JPH06103947A - Focusing ion beam device - Google Patents

Focusing ion beam device

Info

Publication number
JPH06103947A
JPH06103947A JP24760192A JP24760192A JPH06103947A JP H06103947 A JPH06103947 A JP H06103947A JP 24760192 A JP24760192 A JP 24760192A JP 24760192 A JP24760192 A JP 24760192A JP H06103947 A JPH06103947 A JP H06103947A
Authority
JP
Japan
Prior art keywords
sample
ion beam
focused ion
processing
electron microscope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24760192A
Other languages
Japanese (ja)
Other versions
JP2842083B2 (en
Inventor
Hiroshi Hirose
博 広瀬
Toru Ishitani
亨 石谷
Takeshi Onishi
毅 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP24760192A priority Critical patent/JP2842083B2/en
Publication of JPH06103947A publication Critical patent/JPH06103947A/en
Application granted granted Critical
Publication of JP2842083B2 publication Critical patent/JP2842083B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To make the replacement of a sample unnecessary during the works of a preprocess of FIB process, an FIB process, an afterprocess of FIB process, a SEM observation, and a TEM observation, and to make the identification of the processing position and the analizing position easy, so as to improve the processing and observing efficiency extensively, by giving the same coordinates system to the two positions. CONSTITUTION:This focusing ion beam device is composed of an ion source, a column system, a sample chamber, and a control system (not shown in the Figure). The ion source is composed of an emitter 1, a shield electrode 2, and a draw-out electrode 3. The column system is composed of a capacitor lens 4, a restriction 5, a scanning electrode 6, and an object lens 7. And the sample chamber 8 is composed of a sample fine adjustment device 10, a sample holder 11, and a secondary particle detector 9.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は集束イオンビームに係
り、特に、加工した後観察するまで、微小な試料を載せ
替える手間を省き効率的に加工作業が出来る集束イオン
ビーム装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a focused ion beam apparatus and, more particularly, to a focused ion beam apparatus capable of efficiently performing a working operation without displacing a minute sample until the observation after processing.

【0002】[0002]

【従来の技術】従来、例えば、集束イオンビーム(FI
B)装置で試料を加工したのち透過形電子顕微鏡(TE
M)を用いて、加工部の観察をする場合、その試料が小
さいため、試料を載せ替えるために、非常なる集中力と
時間がかかっていた。もし、FIB加工に不具合があ
り、TEM観察の後再びFIB加工が必要になった場合
その困難は倍加する。小さな試料ばかりでなく、比較的
大きな試料でも試料を載せ替えずに作業が出来れば好都
合である。
2. Description of the Related Art Conventionally, for example, a focused ion beam (FI) is used.
B) After processing the sample with the device, a transmission electron microscope (TE
When M) is used to observe the processed part, the sample is small, so that it takes a great deal of concentration and time to replace the sample. If there is a problem in FIB processing and FIB processing becomes necessary again after TEM observation, the difficulty will be compounded. It would be convenient if not only small samples but also relatively large samples could be operated without remounting the samples.

【0003】[0003]

【発明が解決しようとする課題】本発明の集束イオンビ
ーム装置では集束イオンビーム(FIB)装置,透過形
電子顕微鏡,走査形電子顕微鏡(TEM),エッチング
装置など観察や処理を行うとき、試料の載せ替えをなく
し、効率良く解析又は分析作業が出来るようにすること
である。
In the focused ion beam apparatus of the present invention, a focused ion beam (FIB) apparatus, a transmission electron microscope, a scanning electron microscope (TEM), an etching apparatus, etc. are used to observe or process a sample. It is to eliminate the need for remounting and to enable efficient analysis or analysis work.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するため
に、本発明のシステムでは試料ホルダーにサイドエント
リー方式を採用し、このホルダーの共用化を可能とする
ことによって、試料の載せ替えをしないでもFIBによ
る加工,TEM,SEMによる観察を可能にする。TE
M試料作成の場合はホルダーの共用化を可能とするため
には試料が少なくとも90度回転しても加工または観察
が可能であることが必要であり、このため、本発明では
切欠きのあるサイドエントリー試料ホルダーを一例とし
て示した。
In order to solve the above-mentioned problems, the system of the present invention adopts a side-entry method for the sample holder, and by sharing this holder, the sample is not replaced. However, it enables processing by FIB and observation by TEM and SEM. TE
In the case of M sample preparation, it is necessary that the sample can be processed or observed even if it is rotated at least 90 degrees in order to enable sharing of the holder. Therefore, in the present invention, the side with a notch is provided. The entry sample holder is shown as an example.

【0005】[0005]

【作用】FIB加工をした試料ホルダーはそのまま引き
抜きTEMまたはSEMに挿入し観察出来る。加工位置
と観察位置を迅速に一致させたい場合は表示された試料
位置を他の装置の試料位置と一致させる。この場合の手
段として、他の装置の表示値を手動で入力しても良い
し、直接位置情報を通信して連動させてもよい。
Function: The FIB-processed sample holder can be directly pulled out and inserted into a TEM or SEM for observation. When it is desired to quickly match the processing position and the observation position, the displayed sample position is made to match the sample position of another device. As a means in this case, the display value of another device may be manually input, or the position information may be directly communicated and linked.

【0006】[0006]

【実施例】本発明の一実施例を図1を用いて説明する。
この装置は、イオン源,カラム系,試料室,制御系(図
示していない)から構成されている。イオン源はエミッ
ター1,シールド電極2,引出電極3から構成されてい
る。カラム系は、コンデンサーレンズ4,絞り5,走査
電極6,対物レンズ7から構成されている。試料室8は
試料微動装置10,試料ホルダー11,二次粒子検出器
9から構成されている。試料12は試料ホルダーの先端
に取り付けられている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIG.
This device comprises an ion source, a column system, a sample chamber, and a control system (not shown). The ion source is composed of an emitter 1, a shield electrode 2 and an extraction electrode 3. The column system is composed of a condenser lens 4, a diaphragm 5, a scanning electrode 6, and an objective lens 7. The sample chamber 8 includes a sample fine movement device 10, a sample holder 11, and a secondary particle detector 9. The sample 12 is attached to the tip of the sample holder.

【0007】次にTEMの試料作成を例に動作を説明す
る。エミッターから放出されたGaイオンは引出電極3
で約30kVに加速された後コンデンサーレンズ4,絞
り5,対物レンズ7によって試料12上で数十nmの径
に絞られる。このビームは走査電極6に印加される電界
により任意の形状に走査される。試料上に照射されたイ
オンは試料をスパッターすることにより微小部の加工が
出来る。一方スパッターリング時に放出される電子、ま
たはイオンは二次粒子検出器9により検出され、この強
度をCRTの輝度信号にCRTの走査と走査電極6の電
圧と同期してCRT上にイオン照射部の像を記録でき
る。この像から加工位置を決める。
Next, the operation will be described by taking the sample preparation of the TEM as an example. Ga ions emitted from the emitter are extraction electrodes 3
Then, after being accelerated to about 30 kV, the diameter is reduced to several tens nm on the sample 12 by the condenser lens 4, the diaphragm 5 and the objective lens 7. This beam is scanned into an arbitrary shape by the electric field applied to the scanning electrode 6. Ions irradiated on the sample can be processed in a minute portion by sputtering the sample. On the other hand, the electrons or ions emitted during the sputtering are detected by the secondary particle detector 9, and this intensity is synchronized with the brightness signal of the CRT by the scanning of the CRT and the voltage of the scanning electrode 6, and the ion irradiation unit Can record images. The processing position is determined from this image.

【0008】ここでは試料として半導体メモリーを考え
る。4M−DRAMの場合、加工線幅は約0.8μm で
あり、欠陥の不良解析をTEMを用いて行う場合、試料
は0.8μm のなるべく中心で100nm以下の薄膜を
作成する必要がある。この場合まずウエハー上の観察す
べき点を中心にして、200μm×1000μm程度に
機械的に切り出す図2に試料の概略寸法を示した。この
試料を図3に示すごとくに取り付ける。図3は試料ホル
ダー先端部を拡大したもので、試料12は試料台14上
に接着剤またはばねなどで固定され、この試料台はねじ
15で試料ホルダー先端に固定する。固定する場合は観
察点が試料ホルダーの回転中心17の軸上に配置される
よう光学顕微鏡等を用いて行うことが望ましい。紙面に
垂直上からビームがあるものとすると、図3(a)はF
IBによる加工位置、図3(b)はTEMによる観察する
場合の位置を示す。図3において切欠き16は図3(a)
の位置においてFIB加工を行う場合イオンビームが試
料に到達させるためのもので通常のTEMの試料ホルダ
ーには必要ないものである。
Here, a semiconductor memory is considered as a sample. In the case of 4M-DRAM, the processing line width is about 0.8 μm, and when defect analysis of defects is performed using TEM, it is necessary to form a thin film of 0.8 μm or less and 100 nm or less at the center of the sample. In this case, first, a schematic size of a sample is shown in FIG. The sample is mounted as shown in FIG. FIG. 3 is an enlarged view of the tip of the sample holder. The sample 12 is fixed on the sample base 14 with an adhesive or a spring, and the sample base is fixed to the tip of the sample holder with screws 15. When fixed, it is desirable to use an optical microscope or the like so that the observation point is located on the axis of the rotation center 17 of the sample holder. Assuming that the beam is perpendicular to the plane of the drawing, F in Fig. 3 (a).
The processing position by IB, FIG. 3B shows the position when observed by TEM. In FIG. 3, the notch 16 is shown in FIG.
When the FIB processing is performed at the position, the ion beam is used for reaching the sample, and is not necessary for the sample holder of the normal TEM.

【0009】このようにして取り付けた試料を試料ホル
ダーごと試料微動装置10に挿入する。試料微動装置1
0はいわゆるサイドエントリー試料ステージであり、こ
の機構には試料室と大気を遮断するバルブ,試料交換す
る場合の差動排気系が含まれる。試料を挿入する場合の
方法の説明はここでは省略する。サイドエントリーステ
ージを用いると、試料ホルダー11の先端に試料12を
設置出来、この部分と使用時に真空外に出ているつまみ
部が一体となっており、試料の手による搬送に好都合で
ある。挿入された試料は前記した方法で加工される。F
IBによる加工部は図2の13の部分である。加工を終
わった試料は試料ホルダーごと引き抜き、TEMの試料
ホルダーに挿入して観察される。この場合試料12には
直接手を触れずに観察出来るため観察効率は非常に良く
なる。もし、試料の装着をして観察する場合、その試料
が小さいこともあって観察位置に正しく固定するために
は、熟練と時間を要する。通常は30分〜1時間程度必
要である。また、加工が不備でTEM観察後再度FIB
加工し、再びTEM観察する場合など、その困難は倍加
する。
The sample thus attached is inserted into the sample fine movement device 10 together with the sample holder. Sample fine movement device 1
Reference numeral 0 is a so-called side-entry sample stage, and this mechanism includes a valve for shutting off the atmosphere from the sample chamber and a differential evacuation system for sample exchange. The description of the method for inserting the sample is omitted here. When the side entry stage is used, the sample 12 can be installed at the tip of the sample holder 11, and this part and the knob part that is out of the vacuum during use are integrated, which is convenient for the manual transfer of the sample. The inserted sample is processed by the method described above. F
The processing part by IB is the part 13 in FIG. The processed sample is pulled out together with the sample holder and inserted into the TEM sample holder for observation. In this case, since the sample 12 can be observed without touching it directly, the observation efficiency becomes very good. If the sample is attached and observed, it requires skill and time to correctly fix the sample at the observation position because the sample is small. Normally, it takes about 30 minutes to 1 hour. In addition, because of imperfect processing, FIB was performed again after TEM observation.
The difficulty is compounded, for example, in the case of processing and TEM observation again.

【0010】汎用のTEM/SEMの試料ホルダーをそ
のまま使用する場合、これらの機種によってその寸法が
異なり、共用できないことがある。この場合の実施例を
図4に示す。図4は試料室8の部分のみを示してあり、
試料ホルダー11と11′の2種類を使う場合、第一は
試料ホルダー11と直角方向に試料ホルダー11′を取
り付ける場合と変換フランジ18を介して、同じ方向か
ら取り付ける場合がある。前者は試料微動装置10を取
替える必要が無く便利であるが、試料室8における空間
の占拠,検出器に対する角度の差があるため試料を傾斜
したときの検出効率が変わる,コストが高くなるなどの
欠点もある。後者の場合はこれと反対である。本実施例
によって種類のことなる試料ホルダーでもFIBとSE
M又はTEMとを連結して加工観察が可能となった。
When a general-purpose TEM / SEM sample holder is used as it is, its size may differ depending on these models, and it may not be shared. An example of this case is shown in FIG. FIG. 4 shows only the part of the sample chamber 8,
When two types of sample holders 11 and 11 'are used, firstly, the sample holder 11' may be attached in a direction perpendicular to the sample holder 11 and the sample holder 11 'may be attached from the same direction via the conversion flange 18. The former is convenient because it is not necessary to replace the sample fine movement device 10, but because the space in the sample chamber 8 is occupied and there is a difference in angle with respect to the detector, the detection efficiency changes when the sample is tilted, and the cost increases. There are also drawbacks. The opposite is true in the latter case. The sample holders of different kinds according to the present embodiment have FIB and SE.
Processing observation became possible by connecting with M or TEM.

【0011】サイドエントリー試料ホルダーは、前記の
利点はあるが、一方、試料の可変範囲が狭いという欠点
がある。この場合には汎用ステージと共用できることが
望ましい。図5はこの場合の実施例を示す。図4の試料
微動装置10′の代わりに汎用ステージ19が装着され
ている。この実施例では汎用ステージに乗せられる試料
の大きさは4インチであり、この大きさの試料まで加工
できる。
The side-entry sample holder has the above-mentioned advantages, but on the other hand, has a drawback that the sample variable range is narrow. In this case, it is desirable that it can be shared with a general-purpose stage. FIG. 5 shows an embodiment in this case. A general-purpose stage 19 is mounted instead of the sample fine movement device 10 'in FIG. In this embodiment, the size of the sample placed on the general-purpose stage is 4 inches, and a sample of this size can be processed.

【0012】FIBで加工した後TEM又はSEMで観
察する場合、加工部と観察部の関係が混乱したり、場合
によっては加工位置がなかなか見つからないこともあ
る。図6の実施例では、図に示した試料ステージの座標
表示がFIBとTEMとで同じものがあり(図示は1つ
のみ)FIBで加工した座標とTEMの座標を手で又は
通信で合わせることによって一致させることができる。
これが可能となり作業効率が非常に良くなった。例えば
従来、位置を確認するのに20分程度必要であったもの
が5分以内で正確に位置決めできるようになった。小さ
なかつ同じ形状の加工を複数個行いこの観察をする場合
は一層位置の確認は困難になり、本実施例の効果は更に
大きくなる。
When observing with a TEM or SEM after processing with FIB, the relationship between the processing part and the observing part may be confused, or the processing position may be difficult to find in some cases. In the embodiment of FIG. 6, the coordinate display of the sample stage shown in the figure is the same for FIB and TEM (only one is shown). The coordinate processed by FIB and the coordinate of TEM are matched by hand or by communication. Can be matched by.
This is possible and work efficiency has improved significantly. For example, conventionally, it took about 20 minutes to confirm the position, but now it can be accurately positioned within 5 minutes. If a plurality of small and identical shapes are machined and this observation is performed, it becomes more difficult to confirm the position, and the effect of the present embodiment is further enhanced.

【0013】図7は複数の装置を同じ試料ホルダーで連
結し一連の作業を効率化した実施例を示す。図7はFI
B20,アルゴンミリング装置21,SEM22,TE
M23で構成されており、これらの装置は皆共通の試料
ホルダー11と試料微動装置10を持っている。例え
ば、FIB20で加工した面をアルゴンミリング装置2
1で観察面のエッチングをしてSEM22で観察し、観
察の結果もう少し観察部の断面を深く加工する必要が判
明し、再びFIB20で加工し、この面をアルゴンミリ
ングし、再びSEM観察し、次に更に微小部の観察のた
めTEM試料をFIB20で加工し、最後にTEM観察
する。この場合試料のつけ替えがあると非常に作業時間
がかかりしかも作業者の精神集中がなければ測定は最終
段階に達する前に、試料の落下などのトラブルで終わっ
てしまう可能性もある。本発明のシステムではこの作業
は容易に出来る。
FIG. 7 shows an embodiment in which a plurality of devices are connected by the same sample holder to improve the efficiency of a series of operations. Figure 7 is FI
B20, argon milling device 21, SEM22, TE
The sample holder 11 and the sample fine movement device 10 are common to all of these devices. For example, a surface machined with FIB20 is used for an argon milling device 2
The observation surface was etched in 1 and observed by SEM22. As a result of the observation, it was found that the cross section of the observation part needs to be processed a little deeper. Then, it is processed by FIB20 again, this surface is subjected to argon milling, and SEM observation is performed again. Further, a TEM sample is processed with FIB20 for observing a minute portion, and finally TEM observation is performed. In this case, if the sample is replaced, it takes a very long time to work, and if there is no concentration of the operator's mind, the measurement may end in trouble such as dropping the sample before reaching the final stage. With the system of the present invention, this task can be easily performed.

【0014】又、FIBで加工する試料が絶縁物の場
合、試料表面を加工前に蒸着することがあるが、この蒸
着装置にも同じ試料ホルダーが装着出来ると更に便利で
ある。
When the sample to be processed by FIB is an insulator, the sample surface may be vapor-deposited before the processing. It is more convenient if the same sample holder can be attached to this vapor deposition apparatus.

【0015】[0015]

【発明の効果】本発明によるとFIB加工の前処理,F
IB加工,FIB後処理加工,SEM観察,TEM観察
の作業において試料のつけ替えを必要とせず加工観察効
率が非常に向上した。その値は1作業において少なくと
も30分以上改善された。
According to the present invention, FIB processing pretreatment, F
In IB processing, FIB post-processing processing, SEM observation, and TEM observation work, it was not necessary to replace the sample, and the processing observation efficiency was greatly improved. The value was improved by at least 30 minutes or more in one work.

【0016】加工と観察を行う場合、観察位置に試料を
合わす作業でも本発明の装置では座標を共通にできるの
で、ただちに設定できる。これに要する時間は1観察で
15分〜30分であり、この時間が改善された。
In the case of processing and observing, the apparatus of the present invention can set the coordinates in common even in the work of aligning the sample with the observing position, so that it can be set immediately. The time required for this was 15 to 30 minutes per observation, and this time was improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のFIB説明図である。FIG. 1 is an FIB explanatory diagram of the present invention.

【図2】TEM用試料の大きさと加工部分を表す説明図
である。
FIG. 2 is an explanatory diagram showing the size and processed portion of a TEM sample.

【図3】試料ホルダー先端部の説明図である。FIG. 3 is an explanatory diagram of a tip portion of a sample holder.

【図4】本発明の実施例2を示す図である。FIG. 4 is a diagram showing a second embodiment of the present invention.

【図5】本発明の実施例3を示す図である。FIG. 5 is a diagram showing Embodiment 3 of the present invention.

【図6】試料位置表示例を示す図である。FIG. 6 is a diagram showing a sample position display example.

【図7】複合システム構築例を示す図である。FIG. 7 is a diagram showing an example of building a composite system.

【符号の説明】[Explanation of symbols]

1…エミッター、2…シールド電極、3…引出電極、4
…コンデンサーレンズ、5…絞り、6…走査電極、7…
対物レンズ、8…試料室、9…二次粒子検出器、10…
試料微動装置、11…試料ホルダー、12…試料、14
…試料台、18…変換フランジ、19…汎用ステージ、
20…FIB、21…アルゴンミリング装置、22…S
EM、23…TEM。
1 ... Emitter, 2 ... Shield electrode, 3 ... Extraction electrode, 4
... condenser lens, 5 ... diaphragm, 6 ... scanning electrode, 7 ...
Objective lens, 8 ... Sample chamber, 9 ... Secondary particle detector, 10 ...
Sample fine movement device, 11 ... Sample holder, 12 ... Sample, 14
… Sample stand, 18… Conversion flange, 19… General stage,
20 ... FIB, 21 ... Argon milling device, 22 ... S
EM, 23 ... TEM.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】走査形電子顕微鏡、又は、透過形電子顕微
鏡の試料ホルダーがそのまま集束イオンビーム装置に装
着可能で、試料の載せ替え作業をせずに集束イオンビー
ム加工と走査形電子顕微鏡、又は、透過形電子顕微鏡に
よる観察が可能であることを特徴とする集束イオンビー
ム装置。
1. A scanning electron microscope or a sample holder of a transmission electron microscope can be mounted on a focused ion beam apparatus as it is, and the focused ion beam processing and scanning electron microscope can be carried out without remounting the sample, or , A focused ion beam device, which can be observed by a transmission electron microscope.
【請求項2】試料ホルダーは試料が少なくとも90度回
転してもイオンビーム、または電子ビームが照射出来る
ことを特徴とする請求項1記載の集束イオンビーム装
置。
2. The focused ion beam apparatus according to claim 1, wherein the sample holder can irradiate an ion beam or an electron beam even when the sample rotates at least 90 degrees.
【請求項3】試料ホルダーはサイドエントリー形である
ことを特徴とする請求項1記載の集束イオンビーム装
置。
3. The focused ion beam apparatus according to claim 1, wherein the sample holder is a side entry type.
【請求項4】請求項1において、異なった機種の走査形
電子顕微鏡、又は、透過形電子顕微鏡の試料ホルダーが
同時に又は取替えによって装着出来、異なった機種の試
料ホルダーを用いることが出来ることを特徴とする集束
イオンビーム加工装置。
4. The method according to claim 1, wherein the sample holders of different types of scanning electron microscopes or transmission electron microscopes can be attached at the same time or by replacement, and different types of sample holders can be used. Focused ion beam processing equipment.
【請求項5】請求項4において、ワーキングディスタン
スが可変出来る汎用ステージとサイドエントリーステー
ジが装着出来ることを特徴とする集束イオンビーム加工
装置。
5. The focused ion beam processing apparatus according to claim 4, wherein a general-purpose stage having a variable working distance and a side entry stage can be mounted.
【請求項6】集束イオンビーム装置のビーム位置と試料
位置との関係と走査形電子顕微鏡又は透過形電子顕微鏡
のビーム位置と試料位置との関係が同じにすることが可
能で装置を変えた場合でも加工位置が迅速に観察位置に
設定出来ることを特徴とする請求項1記載の集束イオン
ビーム装置。
6. When the relationship between the beam position of the focused ion beam device and the sample position and the relationship between the beam position of the scanning electron microscope or the transmission electron microscope and the sample position can be made the same and the device is changed. However, the focused ion beam device according to claim 1, wherein the processing position can be quickly set to the observation position.
【請求項7】請求項1において、試料ホルダーはエッチ
ング装置,ミリング装置,蒸着装置,レーザー加工機な
どにもそのまま装着可能で、集束イオンビーム加工,走
査形電子顕微鏡,透過形電子顕微鏡による観察の前後又
は間においてエッチング,ミリング,蒸着,レーザー加
工などが可能なことを特徴とする集束イオンビーム加工
システム。
7. The sample holder according to claim 1, which can be mounted on an etching apparatus, a milling apparatus, a vapor deposition apparatus, a laser processing machine or the like as it is, for observation by a focused ion beam processing, a scanning electron microscope or a transmission electron microscope. Focused ion beam processing system that can perform etching, milling, vapor deposition, laser processing, etc. before, after, or between.
JP24760192A 1992-09-17 1992-09-17 Sample holder, sample processing observation system using the same, sample observation method, transmission electron microscope, and ion beam device Expired - Lifetime JP2842083B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24760192A JP2842083B2 (en) 1992-09-17 1992-09-17 Sample holder, sample processing observation system using the same, sample observation method, transmission electron microscope, and ion beam device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24760192A JP2842083B2 (en) 1992-09-17 1992-09-17 Sample holder, sample processing observation system using the same, sample observation method, transmission electron microscope, and ion beam device

Publications (2)

Publication Number Publication Date
JPH06103947A true JPH06103947A (en) 1994-04-15
JP2842083B2 JP2842083B2 (en) 1998-12-24

Family

ID=17165940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24760192A Expired - Lifetime JP2842083B2 (en) 1992-09-17 1992-09-17 Sample holder, sample processing observation system using the same, sample observation method, transmission electron microscope, and ion beam device

Country Status (1)

Country Link
JP (1) JP2842083B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09115861A (en) * 1995-10-20 1997-05-02 Hitachi Ltd Machining system for sample
JPH09199069A (en) * 1996-01-22 1997-07-31 Ricoh Co Ltd Sample holder for cross sectional tem observation
US5783830A (en) * 1996-06-13 1998-07-21 Hitachi, Ltd. Sample evaluation/process observation system and method
US6495838B1 (en) 1998-07-23 2002-12-17 Hitachi, Ltd. Sample heating holder, method of observing a sample and charged particle beam apparatus
US6566654B1 (en) 1999-10-29 2003-05-20 Hitachi, Ltd. Inspection of circuit patterns for defects and analysis of defects using a charged particle beam
US7015483B2 (en) 2003-06-11 2006-03-21 Hitachi High-Technologies Corporation Focused ion beam system
JP2008294004A (en) * 2008-08-13 2008-12-04 Hitachi Ltd Sample producing device
JP2009027197A (en) * 2008-10-31 2009-02-05 Hitachi Ltd Ion beam apparatus
JP2012149817A (en) * 2011-01-19 2012-08-09 Nippon Spindle Mfg Co Ltd Temperature control device
WO2013111453A1 (en) * 2012-01-25 2013-08-01 株式会社 日立ハイテクノロジーズ Sample holder for electron microscope
KR20180109729A (en) 2017-03-27 2018-10-08 가부시키가이샤 히다치 하이테크 사이언스 Sample holding device, device for mounting member, and charged particle beam apparatus

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09115861A (en) * 1995-10-20 1997-05-02 Hitachi Ltd Machining system for sample
JPH09199069A (en) * 1996-01-22 1997-07-31 Ricoh Co Ltd Sample holder for cross sectional tem observation
US5783830A (en) * 1996-06-13 1998-07-21 Hitachi, Ltd. Sample evaluation/process observation system and method
US6495838B1 (en) 1998-07-23 2002-12-17 Hitachi, Ltd. Sample heating holder, method of observing a sample and charged particle beam apparatus
US6566654B1 (en) 1999-10-29 2003-05-20 Hitachi, Ltd. Inspection of circuit patterns for defects and analysis of defects using a charged particle beam
US7015483B2 (en) 2003-06-11 2006-03-21 Hitachi High-Technologies Corporation Focused ion beam system
JP2008294004A (en) * 2008-08-13 2008-12-04 Hitachi Ltd Sample producing device
JP2009027197A (en) * 2008-10-31 2009-02-05 Hitachi Ltd Ion beam apparatus
JP2012149817A (en) * 2011-01-19 2012-08-09 Nippon Spindle Mfg Co Ltd Temperature control device
WO2013111453A1 (en) * 2012-01-25 2013-08-01 株式会社 日立ハイテクノロジーズ Sample holder for electron microscope
US9558910B2 (en) 2012-01-25 2017-01-31 Hitachi High-Technologies Corporation Sample holder for electron microscope
KR20180109729A (en) 2017-03-27 2018-10-08 가부시키가이샤 히다치 하이테크 사이언스 Sample holding device, device for mounting member, and charged particle beam apparatus

Also Published As

Publication number Publication date
JP2842083B2 (en) 1998-12-24

Similar Documents

Publication Publication Date Title
US6300631B1 (en) Method of thinning an electron transparent thin film membrane on a TEM grid using a focused ion beam
JP3897271B2 (en) Processing observation apparatus and sample processing method
EP1998356B1 (en) In-Situ STEM Sample Preparation
CN107084869B (en) High throughput TEM fabrication process and hardware for backside thinning of cross-sectional view thin layers
US6822233B2 (en) Method and apparatus for scanning transmission electron microscopy
JPH10223574A (en) Machining observation device
JPH11238484A (en) Projection type charged particle microscope and substrate inspection system
US5008537A (en) Composite apparatus with secondary ion mass spectrometry instrument and scanning electron microscope
JPH06103947A (en) Focusing ion beam device
TWI768001B (en) Charged particle beam apparatus and sample processing method
US6218663B1 (en) Process and device for ion thinning in a high resolution transmission electron microscope
CN109841534B (en) Method for observing cross section processing and charged particle beam device
JP4654216B2 (en) Sample holder for charged particle beam equipment
JP7080674B2 (en) Aberration measurement with a charged particle microscope
JP2002134059A (en) Focused ion beam device
BE1007675A3 (en) Process for the production of preparations intended for an electron microscope.
JPH1064473A (en) Observing system for evaluation/treatment of sample
JP2021068702A (en) Method for 3d analysis of large area of sample using slightly incident fib milling
JPH10223168A (en) Sample analyzer
JP3223431B2 (en) Thin film processing equipment
JP2000304712A (en) Electron beam analyzing and observing apparatus and electron beam microanalyzer
JP2672808B2 (en) Ion beam processing equipment
JP2001006605A (en) Focusing ion beam processing device and processing method for specimen using focusing ion beam
JP2002319365A (en) Stage, and device for preparing fib sample
JP3488075B2 (en) Thin film sample preparation method and system

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071023

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20081023

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20091023

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091023

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101023

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111023

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20121023

EXPY Cancellation because of completion of term