JPH06103640B2 - Charge beam device - Google Patents

Charge beam device

Info

Publication number
JPH06103640B2
JPH06103640B2 JP27931285A JP27931285A JPH06103640B2 JP H06103640 B2 JPH06103640 B2 JP H06103640B2 JP 27931285 A JP27931285 A JP 27931285A JP 27931285 A JP27931285 A JP 27931285A JP H06103640 B2 JPH06103640 B2 JP H06103640B2
Authority
JP
Japan
Prior art keywords
magnetic field
deflection
electron beam
coil
charged
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27931285A
Other languages
Japanese (ja)
Other versions
JPS62140400A (en
Inventor
忠利 山田
俊二 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP27931285A priority Critical patent/JPH06103640B2/en
Publication of JPS62140400A publication Critical patent/JPS62140400A/en
Publication of JPH06103640B2 publication Critical patent/JPH06103640B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Particle Accelerators (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、荷電ビーム装置、特に荷電ビームの加速器
や蓄積リングにおける偏向電磁石に関するものである。
Description: FIELD OF THE INVENTION The present invention relates to a charged beam device, and more particularly to a deflecting electromagnet in a charged beam accelerator or storage ring.

〔従来の技術〕 電子蓄積リングを例にとって従来装置を説明する。第4
図はYoshikazu Miyahara他が“シンクロトロン放射用超
電導レーストラツク電子蓄積リングおよび共有インジエ
クタマイクロトロン”(Superconducting Racetrack El
ectron Storage Ring&Coexistent Injector Microtron
for Synchrotron Radiation)の題名で1984年9月発行
のISSP技報(TECHNICAL REPORT of ISSP)No.21に紹介
された電子蓄積リングの平面配置図である。図におい
て、(1)は電子ビームの中心軌道、(2)は電子ビー
ムを曲げる偏向電磁石、(3)は偏向電磁石(2)の非
線形磁場効果補正またはクロマテイシテイ(色収差)補
正の6極電磁石、(4)は電子ビームを収束させる4極
電磁石、(5)は電子ビームを加速する高周波加速空
洞、(6)は電子ビームを入射する際に電子ビームの中
心軌道をずらして入射し易くするためのキツカー、
(7)は電子ビームをリング内の電子ビームの中心軌道
に沿うように入射するためのインフレクター、(8)は
真空排気ポンプ、(9)は入射電子ビーム、(10)は電
子ビームを通す真空チヤンバーであり、電子ビームの中
心軌道1に沿って閉ループ状に形成されることにより、
真空密閉管を構成するものである。
[Prior Art] A conventional apparatus will be described by taking an electron storage ring as an example. Fourth
The figure is from Yoshikazu Miyahara et al., “Superconducting Racetrack El for Superconducting Racetrack Electron Storage Ring and Shared Injector Microtron for Synchrotron Radiation”.
ectron Storage Ring & Coexistent Injector Microtron
It is a plan layout view of the electron storage ring introduced in ISSP Technical Report (TECHNICAL REPORT of ISSP) No. 21 issued in September 1984 under the title of "For Synchrotron Radiation". In the figure, (1) is the central orbit of the electron beam, (2) is a bending electromagnet that bends the electron beam, and (3) is a six-pole electromagnet for correcting the non-linear magnetic field effect of the bending electromagnet (2) or for the correction of chromaticity. , (4) is a quadrupole electromagnet for converging the electron beam, (5) is a high-frequency accelerating cavity for accelerating the electron beam, and (6) is for shifting the central orbit of the electron beam to make it easier to enter. For kitsker,
(7) is an inflector for injecting an electron beam along the central orbit of the electron beam in the ring, (8) is a vacuum pump, (9) is an incident electron beam, and (10) is an electron beam. It is a vacuum chamber and is formed into a closed loop along the central orbit 1 of the electron beam.
It constitutes a vacuum sealed tube.

上記のように構成された電子蓄積リングにおいて、偏向
電磁石(2)の動作を次に説明する。第5図は偏向電磁
石(2)の偏向コイルを示した斜視図であり、図中コイ
ル上の矢印(m1),(m2)は各コイル(21),(22)に
流れる電流の方向を示している。また、電子ビーム軌道
(1)上の矢印(n)は蓄積(又は閉じ込め)される電
子ビームの進む方向(電流の方向はこの逆方向である)
を示す。なお上コイル(21)と下コイル(22)には電流
が同方向に流れている。
The operation of the deflection electromagnet (2) in the electron storage ring configured as described above will be described below. FIG. 5 is a perspective view showing the deflection coil of the deflection electromagnet (2), in which the arrows (m 1 ) and (m 2 ) on the coil indicate the direction of the current flowing through the coils (21) and (22). Is shown. Further, the arrow (n) on the electron beam trajectory (1) indicates the traveling direction of the accumulated (or confined) electron beam (the direction of current is the opposite direction).
Indicates. In addition, current flows in the same direction in the upper coil (21) and the lower coil (22).

第6図(A)および(B)は前記偏向コイルの平面図と
側面図である。図における電子ビームの中心軌道(1)
はxy平面上の半径(ρ0)の半円とその前後につながる
y軸に平行な直線で示される。偏向コイル(21)及び偏
向コイル(22)が発生する主磁場すなわち電子ビームの
偏向磁界の方向は図中の電流を示す矢印(m1)から明ら
かなように、(−Z)の方向である。これはフレミング
の左手の法則により、偏向コイル中に入った電子ビーム
には(−R)の方向に電磁力が働き、それにより電子ビ
ームは半径(ρ)の曲率で円軌道をとって曲げられ、所
定の偏向角度(第6図の場合では180度)で偏向する。
この曲率と磁界の関係は次式で与えられる。
6A and 6B are a plan view and a side view of the deflection coil. Central orbit of electron beam in the figure (1)
Is indicated by a semicircle of radius (ρ 0 ) on the xy plane and a straight line connected to the front and back of the circle parallel to the y axis. The direction of the main magnetic field generated by the deflection coil (21) and the deflection coil (22), that is, the deflection magnetic field of the electron beam is the (-Z) direction, as is clear from the arrow (m 1 ) indicating the current in the figure. . According to Fleming's left-hand rule, an electromagnetic force acts in the (-R) direction on the electron beam entering the deflection coil, which causes the electron beam to bend in a circular orbit with a curvature of radius (ρ). , Deflection at a predetermined deflection angle (180 degrees in the case of FIG. 6).
The relationship between this curvature and the magnetic field is given by the following equation.

ρ=P/(eBz) ………(1) ただし、(P)は電子の運動量、(e)は電子の電荷、
(Bz)は偏向コイルの(z)方向における発生磁界であ
る。ここで、偏向コイル(21),(22)の発生する磁界
の磁場領域と磁場のない領域との境界領域すなわち偏向
磁界の端部における磁界分布を示したものが第7図であ
る。この図は第6図(A)の平面図における右半分の電
子ビーム中心軌道すなわち電子ビームの偏向磁界からの
出射端の中心軌道に沿った偏向コイルの発生磁界(Bz)
を示している。このような発生磁界分布は、第6図
(A)の左半分の電子ビームの偏向磁界への入射端の中
心軌道にも発生している。ただしθ90°〜0°の間はZ
=0 R=ρ0であり、その後はx=ρ0、z=0における(−
y)方向の直線上の発生磁界(Bz)である。ここで図中
の破線は、図の水平軸に沿った発生磁界(Bz)の積分値
が等しくなる等価矩形波の磁界分布である。第8図は偏
向コイルによる発生磁界(Bz)の理想的な分布を示して
いる。このような理想的な分布にすると、軌道の解析が
容易になり、装置の設計が楽になる。ところが、偏向コ
イルによる発生磁界を強くし、そして偏向コイルの形状
を小形化するために超電導コイルを用いる場合、この偏
向コイルは通常第5図、第6図(A),(B)に示した
ように、空心コイルとした方が偏向電磁石を製作し易
い。なお、鉄心を用いると、磁界分布は理想分布に近ず
くが、この鉄心を極低温領域に設置すると被冷却重畳が
大となるし、また、常温領域に設置すると、コイルと鉄
心間に大きな電磁力が働くので、それを支えるため常温
と極低温間に強度の強い断熱支持材が必要となる。その
結果、極低温領域への熱侵入量が増える。偏向コイルが
空心の場合、その磁界分布は第7図の実線のようにな
り、その結果、電子ビームの中心軌道は第9図中の(1
1)のようになり、理想的な磁界分布の場合の軌道(1
0)に比べて比較的大きくずれる。この軌道は、第7図
の磁界分布と前記〔1〕式から求めることができる。す
なわち、第7図で(ρ0θ)がρ0(π/2)から0に近ず
くにつれて発生磁界(Bz)が大となり、その結果電子ビ
ームの曲率半径(ρ0)は順次小となる。ここで前記
(ρ0θ)が0を越えた後も(Bz)が存在するため、電
子ビームは少し曲がり、第9図の(11)のような軌道に
なる。一方、第8図に示したような理想的な磁界分布で
は、(ρ0θ)がρ0(π/2)から0の間は(Bz)が一定
であり、その後は0になる。したがって、(θ)が0に
なるまでは電子ビームの中心軌道は一定半径の円であ
り、その後は直線となり、第9図の(10)の軌道を得る
ようになる。その結果第4図に見られるように、付勢さ
れた電子ビームが電子ビームの中心軌道(1)に沿って
円軌道をとったり、直線軌道をとったりして回周するよ
うになるから、この電子ビームを所定の手段(説明は省
略する)で外部に取出さない限り、電子ビームが閉じ込
められるので、付勢電子の蓄積が行われるようになって
いる。
ρ = P / (eBz) (1) where (P) is the electron momentum, (e) is the electron charge,
(Bz) is a magnetic field generated in the (z) direction of the deflection coil. Here, FIG. 7 shows the magnetic field distribution in the boundary region between the magnetic field region of the magnetic field generated by the deflection coils (21) and (22) and the region without the magnetic field, that is, the end portion of the deflection magnetic field. This figure shows the magnetic field (Bz) generated by the deflection coil along the center orbit of the electron beam in the right half of the plan view of FIG. 6A, that is, the center orbit of the exit end from the deflection magnetic field of the electron beam.
Is shown. Such a generated magnetic field distribution is also generated in the center trajectory of the incident end of the electron beam in the left half of FIG. However, between θ90 ° and 0 °, Z
= 0 R = ρ 0 , and then (= − at x = ρ 0 , z = 0.
It is the magnetic field (Bz) generated on a straight line in the y) direction. Here, the broken line in the drawing is the magnetic field distribution of an equivalent rectangular wave in which the integrated values of the generated magnetic field (Bz) along the horizontal axis of the drawing are equal. FIG. 8 shows an ideal distribution of the magnetic field (Bz) generated by the deflection coil. Such an ideal distribution facilitates trajectory analysis and facilitates device design. However, when a superconducting coil is used to strengthen the magnetic field generated by the deflection coil and to reduce the size of the deflection coil, this deflection coil is generally shown in FIGS. 5, 6 (A) and (B). As described above, the air-core coil makes it easier to manufacture the bending electromagnet. When an iron core is used, the magnetic field distribution approaches an ideal distribution, but if this iron core is installed in a cryogenic region, the superposition to be cooled becomes large, and if it is installed in a room temperature region, a large electromagnetic field between the coil and the iron core will be generated. Since the force works, a strong heat insulating support material is required between room temperature and cryogenic temperature to support it. As a result, the amount of heat entering the cryogenic region increases. When the deflection coil is air-core, the magnetic field distribution is as shown by the solid line in Fig. 7, and as a result, the central trajectory of the electron beam is (1) in Fig. 9.
1), and the trajectory (1
It is relatively large compared to 0). This trajectory can be obtained from the magnetic field distribution in FIG. 7 and the above equation [1]. That is, in FIG. 7, the generated magnetic field (Bz) increases as (ρ 0 θ) approaches 0 from ρ 0 (π / 2), and as a result, the radius of curvature (ρ 0 ) of the electron beam gradually decreases. . Since (Bz) still exists even after the above (ρ 0 θ) exceeds 0, the electron beam bends a little and becomes an orbit like (11) in FIG. On the other hand, in the ideal magnetic field distribution as shown in FIG. 8, (Bz) is constant between (ρ 0 θ) and ρ 0 (π / 2) to 0, and then becomes 0 thereafter. Therefore, the central orbit of the electron beam is a circle with a constant radius until (θ) becomes 0, and then becomes a straight line, and the orbit of (10) in FIG. 9 is obtained. As a result, as shown in FIG. 4, the energized electron beam takes a circular orbit along the central orbit (1) of the electron beam or takes a straight orbit, and the electron beam is rotated. The electron beam is confined unless the beam is extracted to the outside by a predetermined means (omitted from the description), so that the energizing electrons are accumulated.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

従来の荷電ビーム装置は以上のように構成されているの
で、電子ビームの軌道が複雑となって、軌道解析が困難
になり、そのため装置の設計が困難になる。さらに、電
子ビームを通す真空チヤンバーも電子ビームの中心軌道
に対応して、その形が複雑になるなどの問題があつた。
Since the conventional charged beam apparatus is configured as described above, the trajectory of the electron beam becomes complicated and the trajectory analysis becomes difficult, which makes the design of the apparatus difficult. Furthermore, the vacuum chamber through which the electron beam passes has a problem that its shape becomes complicated in correspondence with the central orbit of the electron beam.

この発明は上記のような問題点を解消するためになされ
たもので、偏向コイルの発生磁界分布を極力理想的な状
態に近づけることができる荷電ビーム装置を得ることを
目的とする。
The present invention has been made to solve the above problems, and an object of the present invention is to obtain a charged beam apparatus capable of making the magnetic field distribution of the deflection coil as close to an ideal state as possible.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る荷電ビーム装置は、偏向コイル端部に偏
向コイルの電流方向とは逆の方向に電流を流す補正コイ
ルを設けたものである。
The charged particle beam system according to the present invention is provided with a correction coil at the end of the deflection coil, which causes a current to flow in a direction opposite to the current direction of the deflection coil.

〔作用〕[Action]

この発明における荷電ビーム装置の偏向コイルは、コイ
ル端部の補正コイルにより磁界分布が補正され、そして
理想的磁界分布に近い磁界を発生する。なお、この補正
コイルは超電導導体で巻回されたものでも、常電導導体
で巻回されたものでもよい。
In the deflection coil of the charged beam apparatus according to the present invention, the magnetic field distribution is corrected by the correction coil at the coil end, and a magnetic field close to the ideal magnetic field distribution is generated. The correction coil may be wound with a superconducting conductor or a normal conducting conductor.

〔発明の実施例〕Example of Invention

以下、この発明の一実施例を図について説明する。第1
図(A),(B)は偏向コイルのそれぞれ平面図、側面
図であり、(23)は上部偏向コイル(21)の両端部、す
なわち偏向磁界に対するビーム入射端及びビーム出射端
の2つの部分となっている上部偏向コイル(21)の両端
部にそれぞれ設けた上部補正コイル、(24)は下部偏向
コイル(22)の両端部にそれぞれ設けた下部補正コイル
である。上部偏向コイル(21)の矢印(m1)は電流の方
向を示す。なお、上記補正コイル(23),(24)の形状
は、各偏向コイル(21),(22)の端部の形とほぼ同じ
形状であればよく、一致している必要はない。ここで
は、偏向コイル(21),(22)の端部を円形にしたため
に補正コイル(23),(24)の形状も円形にしたが、偏
向コイルの端部や補正コイルの形状は楕円形でもよい
し、また、円弧と直線の組み合わせでもよい。
An embodiment of the present invention will be described below with reference to the drawings. First
Figures (A) and (B) are a plan view and a side view, respectively, of the deflection coil, and (23) is both ends of the upper deflection coil (21), that is, two portions of a beam entrance end and a beam exit end with respect to the deflection magnetic field. Is an upper correction coil provided at both ends of the upper deflection coil (21), and (24) is a lower correction coil provided at both ends of the lower deflection coil (22). The arrow (m 1 ) of the upper deflection coil (21) indicates the direction of current. The shapes of the correction coils (23) and (24) need only be substantially the same as the shapes of the ends of the deflection coils (21) and (22), and do not have to match. Here, since the deflection coils (21) and (22) have circular ends, the correction coils (23) and (24) also have circular shapes, but the deflection coil ends and the correction coils have an elliptical shape. However, it may be a combination of an arc and a straight line.

第1図(A)の矢印(m1)の向きから明らかなように、
偏向コイル(21)の電流の向き(m1)と、補正コイル
(23)に流れる電流の向き(m3)とは互いに逆方向にな
っている。このような補正コイルの設置によって、偏向
コイル(21),(22)による発生磁界の分布を、従来装
置のそれに比べてより矩形に近づけることができる。
As is clear from the direction of the arrow (m 1 ) in FIG. 1 (A),
The direction of current in the deflection coil (21) (m 1), which is in the opposite directions to the direction of the current flowing through the correction coil (23) (m 3). By installing such a correction coil, the distribution of the magnetic field generated by the deflection coils (21) and (22) can be made closer to a rectangle than that of the conventional device.

なお、本実施例における電子ビーム中心軌道上の磁界分
布の計算結果を第2図に示す。ここで、補正コイル(2
3),(24)の起磁力は偏向コイル(21),(22)によ
る起磁力の25%とした。第2図の特性を第7図のそれと
比較してみると、本実施例では明らかに、電子ビーム中
心軌道上の磁界分布が改良され、第8図に示した理想的
分布により近づいていることがわかる。
The calculation result of the magnetic field distribution on the electron beam center trajectory in this embodiment is shown in FIG. Where the correction coil (2
The magnetomotive forces of 3) and (24) were set to 25% of the magnetomotive force of the deflection coils (21) and (22). Comparing the characteristics of FIG. 2 with those of FIG. 7, it is apparent that the magnetic field distribution on the central orbit of the electron beam is improved in the present embodiment and is closer to the ideal distribution shown in FIG. I understand.

本実施例の偏向電磁石を用いた場合の電子ビーム中心軌
道を第3図中の(12)に示す。なお、同図中には第9図
に示した理想的磁界分布の電子ビーム中心軌道(10)
と、従来の電子ビーム中心軌道(11)とを併記した。こ
のように電子ビーム中心軌道は理想的な磁界分布の場合
のそれに近づいて中心軌道が単純になり、その結果、軌
道解析が容易になって装置の設計も楽になり、また電子
ビームが通る真空チヤンバーの形も単純になる。
A central orbit of the electron beam when the deflecting electromagnet of this embodiment is used is shown by (12) in FIG. In the figure, the electron beam center trajectory (10) of the ideal magnetic field distribution shown in FIG.
And the conventional electron beam center orbit (11) are also shown. In this way, the center orbit of the electron beam approaches that of the ideal magnetic field distribution, and the center orbit becomes simpler.As a result, the orbit analysis becomes easier and the device design becomes easier. The shape of becomes simple.

なお、上記実施例では補正コイル(23),(24)を偏向
コイル(21),(22)の外側、つまり電子ビーム軌道の
側とは反対側に設置したが、補正コイル(23),(24)
を偏向コイル(21),(22)の電子ビーム側に設置して
も同じ効果が得られる。また補正コイル(23),(24)
と偏向コイル(21),(22)とは必ずしも密着させる必
要はない。例えば、偏向コイル(21),(22)を超電導
コイルとしてこれを極低温領域に設置し、そして補正コ
イル(23),(24)を常温領域に設置してもよい。ま
た、補正コイル(23),(24)と偏向コイル(21),
(22)を共に超電導コイルとしてもよい。さらに、補正
コイル(23),(24)をそれぞれ複数個のコイルで構成
すると、補正コイル(23),(24)による超磁力の微調
整がやり易くなる。また、複数個の補正コイルの形状を
少しずつ変化させることにより、磁界分布の微調整も可
能となる。
In the above embodiment, the correction coils (23) and (24) are installed outside the deflection coils (21) and (22), that is, on the opposite side of the electron beam orbit. twenty four)
The same effect can be obtained even if is installed on the electron beam side of the deflection coils (21) and (22). Correction coils (23), (24)
The deflection coils (21) and (22) do not necessarily have to be in close contact with each other. For example, the deflection coils (21) and (22) may be installed as superconducting coils in a cryogenic region, and the correction coils (23) and (24) may be installed in a room temperature region. In addition, the correction coils (23) and (24) and the deflection coil (21),
Both (22) may be superconducting coils. Further, when the correction coils (23) and (24) are each composed of a plurality of coils, fine adjustment of the super magnetic force by the correction coils (23) and (24) can be easily performed. Further, the magnetic field distribution can be finely adjusted by gradually changing the shapes of the plurality of correction coils.

以上、電子蓄積リングを例にとって本発明を説明した
が、荷電ビームを偏向する偏向電磁石総てに本発明を適
用できることは、本発明の原理説明から明らかである。
Although the present invention has been described above using the electron storage ring as an example, it is apparent from the explanation of the principle of the present invention that the present invention can be applied to all deflection electromagnets that deflect a charged beam.

〔発明の効果〕〔The invention's effect〕

以上のように、この発明によれば、偏向コイルの端部に
補正コイルを設置したので、荷電ビーム中心軌道を単純
にでき、これにより軌道解析、装置設計が容易になる。
また、荷電ビームの通る真空チヤンバーの形状を単純に
できるという効果がある。
As described above, according to the present invention, since the correction coil is installed at the end of the deflection coil, the charged beam central trajectory can be simplified, which facilitates trajectory analysis and device design.
Further, there is an effect that the shape of the vacuum chamber through which the charged beam passes can be simplified.

【図面の簡単な説明】[Brief description of drawings]

第1図(A),(B)はこの発明の一実施例による偏向
コイルを示す平面図と側面図、第2図はこの発明による
偏向コイルの発生磁界分布図、第3図は本発明の偏向コ
イルを用いた場合の電子ビーム中心軌道を示す特性線
図、第4図は従来の電子蓄積リングの原理的平面図、第
5図は従来の偏向コイルを示す斜視図、第6図(A),
(B)はその平面図と側面図、第7図は従来の偏向コイ
ルが電子ビーム軌道中心上に発生する磁界の分布を示す
特性線図、第8図は理想的な磁界分布の特性線図、第9
図は従来の偏向コイルによる電子ビームの中心軌道およ
び理想的な磁界分布を用いた場合の電子ビームの中心軌
道を示す特性図である。 図中、(1)は電子ビームの中心軌道、(2)は偏向電
磁石、(3)は6極電磁石、(4)は4極電磁石、
(5)は高周波加速空洞、(6)はキツカー、(7)は
インフレクター、(8)は真空ポンプ、(9)は入射電
子ビーム、(10)は真空チヤンバー、(21),(22)は
偏向コイル、(23),(24)は補正コイルである。 なお、各図中同一符号は同一または相当部分を示す。
1A and 1B are a plan view and a side view showing a deflection coil according to an embodiment of the present invention, FIG. 2 is a magnetic field distribution diagram of the deflection coil according to the present invention, and FIG. A characteristic diagram showing a central orbit of an electron beam when a deflection coil is used, FIG. 4 is a principle plan view of a conventional electron storage ring, FIG. 5 is a perspective view showing a conventional deflection coil, and FIG. ),
7B is a plan view and a side view thereof, FIG. 7 is a characteristic diagram showing a distribution of a magnetic field generated by a conventional deflection coil on the center of an electron beam orbit, and FIG. 8 is a characteristic diagram of an ideal magnetic field distribution. , 9th
The figure is a characteristic diagram showing the central trajectory of an electron beam by a conventional deflection coil and the central trajectory of an electron beam when an ideal magnetic field distribution is used. In the figure, (1) is the central orbit of the electron beam, (2) is a deflection electromagnet, (3) is a 6-pole electromagnet, (4) is a 4-pole electromagnet,
(5) is a high frequency acceleration cavity, (6) is a kicker, (7) is an inflector, (8) is a vacuum pump, (9) is an incident electron beam, (10) is a vacuum chamber, (21), (22). Is a deflection coil, and (23) and (24) are correction coils. In the drawings, the same reference numerals indicate the same or corresponding parts.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】xy平面内に配設され、内部を走行する荷電
ビームを偏向する偏向部分を含み、該荷電ビームを加速
又は蓄積するための真空密閉管と、 前記偏向部分を前記xy平面に対して垂直のz方向に挾
み、前記偏向部分に沿って分布するz方向の偏向磁界を
発生する上下1対の偏向コイルから構成され、直進する
前記荷電ビームが前記偏向磁界のビーム入射端に入射
し、前記偏向磁界によりほぼ円軌道をとって偏向した後
に前記偏向磁界のビーム出射端から出射することによ
り、前記荷電ビームを所定の角度だけ偏向させる偏向電
磁石と、 該偏向電磁石のビーム入射端及びビーム出射端に対応し
た上下1対の前記偏向コイルの端部にそれぞれ重畳して
配設され、前記ビーム入射端及びビーム出射端の磁界強
度分布を補正する補正コイルと を有することを特徴とする荷電ビーム装置。
1. A vacuum sealed tube for accelerating or accumulating a charged beam, which is disposed in the xy plane and deflects a charged beam traveling inside; and the deflected part in the xy plane. On the other hand, it is composed of a pair of upper and lower deflection coils that sandwich a deflection magnetic field in the z direction that is distributed along the deflection portion and that is perpendicular to the z direction. A deflecting electromagnet that deflects the charged beam by a predetermined angle by being incident, deflected in a substantially circular orbit by the deflecting magnetic field, and then emitted from the beam emitting end of the deflecting magnetic field, and a beam incident end of the deflecting electromagnet. And a correction coil which is disposed so as to overlap the end portions of the pair of upper and lower deflection coils corresponding to the beam emitting end and which corrects the magnetic field intensity distribution at the beam incident end and the beam emitting end. Charged beam device characterized by:
【請求項2】前記偏向コイルによる磁界の方向と前記補
正コイルによる磁界の方向とが互いに逆方向であること
を特徴とする特許請求の範囲第1項記載の荷電ビーム装
置。
2. The charged particle beam apparatus according to claim 1, wherein the direction of the magnetic field generated by the deflection coil and the direction of the magnetic field generated by the correction coil are opposite to each other.
【請求項3】前記偏向コイル及び前記補正コイルのいず
れも又はいずれかが超電導体で形成されていることを特
徴とする特許請求の範囲第1項又は第2項記載の荷電ビ
ーム装置。
3. The charged particle beam apparatus according to claim 1, wherein either or both of the deflection coil and the correction coil are formed of a superconductor.
JP27931285A 1985-12-13 1985-12-13 Charge beam device Expired - Fee Related JPH06103640B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27931285A JPH06103640B2 (en) 1985-12-13 1985-12-13 Charge beam device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27931285A JPH06103640B2 (en) 1985-12-13 1985-12-13 Charge beam device

Publications (2)

Publication Number Publication Date
JPS62140400A JPS62140400A (en) 1987-06-23
JPH06103640B2 true JPH06103640B2 (en) 1994-12-14

Family

ID=17609408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27931285A Expired - Fee Related JPH06103640B2 (en) 1985-12-13 1985-12-13 Charge beam device

Country Status (1)

Country Link
JP (1) JPH06103640B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0763038B2 (en) * 1987-03-11 1995-07-05 日本電信電話株式会社 Bending electromagnet with correction coil
JP2667832B2 (en) * 1987-09-11 1997-10-27 株式会社日立製作所 Deflection magnet
JP2896188B2 (en) * 1990-03-27 1999-05-31 三菱電機株式会社 Bending magnets for charged particle devices
JP4954465B2 (en) * 2004-11-30 2012-06-13 株式会社Sen Ion beam / charged particle beam irradiation system
CN114706114A (en) * 2022-06-06 2022-07-05 中国科学技术大学 Electron storage ring beam current track measurement and control equipment and method

Also Published As

Publication number Publication date
JPS62140400A (en) 1987-06-23

Similar Documents

Publication Publication Date Title
US5117212A (en) Electromagnet for charged-particle apparatus
JP2667832B2 (en) Deflection magnet
US5568109A (en) Normal conducting bending electromagnet
JP3100634B2 (en) Small isoclonal cyclotron
JP3125805B2 (en) Circular accelerator
US5111173A (en) Deflection electromagnet for a charged particle device
US4200844A (en) Racetrack microtron beam extraction system
JPH06103640B2 (en) Charge beam device
CN113382529A (en) Superconducting ion annular synchrotron
JPH04322099A (en) Charged particle device
JPH0824080B2 (en) Electron storage ring
JP2813386B2 (en) Electromagnet of charged particle device
JP3956285B2 (en) Wiggle ring
EP0569079B1 (en) Combination of display tube and deflection unit comprising line deflection coils of the semi-saddle type with a gun-sided extension
US5027098A (en) Saddle type dipolar coil eliminating only sextupole components of magnetic field
JP7249906B2 (en) Superconducting coil and superconducting magnet device
JPH0821478B2 (en) Charged particle device
JP2520914B2 (en) Charged particle device
JPH0753280Y2 (en) Bending electromagnet for SOR device
JPH01307197A (en) Charge particle device
JP2021141095A (en) Superconducting magnet device and deflection electromagnet device
Parker et al. Compensation of the effects of detector solenoid on the vertical beam orbit in NLC
JPH11144900A (en) Electromagnet device for charged particle
JPH08162297A (en) Electromagnetic apparatus
JPH05258897A (en) Septum electromagnet

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees