JPH0821478B2 - Charged particle device - Google Patents

Charged particle device

Info

Publication number
JPH0821478B2
JPH0821478B2 JP61205123A JP20512386A JPH0821478B2 JP H0821478 B2 JPH0821478 B2 JP H0821478B2 JP 61205123 A JP61205123 A JP 61205123A JP 20512386 A JP20512386 A JP 20512386A JP H0821478 B2 JPH0821478 B2 JP H0821478B2
Authority
JP
Japan
Prior art keywords
lower coils
magnetic field
coils
coil
charged particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61205123A
Other languages
Japanese (ja)
Other versions
JPS6362200A (en
Inventor
俊二 山本
忠利 山田
正夫 守田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP61205123A priority Critical patent/JPH0821478B2/en
Publication of JPS6362200A publication Critical patent/JPS6362200A/en
Publication of JPH0821478B2 publication Critical patent/JPH0821478B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、荷電粒子ビーム例えば電子ビームの加速
器又は蓄積リングなどの荷電粒子装置に関し、特にコイ
ルを大形化することなく偏向電磁石の磁界均一度を向上
させた荷電粒子装置に関するものである。
Description: TECHNICAL FIELD The present invention relates to a charged particle device such as an accelerator or storage ring for a charged particle beam, for example, an electron beam, and particularly to a magnetic field equalization of a deflection electromagnet without enlarging a coil. The present invention relates to an improved charged particle device.

[従来の技術] 第5図は、例えば、日本化学技術情報センター1984年
9月発行の、ヨシカズ ミヤハラ(Yoshikazu Miyahar
a)、コージ タカタ(Koji Takata)及びテツヤ ナカ
ニシ(Tetsuya Nakanishi)によるISSPの技術報告(Tec
hnical Report of ISSP)No.21、「シンクロトロン放射
のための超電導レーストラック電子蓄積リング及び共存
インジェクタ・マイクロトロン(Superconducting Race
track Electron Strage Ring and Coexistent Inje
ctor Microtron for Synchrotron Radiation)」に
記載された従来の荷電粒子装置を示す平面図である。
[Prior Art] FIG. 5 shows, for example, Yoshikazu Miyahar published by the Japan Chemical Technology Information Center in September 1984.
a), technical report of ISSP by Koji Takata and Tetsuya Nakanishi (Tec
hnical Report of ISSP) No. 21, “Superconducting Racetrack Electron Storage Ring for Synchrotron Radiation and Coexisting Injector Microtron (Superconducting Race)
track Electron Strage Ring and Coexistent Inje
FIG. 8 is a plan view showing a conventional charged particle device described in “ctor Microtron for Synchrotron Radiation”.

図において、(1)は荷電粒子を蓄積する荷電粒子装
置としての蓄積リング、(2)は荷電粒子(例えば電
子)を蓄積リング(1)内に導くための入射部ビームラ
インである。(3)は荷電粒子を偏向して平衡軌道
(4)を形成するための超電導の偏向電磁石であり、後
述する偏向コイルの組み合わせにより構成されている。
In the figure, (1) is a storage ring as a charged particle device for storing charged particles, and (2) is an incident beam line for guiding charged particles (for example, electrons) into the storage ring (1). (3) is a superconducting deflection electromagnet for deflecting charged particles to form a balanced orbit (4), and is composed of a combination of deflection coils described later.

(5)は荷電粒子を偏向電磁石(3)で偏向する際に
発生する放射光を取り出すための放射光ビームラインで
ある。この放射光は、シンクロトロン放射光、又はSOR
(Synchrotron Orbital Radiation)と呼ばれ、外部に
取り出されてリソグラフィなどに利用されている。一般
に、放射光ビームライン(5)は、装置の利用効率を高
めるため、偏向電磁石(3)に沿って多数設けられてい
るが、ここでは各偏向電磁石(3)にそれぞれ1本のみ
を示し他は省略している。
(5) is a synchrotron radiation beam line for extracting radiant light generated when the charged particles are deflected by the deflecting electromagnet (3). This synchrotron radiation is synchrotron radiation, or SOR
It is called (Synchrotron Orbital Radiation), and is taken out to the outside and used for lithography. Generally, a large number of synchrotron radiation beam lines (5) are provided along the deflection electromagnets (3) in order to enhance the utilization efficiency of the device, but here, only one is provided for each deflection electromagnet (3). Is omitted.

(6)は蓄積リング(1)内の荷電粒子を集束させる
ための四極電磁石、(7)は偏向電磁石(3)の非線形
磁場又はクロマティシティを補正するための六極電磁
石、(8)は放射光の放出による荷電粒子のエネルギ損
失を補い所定のエネルギに加速するための高周波空洞、
(9)は荷電粒子を入射ビームライン(2)から入射さ
せる際に平衡軌道(4)をずらせて入射を助けるための
キッカ、(10)は荷電粒子の通路となる真空ドーナツ、
(11)は荷電粒子を入射部ビームライン(2)から蓄積
リング(1)内に入射させるためのインフレクタ、(1
2)は真空ドーナツ(10)内に高真空に保つための真空
ポンプであり、これらは平衡軌道(4)に沿って配設さ
れている。
(6) is a quadrupole electromagnet for focusing the charged particles in the storage ring (1), (7) is a sextupole electromagnet for correcting the nonlinear magnetic field or chromaticity of the deflection electromagnet (3), and (8) is a radiation A high frequency cavity for compensating the energy loss of charged particles due to the emission of light and accelerating to a predetermined energy,
(9) is a kicker for shifting the equilibrium orbit (4) when injecting charged particles from the incident beam line (2), and (10) is a vacuum donut that serves as a path for charged particles.
(11) is an inflector for injecting charged particles into the storage ring (1) from the incident part beam line (2), and (1)
Reference numeral 2) is a vacuum pump for maintaining a high vacuum in the vacuum donut (10), which are arranged along the equilibrium orbit (4).

尚、真空ドーナツ(10)は機械的強度が高く且つベー
キングが容易なステンレス材で形成されている。又、こ
の真空ドーナツ(10)の内部は真空ポンプ(12)により
超高真空に保たれており、荷電粒子が気体分子に衝突し
てエネルギを失いその寿命が短くなることを防止してい
る。
The vacuum donut (10) is made of a stainless material that has high mechanical strength and is easy to bake. Further, the inside of the vacuum donut (10) is kept in an ultra-high vacuum by a vacuum pump (12) to prevent charged particles from colliding with gas molecules and losing energy to shorten the life thereof.

第6図〜第8図は第5図内の偏向電磁石(3)をそれ
ぞれ示す斜視図、平面図及び側面図である。図におい
て、(31)及び(32)は偏向電磁石(3)を構成する一
対の超電導の偏向コイルであり、(31)は上コイル、
(32)は下コイルである。尚、上下コイル(31)、(3
2)は高起磁力を持っているので、鉄心を用いない空心
構造となっている。矢印m1、m2は上下コイル(31)、
(32)に流れる電流の方向、矢印nは平衡軌道(4)上
の電子ビームの進行方向を示している。
6 to 8 are a perspective view, a plan view and a side view, respectively, showing the deflection electromagnet (3) in FIG. In the figure, (31) and (32) are a pair of superconducting deflection coils forming a deflection electromagnet (3), and (31) is an upper coil.
(32) is a lower coil. The upper and lower coils (31), (3
Since 2) has a high magnetomotive force, it has an air-core structure that does not use an iron core. Arrows m 1 and m 2 are the upper and lower coils (31),
The direction of the current flowing in (32), the arrow n, indicates the traveling direction of the electron beam on the equilibrium orbit (4).

又、第7図及び第8図から明らかなように、平衡軌道
(4)は、極座標Rθ(z=0)の平面上に半径ρ
半円と、この半円の前後につながる直線とで示される。
ρ、ρは、バナナ形状の上下コイル(31)、(32)
の内側半径及び外側半径である。
Further, as is clear from FIGS. 7 and 8, the equilibrium orbit (4) is composed of a semicircle of radius ρ 0 on the plane of the polar coordinate Rθ (z = 0) and straight lines connecting before and after the semicircle. Indicated by.
ρ 1 and ρ 2 are banana-shaped upper and lower coils (31), (32)
Are the inner and outer radii of.

次に、第5図乃至第8図に示した従来の荷電粒子装置
の動作について説明する。
Next, the operation of the conventional charged particle device shown in FIGS. 5 to 8 will be described.

入射部ビームライン(2)から蓄積リング(1)内に
入射された荷電粒子は、インフレクタ(11)によりパル
ス的に偏向され且つキッカ(9)により軌道がずらされ
る。従って、荷電粒子は、最初は平衡軌道(4)から少
しずれた軌道上を周回し、何回転か後に、平衡軌道
(4)上を矢印n方向に周回し続けるようになる。この
平衡軌道(4)は、偏向電磁石(3)及び四極電磁石
(6)の配置により決定される。
The charged particles that have entered the storage ring (1) from the incident part beam line (2) are pulsed by the inflector (11) and their trajectories are deviated by the kicker (9). Therefore, the charged particles first orbit the orbit slightly deviated from the equilibrium orbit (4), and after several revolutions, continue to orbit on the equilibrium orbit (4) in the direction of arrow n. This equilibrium orbit (4) is determined by the arrangement of the bending electromagnet (3) and the quadrupole electromagnet (6).

尚、m1、m2方向の電流により上下コイル(31)、(3
2)で発生する主磁場は−z(−y)方向となり、平衡
軌道(4)に流れる電流は、電子ビーム方向nとは逆方
向となる。従って、上下コイル(31)、(32)間を通過
する荷電粒子即ち電子ビームは、フレミングの左手の法
則により−Rの方向に電磁力を受け、これにより半径ρ
の曲率で曲げられる。この平衡軌道(4)の半径ρ
は以下の式で与えられる。
Incidentally, m 1, m vertical coils (31) by two directions of the current, (3
The main magnetic field generated in 2) is in the -z (-y) direction, and the current flowing in the equilibrium orbit (4) is in the direction opposite to the electron beam direction n. Therefore, the charged particles, that is, the electron beam passing between the upper and lower coils (31) and (32) is subjected to an electromagnetic force in the -R direction according to Fleming's left-hand rule, which causes a radius ρ
Bent with 0 curvature. Radius ρ 0 of this equilibrium orbit (4)
Is given by the following formula.

ρ=P/(e・By) … 但し、 P:電子の運動量 e:電子の電荷 By:上下コイル(31)、(32)のy軸方向における発生
磁界 尚、y軸は平衡軌道(4)に関するz軸と平行な軸で
あり、後述するx軸は平衡軌道(4)に関する極座標の
半径Rと同方向の軸である。
ρ 0 = P / (e · By) where P: electron momentum e: electron charge By: magnetic field generated in the y-axis direction of the upper and lower coils (31) and (32) ) Is parallel to the z-axis, and the x-axis described later is an axis in the same direction as the polar coordinate radius R of the equilibrium orbit (4).

一方、高周波空洞(8)は荷電粒子を加速し、六極電
磁石(7)は、偏向電磁石(3)の半径方向の磁場の不
均一さを補正したり、クロマティシティの補正を行う。
On the other hand, the high frequency cavity (8) accelerates charged particles, and the sextupole electromagnet (7) corrects the non-uniformity of the magnetic field in the radial direction of the deflection electromagnet (3) and corrects the chromaticity.

こうして平衡軌道(4)に沿って周回する荷電粒子
は、偏向電磁石(3)の磁界により偏向を受けると、制
動放射による電磁波を放射光として、放射光ビームライ
ン(5)から平衡軌道(4)の接線方向に放射する。
When the charged particles revolving along the equilibrium orbit (4) are deflected by the magnetic field of the deflection electromagnet (3), electromagnetic waves due to bremsstrahlung are emitted as emitted light from the emitted light beam line (5) to the equilibrium orbit (4). Radiate in the tangential direction of.

ところで、電子ビームは平衡軌道(4)の周囲にベー
タトロン振動をしているので、一般に、電子ビームの進
行方向nに直交する方向(主としてR方向即ちx軸方
向)に関し、中心軌道の周囲に数cm以上の範囲に亘って
10-4〜10-3程度の均一な磁界分布(良磁界領域)が必要
となる。超電導偏向コイル(31)、(32)の磁界分布が
不均一の場合、電子ビームの平衡軌道(4)は上下コイ
ル(31)、(32)の中心からずれるが、このずれ量が所
定値より大きくなると、電子ビームが真空ドーナツ(1
0)に当たり電子ビームが失われてしまうことになる。
By the way, since the electron beam oscillates around the equilibrium orbit (4) in the betatron direction, the electron beam generally surrounds the central orbit in the direction orthogonal to the traveling direction n of the electron beam (mainly the R direction, that is, the x-axis direction). Over a range of several cm or more
A uniform magnetic field distribution (good magnetic field region) of about 10 -4 to 10 -3 is required. When the magnetic field distributions of the superconducting deflection coils (31) and (32) are non-uniform, the equilibrium orbit (4) of the electron beam deviates from the centers of the upper and lower coils (31) and (32), but this deviation amount is larger than the predetermined value. As the electron beam grows larger, the electron beam becomes a vacuum donut (1
At 0), the electron beam will be lost.

第9図は偏向電磁石(3)内の磁界ByのR(x軸)方
向分布を計算で求めた特性図であり、上下コイル(3
1)、(32)の内側半径ρ及び外側半径ρがそれぞ
れ、 ρ=315.8mm ρ=675.8mm 且つ上下コイル(31)、(32)間の距離が252mmの場
合の、(By−By0)/By0の比率(%)を示している。
FIG. 9 is a characteristic diagram in which the distribution of the magnetic field By in the deflection electromagnet (3) in the R (x-axis) direction is calculated, and the upper and lower coils (3
When the inner radius ρ 1 and the outer radius ρ 2 of 1) and (32) are respectively ρ 1 = 315.8 mm ρ 2 = 675.8 mm and the distance between the upper and lower coils (31) and (32) is 252 mm, (By -By 0 ) / By 0 ratio (%) is shown.

但し、By0は平衡軌道(4)の中心、即ち、 (x,y)=(0,0) におけるy軸方向の磁場である。又、ここで、 ω=50mm であり、式から求まるR=ρ(x=0)の平衡軌道
(4)の半径位置は、 ρ=495.8mm である。
However, By 0 is the magnetic field in the y-axis direction at the center of the equilibrium orbit (4), that is, (x, y) = (0,0). Further, here, ω = 50 mm, and the radial position of the equilibrium orbit (4) of R = ρ 0 (x = 0) obtained from the equation is ρ 0 = 495.8 mm.

第9図から明らかなように、磁界Byがピークとなる位
置は、R=ρより少し半径の大きい位置である。従っ
て、磁界分布が極値となる、 R=ρ+ΔR (x=ΔR) の位置に平衡軌道(4)を設定し、これを中心として幅
2ωの領域を良磁界領域とすれば、 α=(Bymax−Bymin)/By0 但し、 Bymax:良磁界領域(2ω)内の最高磁界 Bymin:良磁界領域(2ω)内の最低磁界 By0:基準磁界(通常は電子ビームの中心軌道上の磁界) で定義される磁界均一度αは改善される。しかし、いず
れの場合も、磁界分布の計算結果から得られる磁界均一
度αは10-2のオーダである。
As is clear from FIG. 9, the position where the magnetic field By peaks is a position where the radius is slightly larger than R = ρ 0 . Therefore, if the equilibrium orbit (4) is set at the position of R = ρ 0 + ΔR (x = ΔR) where the magnetic field distribution becomes the extreme value, and the region of width 2ω with this as the center is a good magnetic field region, α = (Bymax-Bymin) / By 0 where Bymax: highest magnetic field in good magnetic field region (2ω) Bymin: lowest magnetic field in good magnetic field region (2ω) By 0 : reference magnetic field (usually the magnetic field on the central orbit of the electron beam) The magnetic field homogeneity α defined by) is improved. However, in any case, the magnetic field homogeneity α obtained from the calculation result of the magnetic field distribution is on the order of 10 -2 .

[発明が解決しようとする問題点] 従来の荷電粒子装置は以上のように、一対の上下コイ
ル(31)、(32)により、電子ビームの平衡軌道(4)
を偏向しているので、平衡軌道(4)の周囲の良磁界領
域2ωにおける磁界均一度αが、10-2程度のオーダでし
か得られないという問題点があった。
[Problems to be Solved by the Invention] As described above, in the conventional charged particle apparatus, the pair of upper and lower coils (31) and (32) are used to balance the electron beam trajectory (4).
However, there is a problem that the magnetic field homogeneity α in the good magnetic field region 2ω around the equilibrium orbit (4) can be obtained only on the order of about 10 -2 .

又、例えば特開昭61−188907号公報に参照されるよう
に、上下コイル(31)及び(32)に第2の上下コイルを
設けた磁場発生装置も提案されているが、両コイルが重
ね配置されており、十分に効率的な構造を有していない
ため、大形化してしまうという問題点があった。
A magnetic field generator in which the upper and lower coils (31) and (32) are provided with a second upper and lower coil is also proposed, as disclosed in Japanese Patent Laid-Open No. 61-188907, for example. Since it is arranged and does not have a sufficiently efficient structure, there is a problem that it becomes large.

この発明は上記のような問題点を解決するためになさ
れたもので、効率的な構造によりコイルを大形化するこ
となく平衡軌道の周囲の良磁界領域の磁界均一度を改善
できる荷電粒子装置を得ることを目的とする。
The present invention has been made to solve the above-mentioned problems, and a charged particle device capable of improving the magnetic field homogeneity in a good magnetic field region around a balanced orbit without enlarging the coil due to an efficient structure. Aim to get.

[問題点を解決するための手段] この発明に係る荷電粒子装置は、平衡軌道の上下に配
設された上下コイルの外側にそれぞれ第2の上下コイル
を設け、第2の上下コイルの内側半径を上下コイルの内
側半径と一致させ、更に、上下コイル及び第2の上下コ
イルにより発生する磁界分布の特性曲線を、平衡軌道の
半径方向に関し、一方が上に凸、他方が下に凸として、
上下コイルによる磁界分布中の不均一磁界成分と、第2
の上下コイルの磁界分布中の不均一磁界成分とを相殺す
るように、第2の上下コイルの電流密度を上下コイルの
電流密度の約2倍としたものである。
[Means for Solving the Problems] In the charged particle device according to the present invention, the second upper and lower coils are provided outside the upper and lower coils disposed above and below the equilibrium orbit, and the inner radius of the second upper and lower coils is provided. Is matched with the inner radius of the upper and lower coils, and the characteristic curve of the magnetic field distribution generated by the upper and lower coils and the second upper and lower coils is defined as one convex upward and the other convex downward in the radial direction of the equilibrium trajectory.
The non-uniform magnetic field component in the magnetic field distribution due to the upper and lower coils,
The current density of the second upper and lower coils is approximately twice the current density of the upper and lower coils so as to cancel out the non-uniform magnetic field components in the magnetic field distribution of the upper and lower coils.

[作用] この発明においては、上下コイルによる磁界分布中の
不均一磁界成分と、第2の上下コイルの磁界分布中の不
均一磁界成分とが相殺され、良磁界領域における磁界分
布が均一化する。
[Operation] In the present invention, the non-uniform magnetic field component in the magnetic field distribution of the upper and lower coils and the non-uniform magnetic field component in the magnetic field distribution of the second upper and lower coils are canceled, and the magnetic field distribution in the good magnetic field region is made uniform. .

また、上下コイル及び第2の上下コイルをほぼ同一平
面内に配置することにより、各コイル巻枠を一体化可能
としてコイルの大形化を抑制する。
Further, by arranging the upper and lower coils and the second upper and lower coils in substantially the same plane, it is possible to integrate the coil winding frames and to prevent the coil from becoming large.

[実施例] 以下、この発明の一実施例を図について説明する。第
1図及び第2図はこの発明の一実施例の要部即ち偏向電
磁石を示す平面図及び側面図であり、(4)、(31)及
び(32)は前述の従来装置と同様のものである。又、全
体の荷電粒子装置の構成は第5図に示したものと同様で
ある。
[Embodiment] An embodiment of the present invention will be described below with reference to the drawings. 1 and 2 are a plan view and a side view showing an essential part of one embodiment of the present invention, that is, a deflection electromagnet, and (4), (31) and (32) are the same as those of the above-mentioned conventional device. Is. Further, the configuration of the entire charged particle device is the same as that shown in FIG.

(33)は上コイル(31)の外側に配設された第2の上
コイル、(34)は下コイル(32)の外側に配設された第
2の下コイル、矢印m3、m4は第2の上下コイル(33)、
(34)に流れる電流の方向である。尚、前述と同様に、
各上下コイル(31)〜(34)については(R,θ,z)座標
系を用い、平衡軌道(4)については(x,y)座標系を
用いる。
(33) is a second upper coil disposed outside the upper coil (31), (34) is a second lower coil disposed outside the lower coil (32), arrows m 3 , m 4 Is the second upper and lower coil (33),
It is the direction of the current flowing through (34). In addition, as described above,
The (R, θ, z) coordinate system is used for the upper and lower coils (31) to (34), and the (x, y) coordinate system is used for the equilibrium orbit (4).

第2の上下コイル(33)及び(34)は、上下コイル
(31)及び(32)と同様に全く同一形状であり、且つR
−θ(z=0)平面に関して面対称の位置に配置されて
いる。但し、上下コイル(31)及び(32)の電流密度は
101.5A/mm2であるのに対し、外側に配設された第2の上
下コイル(33)及び(34)の電流密度は200A/mm2であ
る。更に、第2の上下コイル(33)、(34)の面積は、
上下コイル(31)、(32)の約2倍であり、バナナ形状
の第2の上下コイル(33)、(34)の各内側半径が、そ
れぞれ上下コイル(31)、(32)の内側半径と一致する
ように配設されている。
The second upper and lower coils (33) and (34) have exactly the same shape as the upper and lower coils (31) and (32), and R
It is arranged at a position symmetrical with respect to the −θ (z = 0) plane. However, the current density of the upper and lower coils (31) and (32) is
While the current density is 101.5 A / mm 2 , the current density of the second upper and lower coils (33) and (34) arranged outside is 200 A / mm 2 . Furthermore, the area of the second upper and lower coils (33), (34) is
The inner radii of the upper and lower coils (31), (32) are approximately twice that of the upper and lower coils (31), (32), and the inner radii of the second banana-shaped upper and lower coils (33, 34) are the inner radii of the upper and lower coils (31), (32), respectively. It is arranged so as to match with.

次に、各コイル(31)〜(34)の発生磁界分布及び合
成磁界を示す第3図及び第4図の各特性図を参照しなが
ら、第1図及び第2図に示したこの発明の一実施例の動
作について説明する。電子ビームを平衡軌道(4)上を
周回させる動作については、前述の従来動作と同様であ
る。
Next, referring to the characteristic diagrams of FIG. 3 and FIG. 4 showing the generated magnetic field distribution and the combined magnetic field of the coils (31) to (34), the present invention shown in FIG. 1 and FIG. The operation of one embodiment will be described. The operation of orbiting the electron beam on the equilibrium orbit (4) is the same as the conventional operation described above.

一般に、R方向に関する磁界分布曲線は、コイル面積
が小さいと上に凸、コイル面積が大きいと下に凸とな
る。又、電流密度が大きいと曲線の変化率は大きくな
る。従って、第3図に示すように、上下コイル(31)及
び(32)により発生する磁界分布は上に凸の曲線Aで表
わされ、第2の上下コイル(33)及び(34)により発生
する磁界分布は下に凸の曲線Bで表わされる。この場
合、磁界By(縦軸)の単位はT(テスラ)で示す。第3
図から、曲線A及びBを組み合わせれば、R方向に対し
て非常にフラットな磁界分布、即ち磁界均一度αの高い
分布が得られることが分かる。
In general, the magnetic field distribution curve in the R direction is convex upward when the coil area is small and downward convex when the coil area is large. In addition, when the current density is large, the rate of change of the curve is large. Therefore, as shown in FIG. 3, the magnetic field distribution generated by the upper and lower coils (31) and (32) is represented by the upwardly convex curve A, and generated by the second upper and lower coils (33) and (34). The magnetic field distribution to be represented is represented by a downwardly convex curve B. In this case, the unit of the magnetic field By (vertical axis) is indicated by T (Tesla). Third
From the figure, it can be seen that by combining the curves A and B, a very flat magnetic field distribution in the R direction, that is, a distribution with a high magnetic field uniformity α can be obtained.

ここで、上下コイルの磁界分布とコイル面積及びコイ
ル電流との関係について具体的に説明する。
Here, the relationship between the magnetic field distribution of the upper and lower coils and the coil area and the coil current will be specifically described.

第1図及び第2図を参照すると、上下コイル(31)及
び(32)のコイル面積は、コイル幅(=2(ρ
ρ))にほぼ対応する。このコイル幅を0から順次広
げていった場合、上下コイル(31)及び(32)の各々に
流れるコイル電流(矢印)の向きが同一方向とすれば、
上下コイル(31)及び(32)が作る磁界分布は、最初は
上に凸の分布から徐々に平坦になり、続いて、下に凸の
分布になる。
Referring to FIGS. 1 and 2, the coil areas of the upper and lower coils (31) and (32) are equal to the coil width (= 2 (ρ 0
almost corresponds to ρ 1 )). When the coil width is gradually increased from 0, if the coil currents (arrows) flowing through the upper and lower coils (31) and (32) are in the same direction,
The magnetic field distribution created by the upper and lower coils (31) and (32) initially becomes an upwardly convex distribution and gradually becomes flat, and then becomes a downwardly convex distribution.

このとき、コイル幅を極端に狭くすると、コイル両端
部の曲げ加工が困難になるなどの製造上の問題が生じる
ので、例えば、偏向半径が0.6m程度の荷電粒子装置のコ
イルの場合、平行軌道(4)を挟んでプラスマイナス20
0mm程度のコイル幅が必要となる。
At this time, if the coil width is extremely narrow, manufacturing problems such as bending of both ends of the coil become difficult, so for example, in the case of a coil of a charged particle device with a deflection radius of about 0.6 m, a parallel trajectory Plus (minus) 20 across (4)
A coil width of about 0 mm is required.

こうして最初の一対の上下コイル(31)及び(32)の
配置が決定すると、この上下コイルが作る磁界分布を広
範囲にわたって高均一化するために、この発明の実施例
のように、第2の上下コイル(33)及び(34)が配置さ
れる。
When the arrangement of the first pair of upper and lower coils (31) and (32) is determined in this way, in order to make the magnetic field distribution created by the upper and lower coils highly uniform over a wide range, the second upper and lower coils are arranged as in the embodiment of the present invention. Coils (33) and (34) are arranged.

このとき、第2の上下コイル(33)および(34)の作
る磁界分布も、上述したようにコイル幅(コイル面積に
相当)を変えることによって変化し、最も広範囲にわた
って磁界分布を高均一化するためには、第2の上下コイ
ルのコイル面積及びコイル電流密度を内側の上下コイル
(31)および(32)の約2倍(例えば、1.8〜2.2倍)に
設定することが必要となる。
At this time, the magnetic field distribution created by the second upper and lower coils (33) and (34) also changes by changing the coil width (corresponding to the coil area) as described above, and makes the magnetic field distribution highly uniform over the widest range. In order to do so, it is necessary to set the coil area and coil current density of the second upper and lower coils to about twice (for example, 1.8 to 2.2 times) that of the inner upper and lower coils (31) and (32).

なぜなら、第2の上下コイルのコイル面積を2倍より
も小さく設定すると、第2の上下コイルの作る磁界分布
が平坦すぎてしまい、内側の上下コイル(31)および
(32)の磁界分布を平坦化するのに十分な磁界分布を発
生させることができず、この発明の目的とする広範囲の
高均一化磁界分布領域を得ることができないからであ
る。
This is because if the coil area of the second upper and lower coils is set smaller than twice, the magnetic field distribution created by the second upper and lower coils will be too flat, and the magnetic field distribution of the inner upper and lower coils (31) and (32) will be flat. This is because it is not possible to generate a magnetic field distribution sufficient to make the magnetic field uniform and it is not possible to obtain a wide range of highly homogenized magnetic field distribution region which is the object of the present invention.

また、逆に、第2の上下コイルのコイル面積を2倍よ
りも大きく設定すると、平行軌道部分からのコイル位置
が離れすぎることによりコイル形成に必要な導体長さが
長くなって高価になるうえ、これらの磁界分布の不具合
を電流密度で調整しようとすると、著しく大きな追加電
流が必要となり工業的に得策でないからである。
On the contrary, if the coil area of the second upper and lower coils is set to be larger than twice, the coil position from the parallel track portion is too far away and the conductor length required for coil formation becomes long, which is expensive. This is because an attempt to adjust these defects in the magnetic field distribution by the current density requires a remarkably large additional current, which is not industrially advantageous.

換言すると、第3図に示すように、上下コイル(31)
および(32)の磁界分布を広範囲に調整できるような第
2の上下コイル(33)および(34)の最適組み合わせ条
件は、コイル面積が約2倍であり、電流密度が約2倍で
ある。但し、各コイル(31)〜(34)のコイル断面積
は、第2図に示すように、ほぼ同一である。
In other words, as shown in FIG. 3, the upper and lower coils (31)
The optimum combination condition of the second upper and lower coils (33) and (34) capable of adjusting the magnetic field distribution of (32) and (32) in a wide range is that the coil area is about twice and the current density is about twice. However, the coil cross-sectional areas of the coils (31) to (34) are almost the same as shown in FIG.

第4図は、θ=90゜、y=0における4個のコイル
(31)〜(34)の合成磁界の分布を表わしており、By0
は平衡軌道(4)の中心、即ち(x,y)=(0,0)におけ
るy軸方向の磁界である。第4図から、10-4のオーダー
の磁界均一度αが、|x|≦40mmの範囲の良磁界領域2ω
で得られることが分かる。この磁界均一度αの値は、従
来装置と比較して2析分向上していることになる。
Figure 4 is, theta = 90 ° represents the distribution of the combined magnetic field of the four coils in y = 0 (31) ~ ( 34), By 0
Is the magnetic field in the y-axis direction at the center of the equilibrium orbit (4), that is, (x, y) = (0,0). From FIG. 4 , the magnetic field homogeneity α of the order of 10 −4 is a good magnetic field region 2ω in the range of | x | ≦ 40 mm.
You can see that it can be obtained with. This means that the value of the magnetic field homogeneity α is improved by two depositions as compared with the conventional device.

尚、上記実施例では、一対の第2の上下コイル(3
3)、(34)を用いて上下コイル(31)、(32)の磁界
分布の不均一成分を相殺するようにしたが、二対以上の
第2の上下コイルを用いてもよい。又、平衡軌道(4)
の位置は、各コイル(31)〜(34)の配置と無関係に選
択してもよい。
In the above embodiment, a pair of second upper and lower coils (3
Although 3) and (34) are used to cancel the non-uniform components of the magnetic field distribution of the upper and lower coils (31) and (32), two or more pairs of second upper and lower coils may be used. Also, equilibrium orbit (4)
The position of may be selected regardless of the arrangement of the coils (31) to (34).

更に、平衡軌道(4)の面に対して各コイル(31)及
び(33)と(32)及び(34)とが対称位置に配置されて
いる場合について説明したが、必ずしも対称を維持する
必要はなく、非対称であっても何ら支障を生じないこと
は言うまでもない。
Further, the case where the coils (31) and (33) and (32) and (34) are arranged at symmetrical positions with respect to the plane of the balanced orbit (4) has been described, but it is always necessary to maintain symmetry. Needless to say, even if it is asymmetric, it does not cause any trouble.

[発明の効果] 以上のようにこの発明によれば、偏向電磁石内の上下
コイルの外側にそれぞれ第2の上下コイルを設け、第2
の上下コイルの内側半径を上下コイルの内側半径と一致
させ、更に、上下コイル及び第2の上下コイルにより発
生する磁界分布の特性曲線を、平衡軌道の半径方向に関
し、一方が上に凸、他方が下に凸として、上下コイルに
よる磁界分布中の不均一磁界成分と、第2の上下コイル
の磁界分布中の不均一磁界成分とを相殺するように、第
2の上下コイルの電流密度を上下コイルの電流密度の約
2倍としたので、コイルの大形化を招くことなく、良磁
界領域の磁界均一度が著しく向上した荷電粒子装置が得
られる効果がある。
[Advantages of the Invention] As described above, according to the present invention, the second upper and lower coils are provided outside the upper and lower coils in the deflection electromagnet, respectively.
The inner radii of the upper and lower coils are matched with the inner radii of the upper and lower coils, and the characteristic curves of the magnetic field distributions generated by the upper and lower coils and the second upper and lower coils are Is downwardly convex so that the non-uniform magnetic field component in the magnetic field distribution of the upper and lower coils and the non-uniform magnetic field component in the magnetic field distribution of the second upper and lower coils cancel each other so that the current density of the second upper and lower coils rises and falls. Since the current density of the coil is set to about twice, there is an effect that a charged particle device in which the magnetic field homogeneity in the good magnetic field region is remarkably improved can be obtained without inviting an increase in the size of the coil.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の一実施例の要部を示す平面図、第2
図は第1図の要部を示す側面図、第3図は第1図内の各
上下コイルによる発生磁界を示す特性図、第4図は第3
図の発生磁界を合成した磁界分布を示す特性図、第5図
は従来の荷電粒子装置を示す平面図、第6図は第5図内
の要部を示す斜視図、第7図は第6図の要部を示す平面
図、第8図は第6図の要部を示す側面図、第9図は第6
図内の上下コイルによる発生磁界を示す特性図である。 (3)……偏向電磁石、(4)……平衡軌道 (31)、(32)……上下コイル (33)、(34)……第2の上下コイル ρ……平衡軌道の半径 ρ……各コイルの内側半径 A……上下コイルによる磁界 B……第2の上下コイルによる磁界 尚、図中、同一符号は同一又は相当部分を示す。
FIG. 1 is a plan view showing an essential part of an embodiment of the present invention, and FIG.
FIG. 4 is a side view showing the main part of FIG. 1, FIG. 3 is a characteristic view showing the magnetic fields generated by the upper and lower coils in FIG. 1, and FIG.
FIG. 5 is a plan view showing a conventional charged particle device, FIG. 6 is a perspective view showing the main parts in FIG. 5, and FIG. FIG. 8 is a plan view showing the main part of the figure, FIG. 8 is a side view showing the main part of FIG. 6, and FIG.
It is a characteristic view which shows the magnetic field generated by the upper and lower coils in the figure. (3) …… bending magnet, (4) …… equilibrium orbit (31), (32) …… upper and lower coils (33), (34) …… second upper and lower coils ρ 0 …… radius of balanced orbit ρ 1 ...... Inside radius of each coil A ...... Magnetic field of upper and lower coils B ...... Magnetic field of second upper and lower coils In the drawings, the same reference numerals indicate the same or corresponding portions.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】荷電粒子が周回する平衡軌道をはさんで配
置された一対の上下コイルからなる偏向電磁石を備えた
荷電粒子装置において、 前記上下コイルの外側にそれぞれ第2の上下コイルを設
け、 前記第2の上下コイルの内側半径を前記上下コイルの内
側半径と一致させ、 更に、 前記上下コイル及び前記第2の上下コイルにより発生す
る磁界分布の特性曲線を、前記平衡軌道の半径方向に関
し、一方が上に凸、下に凸として、 前記上下コイルによる磁界分布中の不均一磁界成分と、
前記第2の上下コイルの磁界分布中の不均一磁界成分と
を相殺すように、 前記第2の上下コイルのコイル面積を前記上下コイルの
コイル面積の約2倍とし、 前記第2の上下コイルの電流密度を前記上下コイルの電
流密度の約2倍としたことを特徴とする荷電粒子装置。
1. A charged particle device comprising a deflection electromagnet composed of a pair of upper and lower coils arranged across an equilibrium orbit around which charged particles circulate, wherein a second upper and lower coil is provided outside the upper and lower coils, respectively. An inner radius of the second upper and lower coils is matched with an inner radius of the upper and lower coils, and a characteristic curve of a magnetic field distribution generated by the upper and lower coils and the second upper and lower coils is related to a radial direction of the balanced orbit, One is convex upward, convex downward, a non-uniform magnetic field component in the magnetic field distribution by the upper and lower coils,
The coil area of the second upper and lower coils is approximately twice the coil area of the upper and lower coils so as to cancel out the non-uniform magnetic field component in the magnetic field distribution of the second upper and lower coils, The charged particle device is characterized in that the current density is about twice the current density of the upper and lower coils.
【請求項2】上下コイル及び第2の上下コイルは、共に
バナナ形状であることを特徴とする特許請求の範囲第1
項記載の荷電粒子装置。
2. The upper and lower coils and the second upper and lower coils are both banana-shaped.
Charged particle device according to paragraph.
【請求項3】上下コイル及び第2の上下コイルは、それ
ぞれが互いに同形状であると共に、平衡軌道に対して面
対称となるように配設されたことを特徴とする特許請求
の範囲第1項又は第2項記載の荷電粒子装置。
3. The upper and lower coils and the second upper and lower coils have the same shape, and are arranged so as to be plane-symmetric with respect to a balanced orbit. The charged particle device according to item 2 or item 2.
【請求項4】第2の上下コイルは、少なくとも一対以上
であることを特徴とする特許請求の範囲第1項乃至第3
項のいずれかに記載の荷電粒子装置。
4. The second upper and lower coils are at least a pair or more, and the first to third claims are included.
The charged particle device according to any one of items.
JP61205123A 1986-09-02 1986-09-02 Charged particle device Expired - Fee Related JPH0821478B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61205123A JPH0821478B2 (en) 1986-09-02 1986-09-02 Charged particle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61205123A JPH0821478B2 (en) 1986-09-02 1986-09-02 Charged particle device

Publications (2)

Publication Number Publication Date
JPS6362200A JPS6362200A (en) 1988-03-18
JPH0821478B2 true JPH0821478B2 (en) 1996-03-04

Family

ID=16501805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61205123A Expired - Fee Related JPH0821478B2 (en) 1986-09-02 1986-09-02 Charged particle device

Country Status (1)

Country Link
JP (1) JPH0821478B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02201898A (en) * 1989-01-31 1990-08-10 Mitsubishi Electric Corp Deflecting electromagnet for charged particle apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3505281A1 (en) * 1985-02-15 1986-08-21 Siemens AG, 1000 Berlin und 8000 München MAGNETIC FIELD GENERATING DEVICE
DE3661672D1 (en) * 1985-06-24 1989-02-09 Siemens Ag Magnetic-field device for an apparatus for accelerating and/or storing electrically charged particles

Also Published As

Publication number Publication date
JPS6362200A (en) 1988-03-18

Similar Documents

Publication Publication Date Title
US5117212A (en) Electromagnet for charged-particle apparatus
JP2667832B2 (en) Deflection magnet
US4737727A (en) Charged beam apparatus
JP2000106300A (en) Size minimizing method of electromagnet for cyclotron and cyclotron system
JPH0821478B2 (en) Charged particle device
JPH06103640B2 (en) Charge beam device
JP2520914B2 (en) Charged particle device
JP2004152557A (en) Analyzing magnet for ion implantation device
JPH01307197A (en) Charge particle device
JP3956285B2 (en) Wiggle ring
EP0209398B1 (en) A charged particle apparatus
JP2813386B2 (en) Electromagnet of charged particle device
JPH02201899A (en) Deflecting electromagnet for charged particle apparatus
JPH02207499A (en) Deflection electromagnet for charged particle device
JPH02230699A (en) Deflection electromagnet for charged particle device
JPH02174099A (en) Superconductive deflecting electromagnet
US20240055170A1 (en) Multipole electromagnet
JPH02201900A (en) Deflecting electromagnet for charged particle apparatus
JPS63224230A (en) X-ray exposure device
JPS63266800A (en) Charged particle acceleration and accumulation device
JP3007544B2 (en) Bending magnet
JPH0753280Y2 (en) Bending electromagnet for SOR device
JPS6376300A (en) Charged beam apparatus
JP2001043998A (en) Electromagnet, circular accelerator using it and circular accelerator system
JPH02201898A (en) Deflecting electromagnet for charged particle apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees