JPH0610925B2 - Pressure-sensitive conductive elastomer molding - Google Patents

Pressure-sensitive conductive elastomer molding

Info

Publication number
JPH0610925B2
JPH0610925B2 JP59162562A JP16256284A JPH0610925B2 JP H0610925 B2 JPH0610925 B2 JP H0610925B2 JP 59162562 A JP59162562 A JP 59162562A JP 16256284 A JP16256284 A JP 16256284A JP H0610925 B2 JPH0610925 B2 JP H0610925B2
Authority
JP
Japan
Prior art keywords
conductive
alkali metal
pressure
metal titanate
rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59162562A
Other languages
Japanese (ja)
Other versions
JPS6142814A (en
Inventor
紀八郎 西内
憲一 和田
正義 鈴江
幸哉 晴山
稔 竹中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Otsuka Chemical Co Ltd
Original Assignee
Otsuka Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otsuka Chemical Co Ltd filed Critical Otsuka Chemical Co Ltd
Priority to JP59162562A priority Critical patent/JPH0610925B2/en
Publication of JPS6142814A publication Critical patent/JPS6142814A/en
Publication of JPH0610925B2 publication Critical patent/JPH0610925B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Adjustable Resistors (AREA)
  • Conductive Materials (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は感圧導電性エラストマー成形体に関し、更に詳
しくは押圧を力を印加したとき、この押圧力の方向にお
ける抵抗値が変化し、しかもこの抵抗値変化が極めて安
定している感圧導電性エラストマー成形体に関する。
Description: TECHNICAL FIELD The present invention relates to a pressure-sensitive conductive elastomer molded body, and more specifically, when a pressing force is applied, the resistance value in the direction of the pressing force changes, and The present invention relates to a pressure-sensitive conductive elastomer molded body in which the resistance value change is extremely stable.

(従来の技術) 従来、感圧導電性ゴム成形体に関しては多くの提案がな
され、また近年に至つてこの感圧導電性ゴム成形体は、
各種接点部品や感圧抵抗素子として広く使用されるに至
つている。この各種従来公知の感圧道電性ゴムは、ゴム
状弾性体の中に各種金属粒子、カーボンブラツク粉末な
どの導電性付加剤を所定量添加配合してなるものである
が、この導電性ゴムの抵抗値変化には2つの方法が考え
られている。即ち、特公昭36−18879号公報に開示され
た、電極間に導電性ゴム成形体を挟持して両電極体間に
押圧力を印加するとき、接触面積が増大することにより
抵抗値変化があらわれる方法、特公昭50−31945号公報
に開示された、導電性ゴム成形体に押圧力を印加して成
形体に圧縮歪みを生じさせ、この際成形体中に分散配合
された導電性粒子同士の接触のチヤンスを増大させ電極
間抵抗値を減少させる方法である。しかし前者の方法に
よる導電性ゴムにおいては、圧力印加時に電極体と導電
性ゴム成形体との間に作用する摩擦力が、押圧力の繰返
し印加に伴なつて変化してしまうため、押圧力印加回数
が増えるに従つて、電極間抵抗値の再現性が失われてし
まうという欠点がある。一方後者の方法による導電性ゴ
ムにおいては、マトリツクスの温度状態による変化など
により、導電性粒子同士の触媒のチヤンスが変化しやす
いうえに、成形体の圧縮変化に伴つて導電性粒子とマト
リツクスが分離しやすく、従つて安定した抵抗値変化が
得がたいという欠点があつた。
(Prior Art) Conventionally, many proposals have been made regarding a pressure-sensitive conductive rubber molded body, and in recent years, this pressure-sensitive conductive rubber molded body is
It has come to be widely used as various contact parts and pressure-sensitive resistance elements. These various conventionally known pressure-sensitive electrically conductive rubbers are prepared by adding various metal particles, a conductive additive such as carbon black powder and the like in a rubber-like elastic body in a predetermined amount. There are two possible methods for changing the resistance value of the. That is, when a conductive rubber molded body is sandwiched between electrodes and a pressing force is applied between the two electrode bodies, as disclosed in Japanese Patent Publication No. 36-18879, a change in resistance appears due to an increase in contact area. Method, disclosed in Japanese Examined Patent Publication No. 31945/1975, a pressing force is applied to a conductive rubber molded body to cause compressive strain in the molded body, in which case the conductive particles dispersed and blended in the molded body This is a method of increasing the contact chance and decreasing the interelectrode resistance value. However, in the conductive rubber by the former method, the frictional force acting between the electrode body and the conductive rubber molded body when pressure is applied changes as the pressing force is repeatedly applied. As the number of times increases, there is a drawback that the reproducibility of the interelectrode resistance value is lost. On the other hand, in the case of the conductive rubber produced by the latter method, the change in the temperature of the matrix is likely to change the catalyst chase between the conductive particles, and the conductive particles and the matrix separate as the compact changes in compression. However, there is a drawback that it is difficult to obtain a stable change in resistance value.

一方、前記した従来公知の感圧導電性ゴム成形体はいず
れもこれを対向電極間にはさんで押圧力を印加すると
き、その電極間抵抗値は一般に無限大の領域から低抵抗
領域へと変化するが、この押圧力に対する抵抗値変化に
関し実用的な押圧力の範囲での変化率の差が大きく、従
つてこれら従来公知の感圧導電性ゴム成形体はON−O
FF信号を得るための接点材料として利用できても、押
圧力の変化を確実に抵抗値変化として取り出すことが出
来る感圧可変抵抗体としては到底利用できるものではな
かつた。
On the other hand, in any of the above-mentioned conventionally known pressure-sensitive conductive rubber moldings, when a pressing force is applied by sandwiching this between the opposing electrodes, the resistance value between the electrodes generally changes from an infinite region to a low resistance region. Although it varies, there is a large difference in the rate of change in the resistance value change with respect to this pressing force within a practical pressing force range. Therefore, these conventionally known pressure-sensitive conductive rubber moldings are ON-O.
Even if it can be used as a contact material for obtaining an FF signal, it cannot be used at all as a pressure-sensitive variable resistor capable of reliably extracting a change in pressing force as a change in resistance value.

(本発明が解決しようとする問題点) 本発明の目的は再現性の良好な抵抗値変化を安定して取
り出すことのできる感圧導電性エラストマー成形体を提
供することにある。
(Problems to be Solved by the Present Invention) An object of the present invention is to provide a pressure-sensitive conductive elastomer molded body which can stably take out a change in resistance value with good reproducibility.

また本発明の目的は感圧可変抵抗体として好適な感圧導
電性エラストマー成形体を提供することにある。
Another object of the present invention is to provide a pressure-sensitive conductive elastomer molded body suitable as a pressure-sensitive variable resistor.

(問題点を解決するための手段) 本発明は硬化後にゴム状弾性を呈するエラストマー組成
物に対し、導電性チタン酸アルカリ金属を均一に分散配
合して得られた組成物を成形してなることを特徴とする
感圧導電性エラストマー成形体に係る。
(Means for Solving Problems) The present invention comprises molding a composition obtained by uniformly dispersing and blending a conductive alkali metal titanate with an elastomer composition exhibiting rubber-like elasticity after curing. And a pressure-sensitive conductive elastomer molded body.

本発明の感圧導電性エラストマー成形体によれば、押圧
力の繰返し印加にもかかわらず再現性の良好な抵抗値変
化を取り出すことができ、従来の感圧導電性ゴム成形体
に比較して押圧力の印加に伴なう抵抗値を正確に取り出
すことができ、従つて押圧力の変化を正確な抵抗値変化
として反映することができる感圧可変抵抗体として好適
な感圧導電性エラストマー成形体である。
According to the pressure-sensitive conductive elastomer molded body of the present invention, it is possible to take out a resistance value change with good reproducibility despite repeated application of pressing force, and compared with the conventional pressure-sensitive conductive rubber molded body. A pressure-sensitive conductive elastomer molding suitable as a pressure-sensitive variable resistor that can accurately extract the resistance value accompanying the application of a pressing force, and can therefore reflect the change in the pressing force as an accurate resistance value change. It is the body.

以下に本発明の内容について更に詳述すると、本発明に
おける硬化後にゴム弾性を呈するエラストマー組成物と
は、公知の天然ゴム、あるいはブチルゴム、イソプレン
ゴム、アクリルゴム、ニトリル−ブタジエンゴム、塩素
化ポリエチレンゴム、エチレン−プロピレンゴム、シリ
コーンゴム、フツ素ゴム、ウレタンゴム、熱可塑性エラ
ストマー等の1種もしくは2種以上からなるもので、種
々の添加剤等を含むものであり、上記のうちでも耐熱
性、電気的特性、耐薬品性に優れたシリコーンゴム及び
シリコーンゴムに上記エラストマーの1種以上を混合し
たものが好ましく、シリコーンゴムは付加反応により硬
化するものや、縮合反応により硬化するもののいずれで
も良い。
The content of the present invention will be described in more detail below. The elastomer composition exhibiting rubber elasticity after curing in the present invention is a known natural rubber, or butyl rubber, isoprene rubber, acrylic rubber, nitrile-butadiene rubber, chlorinated polyethylene rubber. , Ethylene-propylene rubber, silicone rubber, fluorine rubber, urethane rubber, thermoplastic elastomer, etc., and one or more of them, containing various additives and the like. Silicone rubber having excellent electrical characteristics and chemical resistance, and a mixture of silicone rubber and one or more of the above elastomers are preferable, and the silicone rubber may be one that is cured by an addition reaction or one that is cured by a condensation reaction.

一方本発明における導電性チタン酸アルカリ金属とは 1)一般式M2O・aTiOx・bH2O(式中MはLi,
Na,Kなどのアクリル金属、0<a≦8、0≦b≦
4、0<x<2、a,b,xは実数)で表わされ、一般
に還元チタン酸アルカリ金属又はブロンズチタン酸アル
カリ金属と呼ばれる導電性チタン酸アルカリ金属(I) (2)一般式M2O・aTiOy・bH2O(式中M,a,b
は前記と同じ、0<y≦2)で表わされる、チタン酸ア
ルカリ金属表面に異種金属化合物を固着あるいは固溶さ
せた導電性チタンアルカリ金属(II) 3)導電性チタン酸アルカリ金属(II)を更に還元処理した
導電性チタン酸アルカリ金属(III) 等でありこれら各種の導電性チタン酸アルカリ金属の1
種又は2種以上の混合物である。
On the other hand, the conductive alkali metal titanate in the present invention is 1) General formula M 2 O · aTiO x · bH 2 O (where M is Li,
Acrylic metal such as Na and K, 0 <a ≦ 8, 0 ≦ b ≦
4, 0 <x <2, a, b, and x are real numbers, and are generally referred to as reduced alkali metal titanate or bronze alkali metal titanate. 2 O ・ aTiO y・ bH 2 O (in the formula, M, a, b
Is a conductive titanium alkali metal (II) represented by 0 <y ≦ 2), which is represented by 0 <y ≦ 2), in which a dissimilar metal compound is fixed or solid-solved on the surface of the alkali metal titanate 3) Conductive alkali metal titanate (II) Is a conductive alkali metal titanate (III) which has been further reduced, and is one of these conductive alkali metal titanates.
It is a species or a mixture of two or more species.

尚、本発明の導電性チタン酸アルカリ金属は一般式M2
O・aTiO2・bH2O(式中M,a,bは前記と同
じ)で表わされるチタン酸アルカリ金属(IV)とは区別さ
れるものである。
The conductive alkali metal titanate of the present invention has the general formula M 2
O · aTiO 2 · bH 2 O The alkali metal titanate represented by (wherein M, a, b as defined above is) (IV) is distinguished.

一般にチタン酸アルカリ金属(IV)は、繊維状の単結晶と
して得られ、耐熱性、補強性の充填剤として優れたもの
であるが、電気絶縁体であり、チタン酸アルカリ金属(I
V)のみでは、導電性を示す組成物は得られない。
Generally, alkali metal titanate (IV) is obtained as a fibrous single crystal and is excellent as a heat-resistant and reinforcing filler, but it is an electrical insulator, and alkali metal titanate (I
V) alone does not give a composition exhibiting conductivity.

本発明における導電性チタン酸アルカリ金属に関し、本
発明者は、既にチタン酸アルカリ金属(IV)からの導電性
チタン酸アルカリ金属(I)の製造法、チタン酸アルカ
リ金属(IV)又は導電性チタン酸アルカリ金属(I)から
の導電性チタン酸アルカリ金属(II)の製造法、茶話には
導電性チタン酸アルカリ金属(II)からの導電性チタン酸
アルカリ金属(III)の製造法などの技術を開発し、特許
出願中である。しかしながら本発明の導電性チタン酸ア
ルカリ金属は、これら特許に記載されたものに限定され
るものではない。
Regarding the conductive alkali metal titanate in the present invention, the present inventor has already proposed a method for producing a conductive alkali metal titanate (I) from an alkali metal titanate (IV), an alkali metal titanate (IV) or a conductive titanium. Techniques such as a method for producing conductive alkali metal titanate (II) from acid alkali metal (I), and a tea production method for producing conductive alkali metal titanate (III) from conductive alkali metal titanate (II) Has been developed and a patent is pending. However, the conductive alkali metal titanate of the present invention is not limited to those described in these patents.

本発明に使用する導電性チタン酸アルカリ金属は補強
性、耐熱性に優れた導電材料であり、導電性チタン酸ア
ルカリ金属(I)の製造法に例示する。
The conductive alkali metal titanate used in the present invention is a conductive material having excellent reinforcing properties and heat resistance, and is exemplified in the method for producing the conductive alkali metal titanate (I).

導電性チタン酸アルカリ金属(I)は、チタン酸アルカ
リ金属(IV)を還元雰囲気、例えばH2、CO等の還元ガ
ス雰囲気、又は炭素物質等の還元剤の存在下での非酸化
性雰囲気で500℃以上で熱処理する方法、又はチタン酸
アルカリ金属(IV)の製造時、還元雰囲気、又は還元剤の
存在下で非酸化性雰囲気下に保つことでも直接製造する
ことが出来る。尚、一般式M2O・aTiOx・bH2
(M,a,b,xは前出に同じ)で示されるチタン酸ア
ルカリ金属において、Mがカリウム、即ち還元チタン酸
カリウムはxの変化に伴ない色調が変化し、白紫色、紫
色、黒色、黒紫色、金色、銀白色に変化するが、本発明
の導電性チタン酸アルカリ金属(I)として適用できる
ものとしては、x≦1.99、好ましくはx<1.95の淡紫色
へ黒色を呈するもの以上に還元されたものが導電性の観
点から好ましい。本発明の導電性チタン酸アルカリ金属
はこれらの導電性チタン酸アルカリ金属(I)〜(III)
の1種又は2種以上の混合物及び補強性又は非補強性の
導電性チタン酸アルカリ金属の全てが含まれるが、実用
的観点から微細繊維状のものが好ましく、通常、繊維径
0.1〜1μm、アスペクト比10以上のものが補強効果と
ともに表面平滑性を付与する点から好ましい。又、これ
ら導電性チタン酸アルカリ金属の導電率の使用目的によ
り選択すべきであり、本発明における導電性チタン酸ア
ルカリ金属の導電率は体積固有抵抗値で10-2〜105Ωcm
のものが好ましい。
The conductive alkali metal titanate (I) is prepared by reducing the alkali metal titanate (IV) in a reducing atmosphere such as a reducing gas atmosphere such as H 2 or CO, or a non-oxidizing atmosphere in the presence of a reducing agent such as a carbon material. It can also be directly produced by a method of heat treatment at 500 ° C. or higher, or when a alkali metal titanate (IV) is produced, it is kept in a reducing atmosphere or in a non-oxidizing atmosphere in the presence of a reducing agent. The general formula M 2 O · aTiO x · bH 2 O
In the alkali metal titanate represented by (M, a, b, and x are the same as those described above), M is potassium, that is, reduced potassium titanate changes its color tone with the change of x, and it is white purple, purple, or black. , Which changes to black-purple, gold or silver-white, but applicable as the conductive alkali metal titanate (I) of the present invention, those exhibiting a black to light purple of x ≦ 1.99, preferably x <1.95 or more Those reduced to are preferable from the viewpoint of conductivity. The conductive alkali metal titanate of the present invention includes these conductive alkali metal titanates (I) to (III).
1 type or a mixture of 2 or more types and all of the reinforcing or non-reinforcing conductive alkali metal titanate are included, but from the practical point of view, fine fibrous ones are preferable, and usually fiber diameter
Those having a thickness of 0.1 to 1 μm and an aspect ratio of 10 or more are preferable from the viewpoint of providing a reinforcing effect and surface smoothness. Further, the conductivity of the conductive alkali metal titanate should be selected according to the purpose of use, and the conductivity of the conductive alkali metal titanate in the present invention is 10 −2 to 10 5 Ωcm in volume specific resistance value.
Are preferred.

本発明において、上記導電性チタン酸アルカリ金属のエ
ラストマー組成物に対する配合割合は、エラストマー組
成物100重量部に対して30〜200重量部が好ましい。
In the present invention, the mixing ratio of the conductive alkali metal titanate to the elastomer composition is preferably 30 to 200 parts by weight with respect to 100 parts by weight of the elastomer composition.

本発明においてエラストマー組成物に導電性チタン酸ア
ルカリを均一に分散するには、従来公知の混練方法がい
ずれも使用でき、押出し機、ミキシングロール、ニーダ
ーなどを挙げることができる。混練に際してエラストマ
ー組成物がウイリアム可塑度メーターで500以下、好ま
しくは300以下で、約107センチストークス以上の可塑化
状態のもとに導電性チタン酸アルカリ金属を添加混合す
ることが望ましく、これによればエラストマー組成物に
対してより均一な状態で導電性チタン酸アルカリ金属を
分散配合することができる。なお、上記混練工程におい
て、この種の従来の導電性ゴムに使用されているカーボ
ンブラツク粉末、グラフアイト粉末などの導電性付与剤
を混入させることは差支えない。
In order to uniformly disperse the conductive alkali titanate in the elastomer composition in the present invention, any conventionally known kneading method can be used, and examples thereof include an extruder, a mixing roll and a kneader. When kneading, the elastomer composition is 500 or less, preferably 300 or less with a Williams plasticity meter, and it is desirable to add and mix a conductive alkali metal titanate under a plasticized state of about 10 7 centistokes or more. According to this, the conductive alkali metal titanate can be dispersed and blended with the elastomer composition in a more uniform state. In the kneading step, it is acceptable to mix a conductivity-imparting agent such as carbon black powder or graphite powder used in the conventional conductive rubber of this type.

次に本発明の感圧導電性エラストマー成形体は公知の成
形方法により得ることができる。得られた感圧導電性エ
ラストマー成形体については、これを対向電極間に挟ん
で押圧力を繰り返し印加するとき、再現性のよい抵抗値
変化ならびにこの種の公知の導電性ゴム成形体に比較し
て、押圧力印加に伴なう抵抗の変化率の差が小さく、か
つ広い押圧力印加範囲で抵抗値変化が得られる。その理
由としては、本発明の感圧導電性エラストマー成形体に
おける抵抗値変化の機構が、この導電性エラストマー成
形体を対向電極に挟んで押圧力を印加するとき成形体と
電極体の間の接触面積の増加とともに、導電性チタン酸
アルカリ金属の粒子と粒子が接触して電極間抵抗値が低
下するが、この際、導電性チタン酸アルカリ金属粒子の
形状がウイスカー状であるためにマトリツクスが圧縮変
形しにくく、導電性チタン酸アルカリ金属粒子がマトリ
ツクスと分離し難く、そのため押圧力の増加、換言すれ
ばマトリツクスの圧縮変形に伴なつて、この種の従来品
のように電極間の抵抗値が急激に低下することなく、ま
た、押圧力の繰返し印加にもかかわらずマトリツクス中
の導電性チタン酸アルカリ金属状態が変化しないためと
考えられる。
Next, the pressure-sensitive conductive elastomer molded body of the present invention has a known composition.
It can be obtained by the shaping method. The obtained pressure-sensitive conductive
For the elastomer molded body, sandwich this between the opposing electrodes.
Resistance value with good reproducibility when pressing force is repeatedly applied with
Compared to changes and known conductive rubber moldings of this kind
The difference in the rate of change of resistance due to the application of pressing force is small.
A change in resistance can be obtained over a wide pressing force application range. The reason
The reason is that the pressure-sensitive conductive elastomer molding of the present invention
The mechanism of resistance change in the
When a pressing force is applied with the shape body sandwiched between opposing electrodes,
With the increase of the contact area between the electrode bodies, conductive titanate
Resistance between electrodes is low due to contact between particles of alkali metal
However, at this time, the conductive alkali metal titanate particles
Due to the whisker-like shape, the matrix is compressed
It is difficult to shape and the conductive alkali metal titanate particles
It is difficult to separate from the tusks, so the pressing force increases, in other words
For example, due to compressive deformation of matrix, this type of conventional product
The resistance between the electrodes does not drop sharply,
Also, despite the repeated application of pressing force, the matrix
Because the conductive alkali metal titanate state of does not change
Conceivable.

上記した本発明の導電性エラストマー成形体は電流、電
圧調整装置、コンピユーター、カリキユレーター、電子
楽器、レジスター、電話、その他マイクロコンピュータ
ー装置などの信号入力末端装置、圧力センサー、トラン
ジユーサー、信号装置、各種計測器、自動車の各種調整
系統、信号系統等の端末装置における熱圧素子として極
めて有用である。
The above-mentioned conductive elastomer molded body of the present invention is a current input device, a voltage adjusting device, a computer, a caliculator, an electronic musical instrument, a register, a telephone, a signal input terminal device such as a microcomputer device, a pressure sensor, a transducer, a signal device, It is extremely useful as a thermocompression element in terminal devices such as various measuring instruments, various adjustment systems for automobiles, and signal systems.

(実施例) つぎに、本発明の実施例を挙げるが以下の実施例は本発
明を限定するものではない。尚、単に「部」とあるの
は、ことわりのない限り「重量部」を意味する。
(Examples) Next, examples of the present invention will be described, but the following examples do not limit the present invention. In addition, "parts" simply means "parts by weight" unless otherwise specified.

実施例1 シリコンコンパウンドKE951U[信越化学工業(株)
製]100部、導電製ウイスカーチタン酸カリウム[テイ
スモBK−200、チタン酸カリウムに炭素を被覆したも
の、大塚化学(株)製]43部および加硫剤カヤブチル−
ST[化薬ヌーリー(株)製]6部からなる組成物をも
つて厚さ1mmのシート状成形品を得た。
Example 1 Silicon compound KE951U [Shin-Etsu Chemical Co., Ltd.]
Manufactured] 100 parts, conductive whisker potassium titanate [Teismo BK-200, potassium titanate coated with carbon, manufactured by Otsuka Chemical Co., Ltd.] 43 parts and vulcanizing agent Kayabutyl-
A sheet-shaped molded product having a thickness of 1 mm was obtained with a composition consisting of 6 parts of ST [manufactured by Kayaku Nouri Co., Ltd.].

実施例2 シリコンコンパウンドKE951U(100部)、導電性ウイ
スカーチタン酸カリウム(テイスモBK−200)25部、
カヤブチル−ST(6部)からなる組成物をもつて、厚
さ1mmのシート状成形品を得た。
Example 2 Silicon compound KE951U (100 parts), conductive whisker potassium titanate (Teismo BK-200) 25 parts,
A sheet-shaped molded product having a thickness of 1 mm was obtained using the composition of Kayabutyl-ST (6 parts).

実施例3 シリコンゴムコンパウンドKE951U(100部)、導電性
ウイスカーチタン酸カリウム[テイスモBK−100、還
元チタン酸カリウム、大塚化学(株)製]100部および
カヤブチル−ST(4部)よりなる組成物をもつて、厚
さ1mmのシート状成形品を得た。
Example 3 Composition comprising silicone rubber compound KE951U (100 parts), conductive whisker potassium titanate [Teismo BK-100, reduced potassium titanate, Otsuka Chemical Co., Ltd.] 100 parts and Kayabutyl-ST (4 parts) A sheet-shaped molded product having a thickness of 1 mm was obtained.

実施例4 シリコンゴムコンパウンドKE951U(100部)、導電性
ウイスカーチタン酸カリウム[テイスモBK−300、チ
タン酸カリウムに炭素を被覆したもの、大塚化学(株)
製]35部及びカヤブチル−ST(6部)からなる組成
物をもつて、厚さ1mmのシート状成形品を得た。
Example 4 Silicone rubber compound KE951U (100 parts), conductive whisker potassium titanate [Teismo BK-300, potassium titanate coated with carbon, Otsuka Chemical Co., Ltd.]
Manufacture] A sheet-shaped molded product having a thickness of 1 mm was obtained with a composition comprising 35 parts and Kayabutyl-ST (6 parts).

比較例1 シリコンゴムコンパウンドKE951U(100部)に対し表
面に亀甲縞模様を有する、200メツシユパスの球状電解
ニツケル粉末43部および加硫剤カヤブチル−ST(5
部)からなる組成物をもつて、厚さ1mmのシート状成形
品を得た。
Comparative Example 1 Silicone rubber compound KE951U (100 parts) has 43 mesh parts of 200 mesh spherical spherical electrolytic nickel powder having a hexagonal pattern on the surface and vulcanizing agent Kayabutyl-ST (5).
Part) to obtain a sheet-like molded article having a thickness of 1 mm.

比較例2 シリコンゴムコンパウンドKE951U(100部)に対し、
カーボンブラツク4部、触媒量のジクミルポーオキシド
3部からなる組成物をもつて、厚さ1mmとシート状成形
品を得た。
Comparative Example 2 For silicone rubber compound KE951U (100 parts),
A sheet-shaped molded product having a thickness of 1 mm was obtained by using a composition comprising 4 parts of carbon black and 3 parts of catalytic amount of dicumyl peroxide.

試験例1 以上のようにして得られた実施例及び比較例のシートに
つきこれらを200℃の温度下に1時間加熱処理を行つた
後、それぞれの導電性について測定したところ第1表に
示す通りの結果が得られた。
Test Example 1 The sheets of Examples and Comparative Examples obtained as described above were subjected to a heat treatment at a temperature of 200 ° C. for 1 hour, and then the respective conductivity was measured, as shown in Table 1. The result was obtained.

(発明の効果) 本発明の感圧導電性エラストマー成形体は押圧力の印加
に伴なう抵抗値変化を安定して取り出すことのできるも
のであり、繰返しの押圧印加にあつても詳めて再現性の
高い抵抗値変化を示す成形体である。
(Effects of the Invention) The pressure-sensitive conductive elastomer molded article of the present invention can stably take out the change in resistance value accompanying the application of pressing force, and will be described in detail even when repeated pressing is applied. It is a molded product that exhibits highly reproducible changes in resistance value.

また本発明の感圧導電性エラストマー成形体は、押圧力
の変化ろ正確な抵抗値変化として取り出すことができ、
感圧可変抵抗体として有用である。
Further, the pressure-sensitive conductive elastomer molding of the present invention can be taken out as a change in pressing force and an accurate change in resistance value.
It is useful as a pressure-sensitive variable resistor.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鈴江 正義 徳島県徳島市川内町加賀須野463番地 大 塚化学株式会社徳島工場内 (72)発明者 晴山 幸哉 徳島県徳島市川内町加賀須野463番地 大 塚化学株式会社徳島工場内 (72)発明者 竹中 稔 大阪府大阪市東区豊後町10番地 大塚化学 株式会社内 (56)参考文献 特開 昭58−20722(JP,A) 特開 昭52−139989(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Masayoshi Suzue Inventor Masayoshi Suzue 463, Kagasuno, Kawauchi-cho, Tokushima City Tokushima Plant, Otsuka Chemical Co., Ltd. Tokushima Plant, Tsuka Chemical Co., Ltd. (72) Minoru Takenaka Minoru Takenaka, 10 Bungo-cho, Higashi-ku, Osaka City, Osaka Prefecture (56) References JP-A-58-20722 (JP, A) JP-A-52-139989 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】硬化後にゴム状弾性を呈するエラストマー
組成物に対し、導電性チタン酸アルカリ金属ウイスカー
を均一に分酸配合して得られた組成物を成形してなるこ
とを特徴とする感圧導電性エラストマー成形体。
1. A pressure-sensitive composition characterized by being obtained by molding a composition obtained by uniformly blending conductive alkali metal titanate whiskers with a sulfuric acid into an elastomer composition exhibiting rubber-like elasticity after curing. Conductive elastomer molding.
JP59162562A 1984-07-31 1984-07-31 Pressure-sensitive conductive elastomer molding Expired - Lifetime JPH0610925B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59162562A JPH0610925B2 (en) 1984-07-31 1984-07-31 Pressure-sensitive conductive elastomer molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59162562A JPH0610925B2 (en) 1984-07-31 1984-07-31 Pressure-sensitive conductive elastomer molding

Publications (2)

Publication Number Publication Date
JPS6142814A JPS6142814A (en) 1986-03-01
JPH0610925B2 true JPH0610925B2 (en) 1994-02-09

Family

ID=15756945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59162562A Expired - Lifetime JPH0610925B2 (en) 1984-07-31 1984-07-31 Pressure-sensitive conductive elastomer molding

Country Status (1)

Country Link
JP (1) JPH0610925B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0664224U (en) * 1993-02-05 1994-09-09 株式会社ナカニシオプティカル Eyeglass frames

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0627258B2 (en) * 1985-08-27 1994-04-13 日本板硝子株式会社 Thermosetting solid polymer electrolyte

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5820722A (en) * 1981-07-28 1983-02-07 Res Inst For Prod Dev Titanate having metallic coating layer and its preparation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0664224U (en) * 1993-02-05 1994-09-09 株式会社ナカニシオプティカル Eyeglass frames

Also Published As

Publication number Publication date
JPS6142814A (en) 1986-03-01

Similar Documents

Publication Publication Date Title
JPS5824921B2 (en) pressure sensitive resistance element
US4765930A (en) Pressure-responsive variable electrical resistive rubber material
US4145317A (en) Pressure-sensitive resistance elements
CN101339001B (en) Piezoresistive strain gauge using doped polymeric fluid
US5090246A (en) Elastomer type low pressure sensor
US20120073388A1 (en) Force sensing compositions, devices and methods
Wu et al. Rational design of flexible capacitive sensors with highly linear response over a broad pressure sensing range
GB2054277A (en) Pressure-sensitive electroconductive bodies
CN111253751B (en) Carbon nanotube polydimethylsiloxane composite material and preparation method and application thereof
CN105887490A (en) Conductive paste for flexible fabric sensor preparation and preparation method
JPH0610925B2 (en) Pressure-sensitive conductive elastomer molding
CN111588372A (en) Method for preparing flexible Electrocardiogram (ECG) electrode
Baloda et al. A flexible pressure sensor based on multiwalled carbon nanotubes/polydimethylosiloxane composite for wearable electronic-skin application
JPS61207939A (en) Pressure sensor
JPS62112641A (en) Pressure-sensitive, electrically conductive elastomer composition
JP2000082608A (en) Pressure sensitive resistor and pressure sensitive sensor
WO2018088435A1 (en) Pressure-sensitive sensor
JP7021263B2 (en) Bioelectrode
JP6628069B2 (en) Pressure-sensitive elastomer porous body
JP2001195945A (en) Pressure-sensitive conductive sensor
JPS6262841A (en) Pressure-sensitive electrically conductive rubber sheeet
CN112816110B (en) Conductive composition, conductive elastomer film, and flexible pressure sensor
Peng et al. A novel flexible sensor for compression stress relaxation
CN115197572A (en) Novel composite material, flexible sensor, preparation method and application
JPS6254742A (en) Pressure-sensitive rubber molding

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term