JPH06101623A - Propulsion machinery - Google Patents
Propulsion machineryInfo
- Publication number
- JPH06101623A JPH06101623A JP29064592A JP29064592A JPH06101623A JP H06101623 A JPH06101623 A JP H06101623A JP 29064592 A JP29064592 A JP 29064592A JP 29064592 A JP29064592 A JP 29064592A JP H06101623 A JPH06101623 A JP H06101623A
- Authority
- JP
- Japan
- Prior art keywords
- linear motion
- main body
- hollow shaft
- motion bearing
- bearing mechanism
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Toys (AREA)
Abstract
Description
【発明の詳細な説明】
[0001]
[産業上の利用分野]本発明は運用可能な環境等の移動
体(車両、船舶、潜水艇、飛行船)17で観測や娯楽等
に未知の分野で使用可能。
[0002]
[従来の技術]慣性、遠心力で推進を得る手段は、従来
の技術では実用化は皆無である。特開昭 62−103
486の推進力発生装置もx−x′方向を往復動の可能
性が高い。特開昭58−17000の回転運動を直進推
進運動に転換した推進装置も(作用、反作用の原理)で
結果的に往復動の可能性が高い。特開昭55−1097
74の空間航行体も角運動量の法則により反作用を打開
出来ない、往復動の可能性が高い。
[0003]
[発明が解決しようとする課題]従来の技術でも慣性
力、遠心力で推進を得ようとすると、作用、反作用の原
理が働き、反作用を機械的に解決出来ない問題点があっ
た。
[0004]
[課題を解決するための手段、作用]上記目的を達成す
るために、本体1に任意の傾斜角度を有した直線運動軸
受け機構2に支持体3を設置して自由に往復動可能し
て、その支持体3に一対の回転可能な偏心重錘6、7が
中空軸4と中空軸の中に中軸5を互いに逆転、同一位相
にそれぞれの軸4、5に固着されて回転される駆動機構
19、20、21を有し、慣性モーメントを同一にした
一対の偏心重錘6、7の位置関係はx−x′軸方向に重
合した方向と直線運動軸受け機構2の方向と略平行に設
置。
[0005]回転される一対の偏心重錘6、7の円周を
3角度間に分け、任意の2角度間は減速回転角度間22
と増速回転角度間23と分け、回転されて減速回転を与
えた時、合成の慣性力、遠心力がo−x軸方向の前進方
向に得られる角度間22と、回転されて増速回転を与え
た時、合成の慣性力、遠心力がo−x軸方向の前進方向
に得られる角度間23に分け、本体1を前進に推進させ
られる。
[0006]2角度間22、23の(作用、反作用の原
理)の作用で前進されるが、円周の残りの1角度間24
は遠心力が伴う反作用を任意の傾斜角度を有した直線運
動軸受け機構2で支持体3を後退させる力が働くが、任
意の傾斜角度が有るため支持体3の自重により、o−x
軸方向の下方移動する力の差が前進方向に支持体3が往
復動を繰り返しながら本体1を前進推進させられる。
[0007]
[実施例]実施例について図面を参照して説明すると、
図1において、本体1は運用される環境等の移動体(車
両、船舶、潜水艇、飛行船等)17に設置され、任意の
傾斜角度を有する適当な直線運動軸受け機構2は、支持
体3が自由に往復動可能に本体1に設置され、支持体3
には制御されるモーター19、減速機構20、中空軸4
と中空軸の中に中軸5を同一位相、互いに逆転される機
構21を設置され、本体1には蓄電池、又は内燃機関で
発電してモーター19を駆動させられるよう置する。
[0008]図2に示される実施例では、一対の偏心重
錘6、7が慣性モーメントを同一に、任意形状に、そし
て位置関係は一対の偏心重錘の重合した方向x−x′軸
に直線運動軸受け機構2の軸方向と略平行に配置して中
空軸4と中空軸の中に中軸5に固着させ、中空軸4と中
空軸の中に中軸5の軸方向は、一対の偏心重錘6、7の
重合した方向x−x′軸と直線運動軸受け機構2の軸方
向と略平行と成り得る任意の軸方向に設置する。
[0009]そして回転される一対の偏心重錘6、7の
円周を3角度間に分け、任意の2角度間は減速回転角度
間22と増速回転角度間23とに分け、角度検出センサ
ー等によりモーター19で制御され、減速回転を与えた
時、合成の慣性力、遠心力が前進方向o−x軸方向に得
られる角度間22と、増速回転を与えた時、合成の慣性
力、遠心力が前進方向o−x軸方向に得られる角度間2
3に分け、一対の偏心重錘6、7のo−x軸方向の重合
した付近は遠心力だけの前進方向o−x軸方向が得られ
る。
[0010]残りの1角度間24は前進方向o−x軸方
向が得られ無い後進方向o−x′軸方行に遠心力が働
き、支持体3が設置されてある任意の傾斜角度を有する
直線運動軸受け機構2に沿ってo−x′軸方向の上方移
動するが、支持体3の自重によりo−x軸方向の下方移
動の力が働いているから、その差が前進方向o−x軸の
方向を得られ、一対偏心重錘6、7が3角度間の間に回
転、減速回転22、増速回転23を与え往復動を繰り返
しながら本体1又は本体17を推進させる。
[0011]図3に示される実施例では、推進力を高め
る方法として支持体3が、間欠直線運動を繰り返しなが
ら直線運動軸受け機構2の傾斜面の上方移動o−x軸方
向させ、直線運動軸受け機構2の傾斜面の最上方位置ま
での間、支持体3が一対の偏心重錘6、7の減速回転2
2、増速回転23の2角度間にある時、下方移動o−x
軸方向を停止させる機構を任意の位置に設置する。この
機構は色々な方法があるが、ラック12とピニオン13
を使用し、ラック12は直線運動軸受け機構2に固着さ
せ、ピニオン13はラック12と歯合するように支持体
3に回動軸14に緊合させ、ロータリー電磁石15と同
軸14にして制御され、支持体3が一対の偏心重錘6、
7の回転の1角度間24にある時、o−x軸方向の上方
移動可能に支持体3を直線運動軸受け機構2の最下方位
置と最上方位置の間を往復動するが、この技術では移動
体(車両、船舶、潜水艇、飛行船等)17も間欠的に推
進するのが、まだ欠点である。
[0012]図4に示される実施例では、移動体17の
任意の方向を得る旋回機構9は、直線運動軸受け機構2
の両側を支持台18を設け、それに旋回軸10を取り付
け、本体1に旋回機構9を設置して駆動、制御され、単
独に又は任意の傾斜角度を得る機構11と組み合わして
運用され、そして任意の傾斜角度を得る機構11は、直
線運動軸受け機構2が任意の傾斜角度を有していると、
一対の偏心重錘6、7が任意の傾斜角度に応じて、本体
1に垂直方向に分力が生じて、本体1の振動の原因にな
り、これを極力解消するため本体1の面と略平行に、そ
して直線運動軸受け機構2の最上方位置、つまり片側の
位置に支持体3が来た時、直線運動軸受け機構2に任意
の傾斜角度を与え、支持体3を自重により最下方位置に
移動させ、そして本体1、又は移動体17の後進を可能
にするため、一対の偏心重錘6、7の減速回転角度間2
2と増速回転角度間23を逆にすることで可能。この任
意の傾斜角度を得る機構11は単独に、又は旋回機構9
と組み合わせて運用する。
[0013]この組み合わせ方法は、色々な方法がある
が直線運動軸受け機構2の両側を支持する台の中間に回
動可能な軸z軸16を構成し、z軸16を駆動されて直
線運動軸受け機構2の任意の角度を得、そしてz軸16
を支持可能な軸受けが有る旋回軸10を取り付け、本体
1に設置し駆動、制御され任意の方向に移動体17を推
進可能とする。
[0014]
[発明の効果]本発明は、以上説明したように構成され
ているので、以下に記載されるような効果を奏する。
[0015]慣性力、遠心力で推進を得る方法が従来の
技術でも色々な試みや、この種の特許に申請されている
技術でも、(作用、反作用の原理)の反作用を打開する
ことが出来なかったが、本発明は単純な構成で推進可能
に得た事は意義が大きい。実施例、図1の技術は基本的
な推進方法で実験的、展示等など、インパクトを与える
効果が大きい。実施例3、4図は推進力強化を得られ、
前進、後進、任意の方向に推進可能、振動軽減等などの
効果が有り、これを移動体(車両、船舶、潜水艇、飛行
船等)17に設置して観測等、娯楽等などに使用され効
果が大きい。Description: [0001] [Industrial field of application] The present invention is used in an unknown field for observation, entertainment, etc. in a movable body (vehicle, ship, submersible, airship) 17 in an operable environment. Possible. [0002] [Prior Art] A means for obtaining propulsion by inertia and centrifugal force has never been put to practical use in the prior art. Japanese Patent Laid-Open No. 62-103
The propulsion force generator 486 is also likely to reciprocate in the xx 'direction. The propulsion device in which the rotary motion of Japanese Patent Laid-Open No. 58-17000 is converted into the linear propulsion motion (principle of action and reaction) has a high possibility of reciprocation as a result. JP-A-55-1097
The 74 spacecraft also cannot repel the reaction due to the law of angular momentum, and there is a high possibility of reciprocation. [Problems to be Solved by the Invention] Even in the conventional technology, when trying to obtain propulsion by inertial force and centrifugal force, there is a problem that the principle of action and reaction works and the reaction cannot be mechanically solved. . [0004] [Means and Actions for Solving the Problem] In order to achieve the above-mentioned object, the support body 3 is installed on the linear motion bearing mechanism 2 having an arbitrary inclination angle in the main body 1 and can freely reciprocate. Then, a pair of rotatable eccentric weights 6 and 7 on the support body 3 rotate the hollow shaft 4 and the center shaft 5 in the hollow shaft in reverse to each other, and are fixed to the shafts 4 and 5 in the same phase and rotated. The pair of eccentric weights 6 and 7 having the same driving moments 19, 20 and 21 and having the same moment of inertia have a positional relationship substantially in the overlapping direction in the xx ′ axis direction and the direction of the linear motion bearing mechanism 2. Installed in parallel. [0005] The circumference of the pair of eccentric weights 6 and 7 to be rotated is divided into three angles, and between any two angles, the deceleration rotation angle interval is 22.
And the speed-increasing rotation angle interval 23, and when the rotation speed is reduced to give a combined inertial force and centrifugal force, an angular interval 22 is obtained in the forward direction of the ox axis direction, and the rotation speed-increasing rotation. Is given, the combined inertial force and centrifugal force are divided into angular intervals 23 obtained in the forward direction of the ox axis direction, and the main body 1 is propelled forward. [0006] It is advanced by the action of the two angles 22 and 23 (the principle of action and reaction), but the remaining one angle of the circumference is 24.
Causes a reaction force caused by the centrifugal force to retreat the support body 3 by the linear motion bearing mechanism 2 having an arbitrary inclination angle. However, since there is an arbitrary inclination angle, the weight of the support body 3 causes ox to occur.
The difference between the forces moving downward in the axial direction causes the main body 1 to be propelled forward while the support body 3 repeatedly reciprocates in the forward direction. [0007] [Embodiment] An embodiment will be described with reference to the drawings.
In FIG. 1, the main body 1 is installed in a moving body (vehicle, ship, submersible boat, airship, etc.) 17 such as an operating environment, and an appropriate linear motion bearing mechanism 2 having an arbitrary inclination angle is provided with a support body 3. It is installed on the main body 1 so that it can freely reciprocate, and supports 3
Includes a controlled motor 19, a reduction mechanism 20, and a hollow shaft 4.
The hollow shaft is provided with a mechanism 21 in which the center shaft 5 is reversed in phase with each other, and the main body 1 is provided with a storage battery or an internal combustion engine to generate electric power to drive a motor 19. [0008] In the embodiment shown in FIG. 2, the pair of eccentric weights 6 and 7 have the same moment of inertia, have an arbitrary shape, and the positional relationship is in the direction xx ′ axis in which the pair of eccentric weights overlap. The hollow shaft 4 and the hollow shaft 4 are fixed to the hollow shaft 4 and the hollow shaft 4 so as to be fixed to the hollow shaft 4 and the hollow shaft 4, and the hollow shaft 4 and the hollow shaft 5 have a pair of eccentric weights. The weights 6 and 7 are installed in an arbitrary axial direction that can be substantially parallel to the xx 'axis in which the weights 6 and 7 are superposed and the axial direction of the linear motion bearing mechanism 2. [0009] Then, the circumferences of the pair of eccentric weights 6 and 7 to be rotated are divided into three angles, and an arbitrary two angles are divided into a deceleration rotation angle interval 22 and an acceleration rotation angle interval 23. Controlled by the motor 19 by means of the motor 19 and the like, when a decelerated rotation is given, a combined inertial force, an angular range 22 in which centrifugal force is obtained in the forward direction ox axis direction, and when accelerated rotation is given, a combined inertial force , Between the angles where the centrifugal force is obtained in the forward direction ox axis direction 2
Divided into three parts, in the vicinity where the pair of eccentric weights 6 and 7 overlap in the ox-axis direction, the forward direction ox-axis direction only by the centrifugal force is obtained. [0010] During the remaining one angle 24, a centrifugal force acts in the backward direction ox 'axis direction in which the forward direction ox axis direction cannot be obtained, and the support body 3 is installed at an arbitrary inclination angle. Although it moves upward in the ox'-axis direction along the linear motion bearing mechanism 2, the downward movement force in the ox-axis direction acts due to the weight of the support body 3, so the difference is the forward direction ox. The direction of the axis is obtained, and the pair of eccentric weights 6 and 7 rotate, decelerate and rotate 22, and accelerate 23 to propel the main body 1 or the main body 17 while repeating the reciprocating motion. [0011] In the embodiment shown in FIG. 3, as a method for increasing the propulsion force, the support body 3 repeats the intermittent linear motion to move the inclined surface of the linear motion bearing mechanism 2 upwardly in the ox axis direction, and the linear motion bearing. Until the uppermost position of the inclined surface of the mechanism 2, the support 3 rotates the pair of eccentric weights 6 and 7 at a reduced speed 2
2. When moving between two angles of speed-up rotation 23, downward movement ox
A mechanism for stopping the axial direction is installed at an arbitrary position. There are various methods for this mechanism, but the rack 12 and the pinion 13
The rack 12 is fixed to the linear motion bearing mechanism 2, the pinion 13 is tightly fitted to the rotating shaft 14 on the support body 3 so as to mesh with the rack 12, and is controlled coaxially with the rotary electromagnet 15. , The support 3 is a pair of eccentric weights 6,
When it is in one rotation angle 24 of 7 rotations, the support body 3 reciprocates between the lowermost position and the uppermost position of the linear motion bearing mechanism 2 so as to be movable upward in the ox axis direction. It is still a drawback that the moving body (vehicle, ship, submersible boat, airship, etc.) 17 is also intermittently promoted. [0012] In the embodiment shown in FIG. 4, the swivel mechanism 9 for obtaining an arbitrary direction of the moving body 17 is the linear motion bearing mechanism 2
Are provided with support bases 18 on both sides of which the pivot shaft 10 is attached, and the pivot mechanism 9 is installed on the main body 1 to be driven and controlled, and operated independently or in combination with the mechanism 11 for obtaining an arbitrary tilt angle, and The mechanism 11 for obtaining an arbitrary inclination angle is such that when the linear motion bearing mechanism 2 has an arbitrary inclination angle,
The pair of eccentric weights 6 and 7 generates a component force in the vertical direction in the main body 1 according to an arbitrary inclination angle, which causes vibration of the main body 1. In order to eliminate this, the surface of the main body 1 is almost eliminated. When the support body 3 comes in parallel and at the uppermost position of the linear motion bearing mechanism 2, that is, at one position, the linear motion bearing mechanism 2 is given an arbitrary inclination angle and the support body 3 is moved to the lowermost position by its own weight. 2 between the deceleration rotation angles of the pair of eccentric weights 6 and 7 in order to move and allow the main body 1 or the moving body 17 to move backward.
It is possible by reversing 2 and the speed increasing rotation angle 23. The mechanism 11 for obtaining this arbitrary inclination angle is independent, or the turning mechanism 9 is used.
Operate in combination with. [0013] Although there are various methods for this combination method, a rotatable shaft z-axis 16 is formed in the middle of a base supporting both sides of the linear motion bearing mechanism 2, and the z-axis 16 is driven to drive the linear motion bearing. Get any angle of mechanism 2 and z axis 16
The rotary shaft 10 having a bearing capable of supporting the movable body 17 is mounted on the main body 1 and driven and controlled to propel the moving body 17 in an arbitrary direction. [Effect of the Invention] Since the present invention is configured as described above, it has the following effects. [0015] The method of obtaining propulsion by inertial force and centrifugal force can overcome the reaction of (action, principle of reaction) by various attempts even with conventional technology or technology applied for patent of this kind. Although not, it is significant that the present invention has been obtained so as to be propulsive with a simple configuration. The technique of the embodiment and FIG. 1 is a basic propulsion method, and has a great effect to give an impact, such as experimentally or in an exhibition. In the third and fourth embodiments, the propulsive force can be enhanced.
It has effects such as forward movement, backward movement, propulsion in any direction, vibration reduction, etc. It is installed in a moving body (vehicle, ship, submersible boat, airship, etc.) 17 and used for observation, entertainment, etc. Is big.
【図面の簡単な説明】
[図1]推進装置、支持体の側面図である。
[図2]互いに逆回転、同位相の一対の片方の偏心重錘
3角度間の位相図である。
[図3]間欠直線、直線運動機構8の実施例を示す側面
図である。
[図4]旋回機構9と任意の傾斜角度を得る機構11の
実施例を示す側面図である。
[符号の説明]
1 本体
2 直線運動軸受け機構
3 支持体
4 中空軸
5 中空軸の中の中軸
6 一対の偏心重錘の片方の偏心重錘
7 一対の偏心重錘のもう片方の偏心重錘
8 間欠直線、直線運動機構
9 旋回機構
10 旋回軸
11 任意の傾斜角度を得る機構
12 ラック
13 ピニオン
14 回動軸
15 ロータリー電磁石
16 z軸
17 移動体(車両、船舶、潜水艇、飛行船等)
18 支持台
19 モーター
20 減速機構
21 逆転機構
22 減速回転角度間
23 増速回転角度間
24 回転角度間BRIEF DESCRIPTION OF THE DRAWINGS [FIG. 1] A side view of a propulsion device and a support. FIG. 2 is a phase diagram between a pair of eccentric weights 3 having opposite angles and having the same phase. FIG. 3 is a side view showing an embodiment of the intermittent linear / linear motion mechanism 8. FIG. 4 is a side view showing an embodiment of a swivel mechanism 9 and a mechanism 11 for obtaining an arbitrary inclination angle. [Explanation of Codes] 1 Main body 2 Linear motion bearing mechanism 3 Support 4 Hollow shaft 5 Middle shaft in hollow shaft 6 One eccentric weight of a pair of eccentric weights 7 Eccentric weight of the other of a pair of eccentric weights 8 Intermittent straight line and linear motion mechanism 9 Turning mechanism 10 Turning axis 11 Mechanism for obtaining an arbitrary tilt angle 12 Rack 13 Pinion 14 Rotating axis 15 Rotary electromagnet 16 z-axis 17 Moving body (vehicle, ship, submersible boat, airship, etc.) 18 Support 19 Motor 20 Reduction mechanism 21 Reverse rotation mechanism 22 Deceleration rotation angle interval 23 Acceleration rotation angle interval 24 Rotation angle interval
Claims (1)
直線運動軸受け機構2を設置し、それに設置してある支
持体3に中空軸4と中空軸の中に、中軸5を互い逆転、
同一位相に、そして任意形状の慣性モーメントを同一に
一対の偏心重錘6、7をそれぞれの軸4、5に固着さ
せ、そして重合された位置方向は直線運動軸受け機構2
の軸方向と略平行に、そして中空軸4と中空軸の中に中
軸5の軸方向は、一対の偏心重錘6、7の重合された方
向と直線運動軸受け機構2の軸方向と略平行と成り得る
任意の軸方向に設置し回転駆動され、互いに逆回転され
る一対の偏心重錘6、7の円周を3角度間に分け、任意
の2角度間は、減速回転角度間と増速回転角度間に分
け、そして伴う慣性力、遠心力で本体1を推進させ、残
りの任意の1角度間は適当な回転が得られ、そして伴う
遠心力で支持体3を上方移動可能に3角度間を制御さ
れ、支持体3が直線運動軸受け機構2を自由に往往復動
可能に、そして慣性力、遠心力で推進可能な事を特徴と
する推進装置。 [請求項2] 支持体3が直線運動軸受け機構2を間欠
直線運動、直線運動を制御可能な機構8を任意の位置に
設置された請求項1記載の推進装置。 [請求項3] 直線運動軸受け機構2を旋回させる旋回
機構9と直線運動軸受け機構2を任意の傾斜角度に得ら
れる機構11を組み合わせ本体1に設置され、又それぞ
れの機構を単独に設置された請求項1、2記載の推進装
置。Claims: [Claim 1] An appropriate linear motion bearing mechanism 2 having an arbitrary inclination angle is installed on the main body 1, and a hollow shaft 4 and a hollow shaft are mounted on a support body 3 installed on the main body 1. Reverse the central axis 5,
The pair of eccentric weights 6 and 7 are fixed to the respective shafts 4 and 5 in the same phase and with the same inertia moment of arbitrary shape, and the superimposed position direction is the linear motion bearing mechanism 2.
Is substantially parallel to the axial direction of the hollow shaft 4, and the axial direction of the hollow shaft 4 and the central shaft 5 in the hollow shaft is substantially parallel to the superposed direction of the pair of eccentric weights 6 and 7 and the axial direction of the linear motion bearing mechanism 2. The circumference of a pair of eccentric weights 6 and 7, which are installed in an arbitrary axial direction and are rotationally driven and are rotated in opposite directions, is divided into three angles, and between any two angles, the deceleration rotation angle is increased. The main body 1 is propelled by the inertial force and the centrifugal force, which are divided into the high-speed rotation angles, the proper rotation is obtained during the remaining arbitrary one angle, and the support body 3 can be moved upward by the accompanying centrifugal force. A propulsion device characterized in that the support body 3 is capable of freely moving back and forth in the linear motion bearing mechanism 2 while being controlled between angles, and can be propelled by inertial force and centrifugal force. [Claim 2] The propulsion device according to claim 1, wherein the support 3 has the mechanism 8 capable of controlling the linear motion bearing mechanism 2 for intermittent intermittent linear motion and linear motion. [Claim 3] A swivel mechanism 9 for swiveling the linear motion bearing mechanism 2 and a mechanism 11 for obtaining the linear motion bearing mechanism 2 at an arbitrary inclination angle are combined and installed in the main body 1, or each mechanism is independently installed. The propulsion device according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29064592A JPH06101623A (en) | 1992-09-18 | 1992-09-18 | Propulsion machinery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29064592A JPH06101623A (en) | 1992-09-18 | 1992-09-18 | Propulsion machinery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06101623A true JPH06101623A (en) | 1994-04-12 |
Family
ID=17758650
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29064592A Pending JPH06101623A (en) | 1992-09-18 | 1992-09-18 | Propulsion machinery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06101623A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024075355A1 (en) * | 2022-10-06 | 2024-04-11 | 株式会社プロスパイラ | Propulsion device |
-
1992
- 1992-09-18 JP JP29064592A patent/JPH06101623A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024075355A1 (en) * | 2022-10-06 | 2024-04-11 | 株式会社プロスパイラ | Propulsion device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3653269A (en) | Converting rotary motion into unidirectional motion | |
CA1222209A (en) | Apparatus for developing a propulsion force | |
US20120267973A1 (en) | Method of propulsion | |
US20100307290A1 (en) | Apparatus, system and method for gyroscopic propulsion and/or steering | |
US20030047015A1 (en) | Centrifugal propulsion system | |
JP5445879B2 (en) | Trochoid drive mechanism | |
JPH06101623A (en) | Propulsion machinery | |
US20040103728A1 (en) | Torque induced propulsion system | |
US20190140562A1 (en) | Rotary Array Assembly | |
US20050247145A1 (en) | Three-dimension motive machine | |
US7008276B1 (en) | Propulsion system | |
US5937698A (en) | Centrifugal propulsion system | |
GB2422644A (en) | A centrifugal dynamic drive engine | |
JPH1149091A (en) | Ship body propulsion and water turbine device | |
RU2066398C1 (en) | Vehicle inertia propelling device | |
JP2012107524A (en) | Device for obtaining propulsive force from self-rotating rotor | |
WO1990005242A1 (en) | Propelling apparatus | |
JPS62131754A (en) | Apparatus for converting rotary kinetic force to unidirectional propulsive force | |
RU2146631C1 (en) | Inertia-jet propulsion device | |
US6955235B1 (en) | Torque platform transport device | |
KR100765742B1 (en) | An apparatus for transforming acceleration | |
JP2004332702A (en) | Gyroscope propulsion force engine | |
JP2001107840A (en) | Device for converting centrifugal force into propulsive force | |
CN118723119A (en) | Vacuum working medium-free propeller | |
RU2078996C1 (en) | Inertia engine |