JPS62112641A - Pressure-sensitive, electrically conductive elastomer composition - Google Patents

Pressure-sensitive, electrically conductive elastomer composition

Info

Publication number
JPS62112641A
JPS62112641A JP60253525A JP25352585A JPS62112641A JP S62112641 A JPS62112641 A JP S62112641A JP 60253525 A JP60253525 A JP 60253525A JP 25352585 A JP25352585 A JP 25352585A JP S62112641 A JPS62112641 A JP S62112641A
Authority
JP
Japan
Prior art keywords
spherical
particles
electrically conductive
pressure
matrix material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60253525A
Other languages
Japanese (ja)
Inventor
Mitsuo Takaya
高屋 三男
Kiyotaka Inoue
清孝 井上
Katsumi Higuchi
克巳 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitta Corp
Original Assignee
Nitta Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitta Corp filed Critical Nitta Corp
Priority to JP60253525A priority Critical patent/JPS62112641A/en
Priority to EP86307049A priority patent/EP0223355B1/en
Priority to DE8686307049T priority patent/DE3666304D1/en
Publication of JPS62112641A publication Critical patent/JPS62112641A/en
Priority to MYPI87002097A priority patent/MY100739A/en
Priority to US07/799,863 priority patent/US5175214A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C10/00Adjustable resistors
    • H01C10/10Adjustable resistors adjustable by mechanical pressure or force
    • H01C10/106Adjustable resistors adjustable by mechanical pressure or force on resistive material dispersed in an elastic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Adjustable Resistors (AREA)

Abstract

PURPOSE:To remarkably stabilize the electrical conductivity characteristics under pressure of a compsn. and to facilitate the production thereof, by mixing electrically conductive particles obtd. by firing and carbonizing a spherical high-molecular material with an insulating matrix material having rubbery elasticity and dispersing them therein. CONSTITUTION:Electrically conductive particles obtd. by firing and carbonizing a high-molecular material in the form of spherical particles are mixed with and dispersed in an insulating matrix material having rubbery elasticity. Examples of said matrix material are natural rubbers, synthetic rubbers such as chloroprene, silicone rubber, etc., thermoplastic elastomers such as urethane, EVA, etc., and liquid rubbers such as urethane, silicone, etc., and silicone rubber is preferred. Examples of the spherical high-molecular material are spherical particles obtd. by suspension-polymerizing styrene, vinyl chloride, vinylidene chloride, methyl methacrylate, etc. and spherical particles obtd. by chemically powdering a resol resin, etc. The electrically conductive particles have particle sizes of pref. 50-100mum and are used in an amount of 20-60vol% based on the total amount of the compsn.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、感圧導電性エラストマー組成物に関し、詳し
くは非加圧状態では高抵抗性(絶縁性)を示し、加圧す
るに従ってその圧力の大きさに応じて抵抗値が変化する
感圧導電性エラストマー組成物に関するものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a pressure-sensitive conductive elastomer composition, and more specifically, it exhibits high resistance (insulating properties) in a non-pressurized state and decreases in pressure as pressure is applied. This invention relates to a pressure-sensitive conductive elastomer composition whose resistance value changes depending on its size.

〔従来の技術〕[Conventional technology]

従来より、感圧導電性を有する材料としては、ゴム等の
弾性材料に導電性付与剤を配合した導電性組成物が知ら
れている。導電性付与剤としては、二、ケル等の金属粒
子、導電性カーボンブラック、黒鉛粒子等が使用されて
いる。これ、らの組成物は、棒状やシート状に成形して
スイッチ素子、圧力センサ・触覚センサ等用の感圧素子
として現在広く使用されているものである。
BACKGROUND ART Conventionally, as a material having pressure-sensitive conductivity, a conductive composition in which a conductivity imparting agent is blended with an elastic material such as rubber is known. As the conductivity imparting agent, metal particles such as Ni-Kel, conductive carbon black, graphite particles, etc. are used. These compositions are currently widely used in the form of rods or sheets as pressure-sensitive elements for switch elements, pressure sensors, tactile sensors, and the like.

上記した従来の導電性組成物は、次のような難点があっ
た。すなわち、導電性付与剤として金属粒子を用いたも
のは、粒子の酸化により特性が経時的に変化しやすく安
定性に欠けると共に、チャタリング現象やノイズが発生
する難点があり、導電性カーボンブラックを用いたもの
は、粒子径が20〜30mμと極めて小さく加熱時の抵
抗変化が小さく実用的でなかった。また、導電性カーボ
ンブラックの造粒物を用いると、抵抗変化は大きくする
ことができるが、加圧時には粒子の破壊が生じ耐久性、
安定性が乏しくなっていた。
The conventional conductive compositions described above have the following drawbacks. In other words, those that use metal particles as a conductivity imparting agent have the disadvantage that their properties tend to change over time due to oxidation of the particles, resulting in a lack of stability and the generation of chattering phenomena and noise. However, the particle diameter was extremely small, 20 to 30 mμ, and the resistance change during heating was small, making it impractical. Furthermore, if conductive carbon black granules are used, the resistance change can be increased, but the particles may break when pressurized, resulting in poor durability and
Stability was lacking.

黒鉛粒子を導電性付与剤として用いる場合、天然黒鉛の
ように粒子形状が不均斉であれば安定した特性が得られ
ないため、粉砕や摩砕等の操作によって角のとれた丸み
のある人造黒鉛粒子を用いて特性を安定化したものが知
られている。この人造黒鉛粒子を用いたものは、特性の
安定性、耐久性、ノイズが少ない点において優れている
が、所望の粒子を得るための操作が難しくかつ煩雑であ
り、またその収率も小さいという難点があった。
When graphite particles are used as a conductivity imparting agent, stable characteristics cannot be obtained if the particle shape is asymmetric, as is the case with natural graphite. It is known that the characteristics are stabilized using particles. Products using artificial graphite particles are superior in terms of stability of properties, durability, and low noise, but the operations to obtain the desired particles are difficult and complicated, and the yield is also low. There was a problem.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は上記従来技術の難点に鑑みてなされたものであ
り、その目的とするところは、加圧導電特性が非常に安
定していると共にその製造が容易である感圧導電性エラ
ストマー組成物を提供することにある。
The present invention has been made in view of the above-mentioned difficulties in the prior art, and its purpose is to provide a pressure-sensitive conductive elastomer composition that has very stable pressure conductive properties and is easy to manufacture. It is about providing.

本発明の他の目的は、組成物の機械的特性を変えること
なく加圧導電特性を変えることができる感圧導電性エラ
ストマー組成物を提供することである。
Another object of the present invention is to provide a pressure sensitive conductive elastomer composition whose pressure conductive properties can be varied without changing the mechanical properties of the composition.

〔問題点を解決するための手段〕[Means for solving problems]

本発明が上記目的を達成するために講じた技術的手段は
、次の通りである。
The technical means taken by the present invention to achieve the above object are as follows.

すなわち、球状粒子とした高分子材料を焼成炭化してな
る導電性粒子を、絶縁性のゴム状弾性を有するマトリッ
クス材料に混入分散させたものである。
That is, conductive particles obtained by firing and carbonizing a polymeric material in the form of spherical particles are mixed and dispersed in an insulating, rubber-like elastic matrix material.

ここに絶縁性のゴム状弾性を存するマトリックス材料と
しては、天然ゴム、クロロプレン、SBR,、NBR,
シリコーンゴム等の合成ゴム、ウレタン、ポリエステル
系、EVA等の熱可塑性エラストマー、ウレタン、シリ
コーン等の液状ゴムを用いることができるが、耐熱性、
電気的性質、耐化学薬品性等の優れたシリコーンゴムが
好ましい球状高分子材料としては、スチレン、塩化ビニ
ル、塩化ビニリデン、メタクリル酸メチル、フルフリル
アルコール等を懸濁重合させた球状粒子、またはレゾー
ル樹脂等を化学的に粉末化した球状粒子が用いられる。
Examples of matrix materials having insulating rubber-like elasticity include natural rubber, chloroprene, SBR, NBR,
Synthetic rubbers such as silicone rubber, thermoplastic elastomers such as urethane, polyester, and EVA, and liquid rubbers such as urethane and silicone can be used;
Spherical polymer materials preferably include silicone rubber with excellent electrical properties and chemical resistance, and include spherical particles made by suspension polymerization of styrene, vinyl chloride, vinylidene chloride, methyl methacrylate, furfuryl alcohol, etc., or resol. Spherical particles made by chemically powdering resin or the like are used.

懸濁重合とは、モノマーに重合触媒を加え、これを分散
剤を加えた水中で七ツマ−が油滴状に分散するように激
しく撹拌した後、加熱加圧重合させることをいい、化学
的粉末化とは、溶媒に溶かした樹脂を冷却するかまたは
沈澱剤を加えて微粉末を析出させることをいう。
Suspension polymerization is a process in which a polymerization catalyst is added to monomers, and the mixture is vigorously stirred in water containing a dispersant so that the seven polymers are dispersed in the form of oil droplets, and then polymerized under heat and pressure. Powdering refers to cooling a resin dissolved in a solvent or adding a precipitant to precipitate a fine powder.

導電性粒子の粒子径は、30〜120μm好ましくは5
0〜100μmであり、その配合量は全組成物の20〜
60容量%である。粒子径が30μmより小であれば組
成物の抵抗変化が小さくなり、120μmより大であれ
ばマトリックス中に分散し難くなるからである。また、
配合量は所望の特性や感度、マトリックス材料の種類等
によって定められるが、20容量%より少なければ組成
物が十分な導電性を発現せず、60容量%より多ければ
回圧時と非可圧時の導電性(抵抗値)の変化が小さくな
り実用的でなくなる。
The particle diameter of the conductive particles is 30 to 120 μm, preferably 5 μm.
0 to 100 μm, and its blending amount is 20 to 100 μm in the total composition.
It is 60% by volume. This is because if the particle size is smaller than 30 μm, the resistance change of the composition will be small, and if the particle size is larger than 120 μm, it will be difficult to disperse in the matrix. Also,
The blending amount is determined depending on the desired characteristics, sensitivity, type of matrix material, etc., but if it is less than 20% by volume, the composition will not exhibit sufficient conductivity, and if it is more than 60% by volume, it will not be able to be compressed. The change in conductivity (resistance value) during operation becomes small, making it impractical.

〔作用〕[Effect]

高分子材料よりなる球状粒子を焼成し、その全体もしく
は一部を炭化することにより粒子に導電性を付与してい
るので、導電性粒子の粒度の選定が容易である。従って
、粒度のそろった粒子を用いることができるため、組成
物の加圧導電特性を非常に安定させることができると共
に製造も容易である。
Since conductivity is imparted to the particles by firing the spherical particles made of a polymeric material and carbonizing all or part of the particles, it is easy to select the particle size of the conductive particles. Therefore, since particles of uniform particle size can be used, the pressurized conductive properties of the composition can be extremely stabilized, and manufacturing is also easy.

また、粒子の焼成の程度を変えれば、第1図のように粒
子(1)が炭化される量(第1図の球殻状の炭化部(2
)の厚み(1)が変わるので、各種導電性グレードの粒
子が容易に得られ、これによって組成物の機械的特性を
変えることなく加圧導電特性を変えることができる。尚
、(3)は粒子(1)の非炭化部である。
In addition, by changing the degree of firing of the particles, the amount of carbonization of the particles (1) as shown in Figure 1 (the spherical shell-shaped carbonized part (2) in Figure 1) can be changed.
) thickness (1) is easily obtained, particles of various conductivity grades can be easily obtained, which allows the pressure conductivity properties to be varied without changing the mechanical properties of the composition. Note that (3) is the non-carbonized part of the particle (1).

〔実施例〕〔Example〕

以下、本発明を実施例により具体的に説明する実施例I
Example I Hereinafter, the present invention will be specifically explained with reference to Examples.
.

ジビニルベンゼンで架橋したポリスチレン樹脂の粒径が
約70〜130μmの球状微小粒子を空気流中で300
℃まで加熱し、次いで不活性ガス中で1000℃まで加
熱・焼成した。得られた炭化粒子の粒径を測定すると、
53〜105 μmであった。この炭化粒子100重量
部をシリコーンゴム(集画シリコーン製、T S E 
210−40 )100重量部と混練し、プレス成形に
より0.5mm厚のシートを製造した。
Spherical microparticles of polystyrene resin crosslinked with divinylbenzene with a particle size of approximately 70 to 130 μm were heated at 300 μm in an air stream.
The mixture was heated to 1000°C and then fired in an inert gas to 1000°C. When measuring the particle size of the obtained carbonized particles,
It was 53 to 105 μm. 100 parts by weight of the carbonized particles were mixed with silicone rubber (manufactured by Shuga Silicone Co., Ltd., TSE
210-40) to produce a 0.5 mm thick sheet by press molding.

直径5mmの押圧電極によりシート表面を押圧し、押圧
力と抵抗値の関係を測定した。その結果は第2図に示す
通りであり、良好な抵抗変化特性を示し、ヒステリシス
も小さかった。
The surface of the sheet was pressed with a pressing electrode having a diameter of 5 mm, and the relationship between the pressing force and the resistance value was measured. The results are shown in FIG. 2, showing good resistance change characteristics and small hysteresis.

ここにポリスチレン樹脂の球状微小粒子は、次のように
して製造したものである。すなわち、スチレンとジビニ
ルベンゼンのモノマー混合液に過酸化ヘンジイルまたは
過酸化ラウロイルを溶解し、これを完全けん化ポリビニ
ルアルコール、不完全けん化ポリビニルアルコール等の
分散剤を加えた水中で激しく攪拌した後、80℃で6〜
8時間懸濁重合させたものである。
The spherical microparticles of polystyrene resin were manufactured in the following manner. That is, hendiyl peroxide or lauroyl peroxide is dissolved in a monomer mixture of styrene and divinylbenzene, stirred vigorously in water containing a dispersant such as fully saponified polyvinyl alcohol or incompletely saponified polyvinyl alcohol, and then heated to 80°C. So 6~
This was obtained by suspension polymerization for 8 hours.

実施例2゜ 不活性ガス中で粒径が約60〜100μmの球状フェノ
ール樹脂を800″Cで加熱・焼成した。得られたガラ
ス球状炭化粒子の粒径は44〜74μmであった。この
炭化粒子100重量部を実施例1と同じシリコーンゴム
100111i量部と混練し、プレス成形により0 、
5mm厚のシートを製造した。
Example 2 A spherical phenolic resin with a particle size of about 60 to 100 μm was heated and fired at 800″C in an inert gas. The particle size of the obtained glass spherical carbonized particles was 44 to 74 μm. 100 parts by weight of particles were kneaded with 100111i parts of the same silicone rubber as in Example 1, and press molded to give 0.
A sheet with a thickness of 5 mm was produced.

実施例1と同様にして押圧カー抵抗値特性を測定すると
、第3図のグラフ(a)のようになった。この場合も良
好な特性を示し、ヒステリシスも小さかった。
When the pressure resistance characteristics were measured in the same manner as in Example 1, the results were as shown in the graph (a) of FIG. In this case as well, good characteristics were exhibited and hysteresis was small.

ここに球状フェノール樹脂は、レゾール樹脂をアセトン
に溶解させ、攪拌しながら沈澱剤を加えて微小球状樹脂
を析出させた後、この微小球状樹脂を濾過・乾燥し、さ
らに加熱硬化させて製造したものである。
Spherical phenolic resin is manufactured by dissolving resol resin in acetone, adding a precipitant while stirring to precipitate microspherical resin, filtering and drying this microspherical resin, and then heating and curing it. It is.

実施例3゜ 実施例2と同じ球状フェノール樹脂を600℃で加熱・
焼成した。得られたガラス球状炭化粒子の粒径は44〜
74μmであった。この炭化粒子120重量部を実施例
1と同じシリコーンゴム100重量部と混練し、プレス
成形により0.5mm厚のシートを作成した。
Example 3゜The same spherical phenol resin as in Example 2 was heated at 600°C.
Fired. The particle size of the obtained glass spherical carbonized particles is 44~
It was 74 μm. 120 parts by weight of the carbonized particles were kneaded with 100 parts by weight of the same silicone rubber as in Example 1, and a sheet with a thickness of 0.5 mm was prepared by press molding.

実施例1と同様にして測定した結果は、第3図のグラフ
(b)の通りである。この場合は、実施例2とほぼ同様
の抵抗値変化を示しているが、その変化範囲が異なって
いる。これは、球状フェノール樹脂の焼成温度によって
その導電率が変化することを意味するが、その原因は焼
成温度によって炭化の度合が異なり、焼成温度が高温に
なるに従って炭化部分が増加するためと推定される。す
なわち、第1図の球殻状の炭化部(2)の厚み(t)が
増大して粒子の導電率が増加するためであると考えられ
る。
The results measured in the same manner as in Example 1 are shown in graph (b) of FIG. In this case, the resistance value changes are almost the same as in Example 2, but the range of change is different. This means that the electrical conductivity of the spherical phenolic resin changes depending on the firing temperature, and the reason for this is presumed to be that the degree of carbonization differs depending on the firing temperature, and the carbonized portion increases as the firing temperature increases. Ru. That is, it is thought that this is because the thickness (t) of the spherical shell-shaped carbonized portion (2) in FIG. 1 increases, and the conductivity of the particles increases.

〔発明の効果〕〔Effect of the invention〕

本発明は上述の構成を有するものであり、加圧導電特性
が非常に安定していると共にその製造が容易であり、さ
らに組成物の機械的特性を変えることなく加圧導電特性
を変えることができる感圧導電性エラストマー組成物を
提供するものである
The present invention has the above-mentioned configuration, and has very stable pressurized conductive properties and is easy to manufacture, and furthermore, the pressurized conductive properties can be changed without changing the mechanical properties of the composition. The present invention provides a pressure-sensitive conductive elastomer composition that can

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、高分子材料よりなる球状粒子の炭化状態を示
す断面説明図であって、(a)は表面付近のみが炭化し
たもの、(b)はほぼ全体が炭化したもの、(c)は全
体が炭化したものである。 第2図は、実施例1の押圧カー抵抗値特性を示すグラフ
である。 第3図は、実施例2及び実施例3の押圧カー抵抗値特性
を示すグラフで、(a)は実施例2の(b)は実施例3
のグラフである。 (1)・・・球状粒子   (2)・・・炭化部(3)
・・・非炭化部
FIG. 1 is an explanatory cross-sectional view showing the carbonized state of spherical particles made of polymeric material, in which (a) only the vicinity of the surface is carbonized, (b) almost the entire part is carbonized, and (c) is completely carbonized. FIG. 2 is a graph showing the pressure resistance value characteristics of Example 1. FIG. 3 is a graph showing the pressure car resistance characteristics of Example 2 and Example 3, where (a) is Example 2 and (b) is Example 3.
This is a graph of (1)... Spherical particles (2)... Carbonized part (3)
・・・Non-carbonized part

Claims (1)

【特許請求の範囲】[Claims] 1、球状粒子とした高分子材料を焼成・炭化してなる導
電性粒子を、絶縁性のゴム状弾性を有するマトリックス
材料に混入分散させたことを特徴とする感圧導電性エラ
ストマー組成物。
1. A pressure-sensitive conductive elastomer composition characterized in that conductive particles obtained by firing and carbonizing a polymeric material in the form of spherical particles are mixed and dispersed in an insulating rubber-like elastic matrix material.
JP60253525A 1985-11-11 1985-11-11 Pressure-sensitive, electrically conductive elastomer composition Pending JPS62112641A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP60253525A JPS62112641A (en) 1985-11-11 1985-11-11 Pressure-sensitive, electrically conductive elastomer composition
EP86307049A EP0223355B1 (en) 1985-11-11 1986-09-12 Method of manufacturing a pressure-sensitive conductive elastomer compound
DE8686307049T DE3666304D1 (en) 1985-11-11 1986-09-12 Method of manufacturing a pressure-sensitive conductive elastomer compound
MYPI87002097A MY100739A (en) 1985-11-11 1987-09-29 Pressure-sensitive conductive elastomer compound.
US07/799,863 US5175214A (en) 1985-11-11 1991-11-27 Pressure-sensitive conductive elastomer compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60253525A JPS62112641A (en) 1985-11-11 1985-11-11 Pressure-sensitive, electrically conductive elastomer composition

Publications (1)

Publication Number Publication Date
JPS62112641A true JPS62112641A (en) 1987-05-23

Family

ID=17252578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60253525A Pending JPS62112641A (en) 1985-11-11 1985-11-11 Pressure-sensitive, electrically conductive elastomer composition

Country Status (4)

Country Link
EP (1) EP0223355B1 (en)
JP (1) JPS62112641A (en)
DE (1) DE3666304D1 (en)
MY (1) MY100739A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009174993A (en) * 2008-01-24 2009-08-06 Tokai Rubber Ind Ltd Composite material for sensor use and deformation sensor
JP2009198482A (en) * 2008-01-24 2009-09-03 Tokai Rubber Ind Ltd Sensor thin film, manufacturing method thereof and deformation sensor
JP2009198483A (en) * 2008-01-24 2009-09-03 Tokai Rubber Ind Ltd Sensor thin film, manufacturing method thereof and deformation sensor

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3916921C1 (en) * 1989-05-24 1990-10-11 Preh-Werke Gmbh & Co Kg, 8740 Bad Neustadt, De
DE3942799A1 (en) * 1989-12-23 1991-06-27 Bosch Gmbh Robert METHOD FOR PRODUCING AN ABRASION-RESISTANT LAYER
US5989700A (en) * 1996-01-05 1999-11-23 Tekscan Incorporated Pressure sensitive ink means, and methods of use
AUPR725601A0 (en) * 2001-08-24 2001-09-20 Commonwealth Scientific And Industrial Research Organisation Strain gauges
US7785704B2 (en) 2003-05-14 2010-08-31 Tekscan, Inc. High temperature pressure sensitive devices and methods thereof
US6964205B2 (en) 2003-12-30 2005-11-15 Tekscan Incorporated Sensor with plurality of sensor elements arranged with respect to a substrate
CN111732836A (en) * 2020-06-17 2020-10-02 东南大学 Sensor material for real-time monitoring of health condition of high-speed railway ballastless track plate and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6011215A (en) * 1983-06-30 1985-01-21 Agency Of Ind Science & Technol Carbonaceous material having high electric conductivity and its composition

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55120656A (en) * 1979-03-09 1980-09-17 Toray Silicone Co Ltd Curable liquid organopolysiloxane composition
JPS59109562A (en) * 1982-12-16 1984-06-25 Denki Kagaku Kogyo Kk Carbon black and electrically conductive composition containing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6011215A (en) * 1983-06-30 1985-01-21 Agency Of Ind Science & Technol Carbonaceous material having high electric conductivity and its composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009174993A (en) * 2008-01-24 2009-08-06 Tokai Rubber Ind Ltd Composite material for sensor use and deformation sensor
JP2009198482A (en) * 2008-01-24 2009-09-03 Tokai Rubber Ind Ltd Sensor thin film, manufacturing method thereof and deformation sensor
JP2009198483A (en) * 2008-01-24 2009-09-03 Tokai Rubber Ind Ltd Sensor thin film, manufacturing method thereof and deformation sensor

Also Published As

Publication number Publication date
DE3666304D1 (en) 1989-11-16
EP0223355B1 (en) 1989-10-11
EP0223355A1 (en) 1987-05-27
MY100739A (en) 1991-01-31

Similar Documents

Publication Publication Date Title
US5175214A (en) Pressure-sensitive conductive elastomer compound
JPS62112641A (en) Pressure-sensitive, electrically conductive elastomer composition
JP2008239747A (en) Elastomer composite material
US4717595A (en) Molded carbonaceous material
TWI325873B (en)
CN109504016B (en) PTC film, preparation method thereof and thermistor
JPH0471108A (en) Pressure sensitive conductive elastomer
US3951907A (en) Elastomeric and plastomeric materials containing amorphous carbonaceous silica
CN108017840B (en) Conductive plastic and preparation method thereof
US2697029A (en) Methods of producing carbonized substances containing silicon
JPS60186557A (en) Electrically-conductive resin composition and recording medium of information signal
JPS6271109A (en) Pressure sensitive conductive material
JPH0436627A (en) Pressure-sensitive and conductive elastomer composition and pressure sensor using same
JP2005060204A (en) Conductive material-covered expanded graphite, graphite based conductive filler, conductive rubber material, rubber molding and method for producing rubber molding
JP2004207097A (en) Conductive resin composition
EP1089861A1 (en) An improved form of synthetic rubber
JPH0393109A (en) Pressure-sensitive conductive elastomer
JP3263235B2 (en) Method for producing granulated powder of polytetrafluoroethylene
EP0289193A1 (en) Pressure responsive electrically conductive materials
JPH09104817A (en) Pressure sensitive electroconductive elastomer
JP3208170B2 (en) Organic positive temperature coefficient thermistor
KR100530568B1 (en) Styrenic resin composition used for block toy
US5178908A (en) Process for coating carbonized material with metal
JPH0255737A (en) Preparation of spherical conductive particle and pressure-sensitive rubber sheet
JPS62249304A (en) Pressure sensitive conducting rubber material