagram similar to FIG. 12d of Example 2. FIG.

【図14a】実施例3の図12aと同様な収差図であ
る。
14a is an aberration diagram similar to FIG. 12a of Example 3. FIG.

【図14b】実施例3の図12bと同様な収差図であ
る。
14b is an aberration diagram similar to FIG. 12b of Example 3. FIG.

【図14c】実施例3の図12cと同様な収差図であ
る。
14c is an aberration diagram similar to FIG. 12c of Example 3. FIG.

【図14d】実施例3の図12dと同様な収差図であ
る。
14d is an aberration diagram similar to FIG. 12d of Example 3. FIG.

【図15a】実施例4の図12aと同様な収差図であ
る。
15a is an aberration diagram similar to FIG. 12a of Example 4. FIG.

【図15b】実施例4の図12bと同様な収差図であ
る。
15b is an aberration diagram similar to FIG. 12b of Example 4. FIG.

【図15c】実施例4の図12cと同様な収差図であ
る。
15c is an aberration diagram similar to FIG. 12c of Example 4. FIG.

【図15d】実施例4の図12dと同様な収差図であ
る。
15d is an aberration diagram similar to FIG. 12d of Example 4. FIG.

【図16a】実施例5の図12aと同様な収差図であ
る。
16a is an aberration diagram similar to FIG. 12a of Example 5. FIG.

【図16b】実施例5の図12bと同様な収差図であ
る。
16b is an aberration diagram similar to FIG. 12b of Example 5. FIG.

【図16c】実施例5の図12cと同様な収差図であ
る。
16c is an aberration diagram similar to FIG. 12c of Example 5. FIG.

【図16d】実施例5の図12dと同様な収差図であ
る。
16d is an aberration diagram similar to FIG. 12d of Example 5. FIG.

【図17a】実施例6の図12aと同様な収差図であ
る。
17a is an aberration diagram similar to FIG. 12a of Example 6. FIG.

【図17b】実施例6の図12bと同様な収差図であ
る。
17b is an aberration diagram similar to FIG. 12b of Example 6. FIG.

【図17c】実施例6の図12cと同様な収差図であ
る。
17c is an aberration diagram similar to FIG. 12c of Example 6. FIG.

【図17d】実施例6の図12dと同様な収差図であ
る。
17d is an aberration diagram similar to FIG. 12d of Example 6. FIG.

【図18a】実施例7の図12aと同様な収差図であ
る。
18a is an aberration diagram similar to FIG. 12a of Example 7. FIG.

【図18b】実施例7の図12bと同様な収差図であ
る。
18b is an aberration diagram similar to FIG. 12b of Example 7. FIG.

【図18c】実施例7の図12cと同様な収差図であ
る。
18c is an aberration diagram similar to FIG. 12c of Example 7. FIG.

【図18d】実施例7の図12dと同様な収差図であ
る。
18d is an aberration diagram similar to FIG. 12d of Example 7. FIG.

【図19a】実施例8の図12aと同様な収差図であ
る。
19a is an aberration diagram similar to FIG. 12a of Example 8. FIG.

【図19b】実施例8の図12bと同様な収差図であ
る。
19b is an aberration diagram similar to FIG. 12b of Example 8. FIG.

【図19c】実施例8の図12cと同様な収差図であ
る。
19c is an aberration diagram similar to FIG. 12c of Example 8. FIG.

【図19d】実施例8の図12dと同様な収差図であ
る。
19d is an aberration diagram similar to FIG. 12d of Example 8. FIG.

【図20a】実施例9の図12aと同様な収差図であ
る。
20a is an aberration diagram similar to FIG. 12a of Example 9. FIG.

【図20b】実施例9の図12bと同様な収差図であ
る。
20b is an aberration diagram similar to FIG. 12b of Example 9. FIG.

【図20c】実施例9の図12cと同様な収差図であ
る。
20c is an aberration diagram similar to FIG. 12c of Example 9. FIG.

【図20d】実施例9の図12dと同様な収差図であ
る。
20d is an aberration diagram similar to FIG. 12d of Example 9. FIG.

【図21a】実施例10の図12aと同様な収差図であ
る。
21a is an aberration diagram similar to FIG. 12a of Example 10. FIG.

【図21b】実施例10の図12bと同様な収差図であ
る。
21b is an aberration diagram similar to FIG. 12b of Example 10. FIG.

【図21c】実施例10の図12cと同様な収差図であ
る。
21c is an aberration diagram similar to FIG. 12c of Example 10. FIG.

【図21d】実施例10の図12dと同様な収差図であ
る。
21d is an aberration diagram similar to FIG. 12d of Example 10. FIG.

【図22a】実施例11の図12aと同様な収差図であ
る。
22a is an aberration diagram similar to FIG. 12a of Example 11. FIG.

【図22b】実施例11の図12bと同様な収差図であ
る。
22b is an aberration diagram similar to FIG. 12b of Example 11. FIG.

【図22c】実施例11の図12cと同様な収差図であ
る。
22c is an aberration diagram similar to FIG. 12c of Example 11. FIG.

【図22d】実施例11の図12dと同様な収差図であ
る。
22d is an aberration diagram similar to FIG. 12d of Example 11. FIG.

【符号の説明】 G1…第1群 G2…第2群 G3…第3群 G4…第4群 G5…第5群[Explanation of Codes] G1 ... First group G2 ... Second group G3 ... Third group G4 ... Fourth group G5 ... Fifth group

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】全図[Correction target item name] All drawings

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】 [Figure 1]

【図2】 [Fig. 2]

【図3】 [Figure 3]

【図4】 [Figure 4]

【図5】 [Figure 5]

【図6】 [Figure 6]

【図7】 [Figure 7]

【図8】 [Figure 8]

【図9】 [Figure 9]

【図10】 [Figure 10]

【図11】 FIG. 11

【図12a】 FIG. 12a

【図12b】 FIG. 12b

【図12c】 FIG. 12c

【図12d】 FIG. 12d

【図13a】 FIG. 13a

【図13b】 FIG. 13b

【図13c】 FIG. 13c

【図13d】 FIG. 13d

【図14a】 Figure 14a

【図14b】 FIG. 14b

【図14c】 FIG. 14c

【図14d】 FIG. 14d

【図15a】 FIG. 15a

【図15b】 FIG. 15b

【図15c】 FIG. 15c

【図15d】 FIG. 15d

【図16a】 FIG. 16a

【図16b】 FIG. 16b

【図16c】 FIG. 16c

【図16d】 FIG. 16d

【図17a】 FIG. 17a

【図17b】 FIG. 17b

【図17c】 FIG. 17c

【図17d】 FIG. 17d

【図18a】 FIG. 18a

【図18b】 FIG. 18b

【図18c】 FIG. 18c

【図18d】 FIG. 18d

【図19a】 FIG. 19a

【図19b】 FIG. 19b

【図19c】 FIG. 19c

【図19d】 FIG. 19d

【図20a】 Figure 20a

【図20b】 FIG. 20b

【図20c】 FIG. 20c

【図20d】 FIG. 20d

【図21a】 FIG. 21a

【図21b】 FIG. 21b

【図21c】 FIG. 21c]

【図21d】 FIG. 21d

【図22a】 Figure 22a

【図22b】 FIG. 22b

【図22c】 FIG. 22c

【図22d】 FIG. 22d

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 物体側から順に、正の屈折力を有する第
1群、負の屈折力を有し、変倍時可動の第2群、正の屈
折力を有し、広角端から望遠端へ変倍する際、物体側に
凸状の軌跡に沿って可動の第3郡、正の屈折力を有し、
変倍時及び物点位置の変化によるピント移動を補正する
ように移動可能な第4群、負の屈折力を有し、常時固定
の第5群から構成されると共に、前記第2群の最も像側
の面と前記第4群の最も物体側の面の間に開口絞りを有
し、以下の条件を満足することを特徴とする高変倍レン
ズ: (1)1.0<β5 <2.0 ここで、β5 は第5群の横倍率である。
1. A first group having positive refracting power, a second group having negative refracting power, and a second group movable during zooming, having positive refracting power in order from the object side, having a wide-angle end to a telephoto end. When zooming to, have a positive refractive power in the third group that is movable along a convex locus on the object side,
It is composed of a fourth group movable so as to correct focus movement due to zooming and a change in object point position, a fifth group having a negative refracting power and always fixed, and most of the second group. A high zoom lens having an aperture stop between the image side surface and the most object side surface of the fourth group, and satisfying the following conditions: (1) 1.0 <β 5 < 2.0 Here, β 5 is the lateral magnification of the fifth group.
JP9435792A 1992-04-14 1992-04-14 High zoom lens Expired - Fee Related JP3288422B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9435792A JP3288422B2 (en) 1992-04-14 1992-04-14 High zoom lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9435792A JP3288422B2 (en) 1992-04-14 1992-04-14 High zoom lens

Publications (2)

Publication Number Publication Date
JPH06109976A true JPH06109976A (en) 1994-04-22
JP3288422B2 JP3288422B2 (en) 2002-06-04

Family

ID=14108045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9435792A Expired - Fee Related JP3288422B2 (en) 1992-04-14 1992-04-14 High zoom lens

Country Status (1)

Country Link
JP (1) JP3288422B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1607785A3 (en) * 2004-06-14 2007-01-31 Sony Corporation Zoom lens and image pick-up apparatus
JP2007178769A (en) * 2005-12-28 2007-07-12 Tamron Co Ltd Zoom lens
JP2009128492A (en) * 2007-11-21 2009-06-11 Fujinon Corp High power zoom lens and imaging device
JP2009128491A (en) * 2007-11-21 2009-06-11 Fujinon Corp High-power zoom lens and imaging device
JP2012113285A (en) * 2010-11-01 2012-06-14 Canon Inc Zoom lens and imaging apparatus having the same
WO2012081251A1 (en) * 2010-12-16 2012-06-21 富士フイルム株式会社 Projection zoom lens and projection device
CN104698575A (en) * 2013-12-06 2015-06-10 柯尼卡美能达株式会社 Zoom lens, lens unit and camera
CN105388600A (en) * 2014-08-28 2016-03-09 佳能株式会社 Zoom lens and image pickup apparatus including the same
JP2016102978A (en) * 2014-11-28 2016-06-02 キヤノン株式会社 Zoom lens and image capturing device having the same
JP2016173529A (en) * 2015-03-18 2016-09-29 キヤノン株式会社 Zoom lens and imaging device mounted with the same
JP2020101736A (en) * 2018-12-25 2020-07-02 株式会社シグマ Zoom imaging optical system

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1607785A3 (en) * 2004-06-14 2007-01-31 Sony Corporation Zoom lens and image pick-up apparatus
US7256945B2 (en) 2004-06-14 2007-08-14 Sony Corporation Zoom lens and image pick-up apparatus
CN100454131C (en) * 2004-06-14 2009-01-21 索尼株式会社 Zoom lens and image pick-up apparatus
JP2007178769A (en) * 2005-12-28 2007-07-12 Tamron Co Ltd Zoom lens
JP2009128492A (en) * 2007-11-21 2009-06-11 Fujinon Corp High power zoom lens and imaging device
JP2009128491A (en) * 2007-11-21 2009-06-11 Fujinon Corp High-power zoom lens and imaging device
JP2012113285A (en) * 2010-11-01 2012-06-14 Canon Inc Zoom lens and imaging apparatus having the same
JPWO2012081251A1 (en) * 2010-12-16 2014-05-22 富士フイルム株式会社 Projection zoom lens and projection device
WO2012081251A1 (en) * 2010-12-16 2012-06-21 富士フイルム株式会社 Projection zoom lens and projection device
US9069157B2 (en) 2010-12-16 2015-06-30 Fujifilm Corporation Projection zoom lens and projection apparatus
CN104698575A (en) * 2013-12-06 2015-06-10 柯尼卡美能达株式会社 Zoom lens, lens unit and camera
CN105388600A (en) * 2014-08-28 2016-03-09 佳能株式会社 Zoom lens and image pickup apparatus including the same
JP2016048355A (en) * 2014-08-28 2016-04-07 キヤノン株式会社 Zoom lens and imaging apparatus including the same
US10120170B2 (en) 2014-08-28 2018-11-06 Canon Kabushiki Kaisha Zoom lens and image pickup apparatus including the same
JP2016102978A (en) * 2014-11-28 2016-06-02 キヤノン株式会社 Zoom lens and image capturing device having the same
JP2016173529A (en) * 2015-03-18 2016-09-29 キヤノン株式会社 Zoom lens and imaging device mounted with the same
JP2020101736A (en) * 2018-12-25 2020-07-02 株式会社シグマ Zoom imaging optical system

Also Published As

Publication number Publication date
JP3288422B2 (en) 2002-06-04

Similar Documents

Publication Publication Date Title
US11347034B2 (en) Zoom lens and image pickup apparatus
US6233099B1 (en) Zoom lens and optical apparatus having the same
JP3328001B2 (en) Zoom lens
JP5606201B2 (en) Zoom lens and imaging apparatus having the same
US7382549B2 (en) Zoom lens and imaging system incorporating it
JP4902191B2 (en) Zoom lens and imaging apparatus having the same
JP3506691B2 (en) High magnification zoom lens
JP2001228397A (en) Zoom lens
JP2009186983A (en) Zoom lens and imaging apparatus with the same
JP2000284177A (en) Three-group zoom lens
JP2002365548A (en) Zoom lens
JP3264949B2 (en) Zoom lens with short overall length
JP2001330777A (en) Zoom lens
JPH07253542A (en) Zoom lens
JP2001091833A (en) Zoom lens
JP3028581B2 (en) High magnification zoom lens
JPH11258507A (en) Zoom lens
JPH0566348A (en) Variable power lens with short overall length
JPH1164733A (en) Zoom lens long in back focus
JP3288422B2 (en) High zoom lens
JPH0560973A (en) Variable power lens of short overall length
US20030189763A1 (en) Zoom lens and image pickup apparatus
JP3412939B2 (en) Zoom lens
JP3008711B2 (en) Small zoom lens
JPH0727979A (en) Zoom lens

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090315

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090315

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100315

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110315

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees