WO1990005242A1 - Propelling apparatus - Google Patents

Propelling apparatus Download PDF

Info

Publication number
WO1990005242A1
WO1990005242A1 PCT/JP1989/001131 JP8901131W WO9005242A1 WO 1990005242 A1 WO1990005242 A1 WO 1990005242A1 JP 8901131 W JP8901131 W JP 8901131W WO 9005242 A1 WO9005242 A1 WO 9005242A1
Authority
WO
WIPO (PCT)
Prior art keywords
speed
rotating
rotation
rotating body
low
Prior art date
Application number
PCT/JP1989/001131
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuo Shiboi
Original Assignee
Kazuo Shiboi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kazuo Shiboi filed Critical Kazuo Shiboi
Publication of WO1990005242A1 publication Critical patent/WO1990005242A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/02Rotary gyroscopes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G3/00Other motors, e.g. gravity or inertia motors

Definitions

  • the present invention relates to a propulsion device used for propulsion and attitude control of a mobile machine, and in particular, to a propulsion device that utilizes a force generated by precession of a rotating body that rotates at high speed to perform propulsion.
  • Examples of the propulsion device for a machine include a propeller and a propeller screw (hereinafter simply referred to as a “propeller”) on a propeller airplane or a ship.
  • a propeller and a propeller screw hereinafter simply referred to as a “propeller”
  • the rotational motion obtained by a prime mover such as a heat engine or motor
  • the propeller pushes the air and water forward, causing it to propel the fuselage and hull forward.
  • stop transmitting the rotation of the prime mover to the propeller wait for the air and water resistance to stop, rotate the propeller, or reverse the pitch. This pushes the air and water behind, causing the aircraft and hull to stop.
  • jet aircraft and rockets are equipped with propulsion devices such as jet engines and rocket engines.
  • the engines react to the jets of fine particles and gas jetting at a high speed in the rearward direction. Propell ahead.
  • the rotational motion obtained by the prime mover is finally transmitted to the wheels via transmissions, clutches, and the like.
  • the wheels act on the ground or trajectory at the point of contact with the ground, and the ground or trajectory pushes the vehicle forward in the reaction.
  • These wheels are also propulsion devices in a broad sense It can be said.
  • the first problem of the conventional propulsion device described above is that its efficiency is not necessarily good or bad, and the second problem is that the speed obtained is small. Yes, and the third problem is that some of the conventional propulsion systems cannot be propelled depending on the surrounding environment.
  • propellers In the case of a propeller, for example, gases and liquids move in all directions, so propellers do not push the hull or airframe as a reaction by pushing all the gas or liquid backward. Considering the propulsion itself, the gas or liquid that is pushed backward should just flow backward in a straight line, but a propeller always generates a vortex, which greatly reduces the efficiency. In addition, when propelling a gas such as air with a propeller, the efficiency also decreases because the temperature of the compressed gas increases, so the efficiency is low and the speed obtained is low. Also, propellers can only be used in gas or liquid.
  • jet and rocket engines For jet and rocket engines, the speed gained is generally greater than for propellers, but there are still limitations. Also, jet engines can only be propelled in oxygenated atmospheres.
  • the friction at the ground contact point has a large effect on the efficiency of propulsion, especially when the friction is small, the wheels spin and the efficiency drops. Also, when a high speed is required, the rolling friction of the wheels becomes a resistance to propulsion, and the efficiency is reduced. In addition, the wheels can hardly propel the vehicle in the liquid.
  • An object of the present invention is to provide a propulsion device which has a high propulsion efficiency, a high speed, and can be propelled regardless of the environment in which it is used. Disclosure of the invention
  • a propulsion device is a propulsion device that utilizes precession motion, and is supported so as to freely roll around a main shaft (a high-speed rotation shaft).
  • a propulsion device is a propulsion device for propulsion using precession, wherein at least two high-rigidity rotators supported rotatably around a main shaft, A high-speed driving means for rotating each of the rotating bodies at a high speed around the main shaft; an input shaft provided at least one for each of the rotating bodies, which does not coincide with or is not parallel to the main shaft; Low-speed driving means for driving each of the rotating bodies at a lower speed than rotation of the high-speed driving means around an axis; and rotating force from the low-speed driving means alternately rotating the rotation direction of each of the input shafts. And control means for controlling the change at the same time.
  • a straight line orthogonal to both the main axis of each rotator and the input axis of each rotator is the normal / reverse of each of the surface rotators.
  • they may be arranged continuously so that there is a matching phase.
  • a propulsion device for propelling using a precession motion, comprising: a highly rigid rotating body supported rotatably around a main shaft; High-speed driving means for rotating and rotating the rotating body at a high speed; a first input shaft that does not coincide with or is not parallel to the main axis of the image body; and a second input shaft that is parallel to the first input shaft.
  • a low-speed driving unit that performs a surface rolling operation at a lower speed than the rotation of the high-speed driving unit around each of the input shafts, and a surface rolling force from the low-speed driving unit causes the rotating body to rotate around the first input shaft.
  • Control means for turning the surface in the direction of No. 1 and westward in the second direction around the second input shaft, and returning the first and second inputs to the original position without turning the surface. It is composed of
  • a straight line perpendicular to both of the two may be arranged so that there is a coincident phase when the respective surface rolling bodies rotate at low speed in both forward and reverse directions.
  • propulsion device there is provided a propulsion system for promotion by using the precession, are Menten rotatably supported around the main shaft, stiffness is high, the positive n 4 square (n 4 is (Even number of 4 or more) each of the vertices of n 4 ffi disposed at the positions of the vertices; high-speed driving means for driving each of the surface rotators at a high speed around the respective spindles; 2 the straight line connecting the body with each other does not pass through the center of the positive n 4 square as one set, the not through a positive n 4 square central connecting the set of rotary bodies, does not coincide with the straight line or not parallel and not parallel the main axis consistent with such Imatawa of the surface rolling body, and an input shaft perpendicular to the positive n 4 square plane, drive the high speed the surface rolling body about said input shaft (4)
  • the low-speed driving means rotating at a lower speed than the image rotation of the means, and Simultaneously roll around the
  • propulsion device for promotion by using the precession, Menten is rotatably supported around the main ⁇ , high rigidity, positive n 3 triangle (n 3 N is an integer of 3 or more), n 3 rotating bodies arranged at the positions of the vertices, high-speed driving means for rotating each of the rotating bodies at high speed around each of the spindles, and linearity said connecting as a positive n 3 triangle two pair that does not pass through the center of said not through a positive n 3 triangular central connecting the set of rotary bodies, not to do or parallel match the straight line, and, wherein a match with the main axis of the rotating body Imatawa not parallel, and the parallel input shaft to the positive n 3 triangular faces, than the rotation of the high-speed driving means said rotary member about said input shaft Low-speed driving means for rolling the surface at a low speed; Rot
  • the rotating body that constitutes the present invention may constitute a part or all of a motor that drives the rotating body, and may rotate at a high speed.
  • the main axis may be orthogonal to the input axis.
  • the rotating body When the rotating body is divided by using a surface that surrounds the input shaft as a boundary surface, the two may have the same angular momentum.
  • the outer surface of the surface rolling body may be supported by a support.
  • the input shaft may have a support structure that is set to a different axis from the rotation axis of the rotational motion used for transmitting the low-speed rotation.
  • the support structure is configured such that at least two projections provided on a bearing or a support for receiving a main shaft of the rotating body are guided by a circular guide groove and move. Is also good.
  • the guide groove may share two strings in the middle.
  • two other similarly curved grooves are combined with the other semi-circular groove resulting from the bending of the other circular groove, two non-circular grooves are formed.
  • one of the bearings or the support having the two convex portions has one convex portion in one groove and the other convex portion in the other.
  • the rotation axis may be changed each time the bearing or the support rotates half a turn.
  • the support structure may be configured such that a circular groove provided in a bearing or a support for receiving a main shaft of the surface rolling member moves along at least three guide protrusions.
  • the propulsion device according to the present invention is configured as described above, it is possible to impart a constant acceleration motion to the propulsion device itself, and eventually to any machine on which the propulsion device is attached, without exerting any effect on the outside world.
  • the efficiency of propulsion will not be reduced. Unlike wheels, the efficiency does not decrease due to friction of the ground contact surface, nor does it reduce the efficiency due to eddy currents like a propeller. And it can be propelled in a vacuum, in a gas, in a liquid, or in a solid (although that solid will be propelled). It is also possible to accelerate and propell regardless of the speed at which the propulsion device or any machine equipped with the propulsion device is moving. Therefore, the same acceleration can be applied without using any action on the outside world by using the angle change (rotation) in the space of the propulsion device itself or the machine to which the propulsion device is attached. Efficient propulsion can be performed, and the speed limit obtained can be greatly increased. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 to 4 are views showing a first embodiment of a propulsion device according to the present invention.
  • FIG. 1 is a perspective view
  • FIGS. 2 and 3 are plan views
  • FIG. It is a side view.
  • FIG. 5 is a perspective view showing a second embodiment of the propulsion device of the present invention.
  • FIG. 6 is a perspective view showing a third embodiment of the propulsion device of the present invention.
  • FIG. 7 and 8 are views showing a rotating body used in a fourth embodiment of the propulsion device of the present invention.
  • FIG. 7 is a perspective view
  • FIG. 8 is a plan view.
  • FIG. 9 and 10 are views showing a surface rolling body used in a fifth embodiment of the propulsion device of the present invention.
  • FIG. 9 is a perspective view
  • FIG. 10 is a side view. It is.
  • FIG. 11 is a perspective view showing a sixth embodiment of the propulsion device of the present invention.
  • FIG. 12 is a plan view showing a rotating body used in a seventh embodiment of the propulsion device of the present invention.
  • FIG. 13 to FIG. 20 are views showing a modified example of the rotating body or the rotating body and its support that can be used in each embodiment of the propulsion device of the present invention. Best form for carrying out Huhu
  • the rotating body 1 is formed of a highly rigid material, and the rotation axis (spindle) at the position of the straight line A is centered in the direction of the arrow of the straight line A.
  • the rotating body 1 is rolled around a straight line B (input shaft) that is not coincident with or parallel to the rotation axis in the direction of the straight line B at a speed lower than the rotation speed of the rotating body 1.
  • the rotation axis of the plane rolling element 1 moves to the position of the straight line C.
  • the rotation axis of the plane rolling element 1 has changed the angle in the space, and the precession movement occurs. Due to this precession, the propulsion device flattens the entire device in the direction of the arrow of the straight line D with the substantially straight line D as a rotation axis (output shaft).
  • the surface rotation axis of the surface rolling element 1 is centered on the straight line D, which is the rotation axis of the device, up to the position of the straight line H. It will be done. Then, the surface rotating body 1 is rotated around the straight line E that is not coincident with or parallel to the rotation axis at a lower speed than the surface rotating speed of the rotating body 1 in the direction of the arrow of the straight line E. Then, the rotation axis of the rotating body 1 moves from the position of the straight line C to the position of the straight line F. Also at this time, the rotation axis of the plane rolling body 1 has changed the angle in the space, and precession occurs.
  • the propulsion device rotates the entire device in the direction of the arrow of the straight line G about the rotation axis of the substantially straight line G. If this is drawn in FIG. 2, the rotation axis of the surface rolling body 1 has rotated from the position of the straight line H to the position of the straight line I.
  • the rotating body 1 that performs high-speed surface rolling must continue to move upward in FIG. 1, and the moving distance gradually increases. It is just getting bigger.
  • the following operation may be performed (the first operation of the operation).
  • the stage is as shown in Fig. 1, where the rotation axis of the rotating body 1 is at the position of the straight line A, and the rotating direction of the rotating body 1 rotating at high speed is the direction of the arrow of the straight line A).
  • the rotating body 1 is rotated at a low speed around the straight line B in the direction of the arrow of the straight line B. As a result, the rotation axis of the rotating body 1 moves from the position of the straight line A to the position of the straight line C.
  • the rotating body 1 is rotated around the straight line E at a low speed in the direction of the arrow of the straight line E. As a result, the rotation axis of the rotating body 1 moves from the position of the straight line C to the position of the straight line F.
  • the rotating direction of the rotating body 1 is reversed from the direction of the arrow of the straight line A, and the rotating body 1 is rotated at a high speed.
  • the rotating body 1 is rotated around the straight line E at a low speed in the direction opposite to the arrow of the straight line E.
  • the rotation axis of the rotating body 1 moves from the position of the straight line F to the position of the straight line C.
  • the vehicle turns around the straight line B at a low speed in the direction opposite to the arrow of the straight line B.
  • the rotation axis of the rotating body 1 moves from the position of the straight line C to the position of the straight line A.
  • the rotating direction of the rotating body 1 is reversed again, and is returned to the same direction as the arrow of the straight line A before the start of the first stroke. Repeat the above six steps.
  • Fig. 3 The movement of the device in this case shall be depicted by Fig. 3 when the propulsion device shown in Fig. 1 is viewed from above. It is assumed that the rotation axis of the rotating body 1 is at the position of the straight line L before the start of the first stroke. By the first stroke, it moves from the position of the straight line to the position of the straight line M. The second stroke moves from the position of the straight line M to the position of the straight line N. Does not move depending on the third step.
  • the device moved as a result of the rotation performed on the two-axis, different times at a lower speed than the surface rotation speed of the image rolling body for the high-speed flat surface rolling body at different times.
  • This movement is the result of a face roll of the device or a change in the angle of the device in space, and it has some effect on the outside world and is different from the movement as a reaction.
  • a structure that gives a face rotation at a speed lower than the face rotation speed of the surface rolling body around an axis that does not coincide with or is not parallel to the rotation axis of the rotating body 1 that rotates at high speed is shown in Fig. 4.
  • a driving structure based on the magnetic force of an electromagnet and gravity In this method, the shaft 2 of the image transfer body 1 that rotates at high speed is supported by a bearing 3 movable in the direction of the arrow, and the bearing 3 is further separated from a coil 5 and an iron core 4 movable in the coil 5.
  • the electromagnet is supported by a bearing 6 provided at the end of the iron core. Now, if an electric current is passed through one coil, the iron core 4 moves upward, and if the electric current is cut off, the iron core 4 moves downward by gravity.
  • driving by an electromagnet is merely a means of giving a low-speed surface rolling to the surface rolling element, and in addition to this, using a cam and a push rod that perform the surface rolling by the prime mover, Alternatively, it is possible to give a low-speed rotation using a crank, and it is also possible to adopt a structure in which they are combined with an elastic body.
  • FIG. 5 shows another embodiment of a high speed rotating surface rolling body.
  • the high speed rotating body has two separate rotating axes (main shafts), that is, two rotating bodies. , Each of which has one low-speed bearing axis (input ⁇ ).
  • the chassis ⁇ of the propulsion device has a battery 8 serving as a power supply, a motor 9 and a motor 10, and a switch 11 for controlling the rotating timing of the two motors and the direction of the face rotation.
  • a motor 9 rotates, the rotation is transmitted to the pulley 12, the belt 13, and the pulley 14, and the rotation is reduced to rotate the support 15 on which the pulley 14 is mounted at a low speed.
  • a motor 16 and a battery 17 as a power supply are attached to the support 15.
  • the motor 16 rolls its rotation is transmitted to the pulley 18, the belt 19, and the pulley 20 at an increased speed.
  • the support 15 supports the image transfer body 21, and thus, rotating the support 15 means rotating the rotator 21.
  • the pulley 20 is attached to the rotator 21 to image the rotator 21 at high speed.
  • the support 2 5 has a motor 26 and Battery 27, which is the power supply, is installed.
  • the motor 26 rotates, the rotation is transmitted to the burry 28, the belt 29, and the pulley 30 at an increased speed.
  • the support 25 supports the flat body 31, and thus, to image the support 25, that is, to rotate the image body 31.
  • the pulley 30 is attached to the flat body 31 to roll the flat body 31 at high speed.
  • a pulley and a belt are used to transmit the motor's surface rotation to the surface rolling element and the support.
  • this is the transmission of ordinary power such as gears, gears and chains, and gears and shafts.
  • Other structures used for the above may be used.
  • the switch controls the timing and direction of the slow rolling of the support, but this can also be due to other, for example, mechanical, structures. .
  • the chassis 7 of this propulsion device (or even when this propulsion device is attached to some machine) is in a horizontal state, and both supports 15 and 25 are shown in FIG.
  • the rotating body 21 is rotating at high speed in the direction of the arrow of the straight line Q and the rotating body 31 is rotating at a high speed in the direction of the arrow of the straight line S.
  • Switch switching is performed as one cycle.
  • the motor 9 is rotated, and the support 15 is rotated 180 ° in the direction of the arrow of the straight line R.
  • the motor 10 is rotated, and the support 25 is turned 180 ° in the direction of the arrow of the straight line T.
  • the motor 9 and the motor 10 are simultaneously rotated in the reverse direction, and the support 15 is rotated. 1 80 in the direction opposite to the arrow of the straight line R.
  • the support 25 is rotated 180 ° in the direction opposite to the arrow of the straight line T, respectively.
  • the propulsion device is shifted in time in both the forward and reverse directions around the different position, and as a result, has moved in parallel.
  • the same translation can be obtained in any of the second, third, and subsequent cycles.
  • the one cycle of switch switching described in the above does not necessarily have to be this way. Nor does it require slow rotation of the two supports at completely separate times. Even if the slow rotations of the two supports partially overlap in time, as long as the precession forces are not the same at all times, other than internal forces or forces that cancel each other out This force turns the entire device. However, it is desirable that the rotation of the rotating body that rotates at high speed at the high speed without returning the device to the initial direction is completely simultaneous.
  • FIG. 6 shows another embodiment in which the input shaft is given a low speed rolling.
  • the propulsion unit chassis 32 in this example has a battery 33 and a motor 34 that are power supplies.
  • the rotation of the motor 34 is performed by pulleys 35 and belts.
  • Pulley 37 rotates force shaft 38 at low speed.
  • the cam shaft 38 has a cam 39 and a cam 40 mounted thereon, and push up the push rods 41 and 42. Further, a spring 43 and a spring 4 for pushing down the pushed-up bus rods 41, 42 are attached to the upper portions of the push rods 41, 42.
  • the shape of the cam 39 and the cam 40 may be any shape that meets one of the following two conditions.
  • the first is two bus rods 4 1,
  • the structure itself for giving the swing to the body 50 is not indispensable to the present invention, but gives the swing having the above-described stroke to the rotating body 49 supported by the swing body 50 and rotating at high speed. It is essential. Therefore, the structure composed of the cams 39, 40 and the push rods 41, 42 is operated in combination with another structure having the same function, for example, a sensor for detecting the rotation of the oscillator. It can be replaced with electromagnets or prime movers.
  • the device has an oscillating body 50, and a motor 45, which is rotated by a battery 33, is attached to the oscillating body 50.
  • the rotation of the motor 45 is controlled by a pulley 46, a belt 47, It is transmitted to pulley 4-8.
  • the bully 48 rotates the rotating body 49 supported by the rocking body 50 at a higher speed than the rotation of the motor 45.
  • the oscillating body 50 includes a shaft 51 and a shaft that are two low-speed rotations ⁇ (input ⁇ ⁇ ⁇ ) that do not coincide with or are not parallel to the rotation ⁇ (spindle) of the rotating body 49.
  • G 52 is attached.
  • the shafts 51 and 52 are supported by bearings 53 and 54 attached to the push rod 41 and the push rod 42, respectively.
  • the bearings 53 and 54 are used for the linear movement of the bus rods 41 and 42 so that the shafts 51 and 52 do not hinder the linear movement of the push rods 41 and 42.
  • the structure must be movable in a direction perpendicular to both the direction and the directions of the shafts 51 and 52.
  • the rotation direction of the rotating body 49 of this propulsion device is in the direction of the arrow of the straight line U, and the shapes of the cams 39 and 40 correspond to the push rods 41 and 42.
  • the operation of the entire system will be described assuming that it is pushed down by the action of the springs 43 and 44 at the same time and is pushed up at the same time.
  • the push rod 42 is pushed down by the surface rotation of the cam 40 and the action of the spring 44, and the bush rod 41 remains at the same position.
  • the oscillating body 50 has rotated around the shaft 51 at a lower speed than the face rolling speed of the face rolling body 49 rotating at a high speed.
  • This low-speed rotation also causes precession by changing the angle of the rotation axis of the plane rolling element 49 in the space.
  • This precession rotates the whole device about the straight line V in the direction of the arrow of the straight line V. In other words, the device turns around the different position in the forward and reverse directions with a time lag, and as a result, the device moves in parallel.
  • the process of returning to the original position without changing the angle in the space of the rotating shaft of the high speed rotating surface rolling element is a linear motion.
  • this does not necessarily have to be a linear motion. Even if it is a curvilinear motion, it is sufficiently possible to return to the original position without changing the angle in the space of the rotation axis by other structures.
  • FIG. 7 shows another embodiment of the number of rotating bodies and their respective input shafts.
  • the rotating body has n (n: natural number) main axes that are separate, that is, n, each of which has two input axes.
  • n natural number
  • the propulsion device shown in Fig. 6 always shakes during its operation. This is due to the fact that the shaft (main shaft), which is the center of rotation due to the precession motion of the rolling element that changed the angle in the space of the entire device due to precession, fluctuates due to low-speed rolling. And this swing reduces the efficiency of the device.
  • each straight line perpendicular to both the rotation axis and the rotation axis is continuous at a position having a coincident phase with the low-speed rotation of the oscillator in both the forward and reverse directions.
  • the propulsion device has a planar rolling element 55, a rotating body 56, and a rotating body 57, which rotate at a high speed of 3 mm in total.
  • the surface rolling body 55 has an image rotation axis a and a rotation axis d of low-speed rotation that are not coincident with or parallel to the rotation axis, and similarly, the rotation body 56 also rotates with the rotation axis b.
  • the plane evolving body 57 has a rotation axis c and a rotation axis f.
  • the propulsion device includes an axis orthogonal to both the plane of rotation of the image bearing body 55 and the rotation axis a of its low-speed plane rotation, the plane of rotation of the rotating body 56 and its low plane rotation.
  • These three axes are the axis orthogonal to both the rotation axis b of the high-speed rotation and the axis orthogonal to both the rotation axis of the rotating body 57 and the rotation axis c of the low-speed rotation.
  • the above three axes, which are orthogonal to both the printing axis e and the axis orthogonal to both the rotation axis of the rotating body 57 and the rotational speed f of its low-speed rotation, are also the same. It has such a position on a straight line.
  • the three rotating bodies 5 5, 5 6, 5 7 of this propulsion device are the same angle at the same time, respectively, rotating axis a, rotating axis! ),
  • axes g, axis h, and axis i which are orthogonal to both the rotation axis of the rotating body rotating at high speed and the rotation axis of each low speed rotation, are one of them.
  • the axis j, the axis k, and the axis £ are shifted to the unmatched phase.
  • the precession that occurs in each rotating body tends to flatten the entire device.
  • the axis of rotation is orthogonal to both the rotating face of the rotating body and the slow rotation axis. For the rotation of the entire device, it is most efficient if the axes are the same for multiple rotating bodies. Inconsistent phases are inefficient.
  • the inefficiency is nothing but the fact that the force of precession is consumed as an internal force except for rotating the entire device. Then, only by the force other than that consumed as the internal force, the entire device is rolled around one axis where the three axes described above coincide. In this case, each rotating body does not shake due to the rotation of the high-speed rotation changing with the low-speed face roll. This is because the power of precession that occurs as shaking is consumed as internal force.
  • FIG. 9 shows another embodiment of the number of rotating bodies and their respective input shafts.
  • the rotating body has 2 n (n: natural number) separate main axes, that is, 2 n pieces, each of which has one input axis. Is shown.
  • the main parts of the present invention that is, the rotating body, the main shaft, and the input shaft are extracted and shown.
  • the propulsion device as shown in Fig. 5 always shakes during its operation. This is the driving force that changes the angle in the space of the entire device. This is due to the fact that the axis (main axis), which is the center of the plane rotation due to precession of the image transfer body, fluctuates with low-speed rotation. And this swing reduces the efficiency of the device.
  • each of the orthogonal straight lines is continuous at a position having a coincident phase with the slow rotation of the support in both the forward and reverse directions.
  • the propulsion device is composed of a rotating body 58 and its low-speed rotation axis P, a rotating body 59 and its low-speed rotation axis s, a rotating body 60 and its low-speed rotation axis.
  • Rotational axis of surface rolling element 61 and its low-speed image rotation t Rotation axis of surface rotation body 62 and its low-speed rotation r, Rotational axis of surface-rotating body 63 and its low-speed rotation u Having.
  • the propulsion device is composed of an axis orthogonal to both the rotation axis of the west body 58 and the rotation axis P of the low-speed surface rotation, the rotation body 60 and the HI rotation axis q of the low-speed rotation.
  • the axis orthogonal to both of these two axes, and the axis orthogonal to both the surface rolling body 62 and its low-speed rotating surface rotation axis r has the aspect that the above three axes are on the same straight line.
  • the three axes that are perpendicular to both the axis of rotation and the axis of rotation orthogonal to both the plane of rotation 63 and its low-speed rotation plane of rotation u are also on the same straight line. Have aspects.
  • the rotating body 5 8, the image body 60, and the rotating body 62 of this propulsion device are Let it be assumed that the rotations are 180 ° around the rotation axis P, rotation axis q, and rotation axis r of the low-speed rotation at the same time. Then, the three axes orthogonal to both the rotation of the rotating body that rotates at high speed and the rotation axis of each low-speed face-to-face rotation coincide from the non-coincident phase through the coincident phase again. Move to a phase where no. The coincident phase is the moment coincident with the straight line V in FIG. The precession generated in each of the surface rolling elements tends to rotate the entire device.
  • the axis of rotation is orthogonal to both the rotating axis of the image rolling body and the rotation axis of low-speed rotation. Therefore, for the rotation of the entire apparatus, it is most efficient that the axis is the same for a plurality of rotating bodies. Efficiency is poor in disagreement situations. The inefficiency is nothing less than the fact that the force of precession is consumed as an internal force except for rotating the entire device. Then, the entire device rotates around one axis V where the three axes described above coincide only by the force other than that consumed as the internal force. In this case, each of the flat surfaces does not shake due to the rotation of the high-speed flat surface fluctuating with the low-speed rotation. This is because the power of precession that occurs as shaking is consumed as internal force.
  • FIG. 11 shows another embodiment of the number of rotating bodies, their respective positional relationships, low-speed rotation, and their rotating shafts.
  • FIG. 11 is a perspective view of a propulsion device of the present invention in which four rotating bodies, each of which supports a rotating body, are mounted at the corners of a square.
  • a battery 65 serving as a power supply and a motor 66 are attached to the chassis 64 of the propulsion device. When the motor 66 rotates, the rotation is transmitted to the pulley 67, belt 68, and pulley 69 at a reduced speed.
  • the SI 70 is rotated at low speed on the support 70 on which 6 9 is attached.
  • the support 70 supports the rolling element 71, and the rotating body 71 is mounted on the support 70, and the rotation of the motor 72 is controlled by pulleys 73, belts 74, and pulleys 75.
  • the motor rotates at a high speed by transmitting at an increased speed.
  • the device is a flat-body 7 6, a rotary body 7 7, and a rotary body supported by a support having the same structure.
  • the four high-speed rotating bodies 7 1, T 6, 7 7, 7 8 of this propulsion device do not coincide with or are not parallel to their rotation axes.
  • the switch 79 controls the timing and the direction of rotation for all the westward turns.
  • each of the supports of the propulsion device is in the state shown in Fig. 11, and the surface rolling direction of each image plate when viewed from the outside of the device (hereinafter referred to as the high speed rotation of the surface All directions are the directions as viewed from the outside of the device.)
  • Force The rotating body 71 and the rotating body 78 rotate at high speed in the clockwise direction, and the rotating body 76 and the rotating body 77 Is rotating at a high speed in the reverse direction of the clock, and the switch is powerful, and the following switch switching process is performed as one cycle.
  • the switch switching process is as follows.
  • the rotating body 71 is viewed clockwise as viewed from above the drawing (hereinafter, the direction of low-speed rotation of the image printing body is all from above the drawing). see the direction when the) 1 8 0 °, Mententai 7 6 1 8 0 0 in the opposite direction of the watch, each rotate simultaneously.
  • the surface rolling body 77 is rotated 180 ° clockwise.
  • the body 78 rotates 180 ° in the opposite direction of the clock, each rotating simultaneously.
  • all the rotating bodies are simultaneously rotated by 180 ° in the opposite directions to those in the first and second strokes.
  • a cycle consisting of the above steps
  • both the rotating bodies are precessed by the simultaneous 180 ° rotation of the rotating body 77 in the clockwise direction and the rotating body 780 in the opposite direction of the clock, respectively.
  • the force of the precession generated in each case turns around the straight line connecting the rotating body 77 and the rotating body 78 in the direction opposite to the clock when the entire apparatus is viewed from the front of the drawing.
  • the force that rotates the entire device about an axis other than the rotation axis is an internal force and does not appear outside.
  • the force of the precession generated in each of the rotating bodies becomes an internal force and does not appear outside, so the device does not move.
  • the propulsion device will rotate around its different rotation axis (output shaft) at different times, with each rotation lifting the center of the device upward. .
  • the device has been translated upward.
  • the process of one cycle of switch switching described here does not necessarily have to be as described above.
  • the low-speed rotation of the rotating body 71 and the rotating body 78 simultaneously and then the low-speed rotation of the rotating body 76 and the flat body 77 simultaneously Good.
  • the low-speed rotation of the rotating body is such that adjacent ones are simultaneously rotated.However, in the case of a propulsion device having more than five rotating bodies, they are not adjacent to each other. The same effect can be obtained even if the left and right rotators are given low speed rotation at the same time with the body at least 1 mm apart.
  • FIG. 12 is a diagram showing the number of surface rolling elements, their respective positional relationships, low-speed surface rolling, and another embodiment of the input shaft, as a main part of the propulsion device of the present invention, The main axis and the input axis are extracted and shown.
  • the propulsion device shown in Fig. 12 has a 3 ⁇ rotating body that rotates at high speed, i.e., a rotating body 80 that rotates at high speed around the rotation axis AA, and a high-speed rotation around the rotation axis AB. It has a rotating image bearing member 81 and a surface rotating member 82 rotating at high speed around the rotation axis AC.
  • the rotation axis for rotating each of the rotating bodies 81 to 83 at a low speed is parallel to the surface of an equilateral triangle in which the three rotating bodies 81 to 83 are arranged.
  • 0 rotates at a low speed around the plane rotation axis BA, and thereafter, similarly, the plane rotation body 8 1 has the IS rotation axis BB, the image plane 8 2 has the image rotation axis BC, and the like. Make a quick rotation.
  • This propulsion device shows a case where the rotation axes of the three surface rolling bodies 81 to 83 are all parallel to the surface of a regular triangle.
  • the direction of the high-speed rotation is that only the rotator 80 is rotating in the opposite direction to the clock when viewed from the outside of the device, and all other components are rotating in the clockwise direction.
  • the direction of the low-speed rotation is expressed as a direction when each rotating body is viewed from the intersection of the two rotation axes simultaneously rotating at a low speed.
  • the plane rolling body 80 180 ° in the clockwise direction around the rotation axis BA, the rotating body 81, 180 ° in the clockwise direction around the rotation axis BB, simultaneously Rotate. Then, the device rotates about the straight line C A as a rotation axis by the force of precession.
  • the surface rolling body 81 is rotated 180 ° clockwise around the rotation axis BB, and the rotation body 82 is rotated counterclockwise around the rotation axis BC. To 180. , Rotate at the same time. Then, due to the force of the precession, the device turns around the straight line CB as the rotation axis.
  • the rotating body 82 is rotated clockwise around the rotation axis BC by 180 °
  • the rotating body 80 is rotated clockwise around the rotation axis BA. 180 ° in the opposite direction, rotating simultaneously. Then, due to the force of precession, the device turns around the straight line C C as the rotation axis.
  • the device makes a rotational movement around its different rotation axis with a time lag, and all of the rotations of the device are made with the center of the device in front of the figure. If you think of this diagram as looking at the device from directly above, you will lift it upwards. As a result, the device has been translated upward. And In the second, third, or any subsequent cycle, it can move in parallel as well.
  • the rotation direction of the low-speed rotation on the device does not need to be reversed, and it is necessary to simultaneously rotate all the gyroplanes in the opposite quotient. Not so efficient.
  • FIG. 13 shows another embodiment relating to the drive of the image transfer body which is turned at high speed.
  • FIG. 14 shows another embodiment relating to the input shaft.
  • a rotation shaft 87 serving as a main shaft and a plane rotation shaft 88 serving as an input shaft are arranged so as to be orthogonal to each other.
  • FIG. 15 shows another embodiment relating to the rotating body and the input shaft.
  • the rotating body 89 rotating at high speed is divided into upper and lower parts by the boundary surface 91 which does not coincide with or is not parallel to the rotating axis 90 and has a rotating axis of low-speed rotation
  • the rotating bodies 89 rotating at high speed have the same angular momentum.
  • the use of such a low-speed rotating shaft can prevent unnecessary vibration and shaking of the device.
  • the simplest structure is made of a homogeneous material and a vertically symmetric rotating body
  • FIG. 16 shows another embodiment relating to the support of the rotating body. If the rotating body 93 rotating at high speed is left as it is, it tries to keep its rotating shaft 94 constant in the space. If the angle of the rotating body 93 in the space is forcibly changed, a large mechanical load is applied to the bearing portion. By distributing the burden to a larger part, it is possible to increase the durability of the entire device. Therefore, as shown in FIG. 16, it is effective to use a support 95 around the outer periphery of the rotating body 93 rotating at high speed.
  • FIG. 17 shows another embodiment of the structure for supporting the rotating body and rotating at a low speed, and is a cross-sectional view of a plane including the rotating shaft of the rotating body.
  • the bearing 97 supporting the rolling element 96 has at least two projections
  • FIG. 18 is a perspective view showing the locus 100 of the convex portion 98 moving in the premises by omitting the circular groove 99 from FIG. Slow rotation If such a structure is used to apply a high-speed surface rolling to the surface rolling body 96, a low-speed surface rolling is applied to the image rolling body 96. In combination with the universal hand, a low-speed rotation axis different from the shaft rotation axis can be set with a simple structure.
  • FIG. 19 is a cross-sectional view of another embodiment of the structure for supporting the image-forming body and rotating at a low speed, taken along a plane covering the rotation axis of the image-forming body.
  • FIG. 20 is a perspective view showing another embodiment relating to a structure that rotates at a low speed by extracting a trajectory drawn by a support or a bearing.
  • An indented groove is bent in two semicircles that share a string along the way, and another similarly bent groove is formed as a result of the other circular grooves being bent together.
  • it is combined at a position where two discontinuous circular grooves are formed, and one of the convex portions 103 of the support or bearing having two convex portions is formed in the groove.
  • the locus of each of the convex portions 103 and 104 when the other convex portion 104 moves in the other groove is shown by the locus 105 and the locus 10.
  • Six. By adopting such a structure that performs a low-speed rolling, it is possible to change the rotation axis every time the support or the bearing makes a half turn with a simple structure.
  • the change of the rotation axis is an effective structure that prevents the decrease in efficiency due to the increase in the number of surface rolling bodies, as described at the end of the description related to FIG.
  • the angle between the rotation axis of the device rotating and the rotation axis of the precession force generated in the surface rolling body itself can be increased. Make smaller You can also. Industrial applicability
  • the propulsion device of the present invention can be used to move a transport machine on the ground or on the water, or to control the movement and attitude of the transport machine in water, in the air or in space, and to control industrial machines such as robots It can be used for moving or controlling the position of a movable part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Toys (AREA)

Abstract

This invention relates to a propelling apparatus which utilizes the force generated by precession of a rotary member (1). In other words, the rotary member (1) is rotated at a speed lower than its own rotary speed with at least two input shafts (B), (E), which are not coincident or not parallel with the main axis (A) of the rotary member (1), as the center so as to change the angle of the main axis (A) of the rotary member (1) inside a space and to generate precession. When this precession is repeated, it is possible to continuously apply an equal acceleration without applying any action on the external space at all by utilizing the angle change (rotation) of the propelling apparatus itself or a machine having mounted thereto the propelling apparatus inside the space. In this manner, efficient propelling can be made. More efficient propelling can be accomplished by changing the number of rotary members and the rotating direction of the input shafts.

Description

明 細 書  Specification
推進装置  Propulsion device
技術分野  Technical field
この発明は、 移動機械の推進や姿勢制御に用いられる推進装置に 関し、 特に、 高速で回転する回転体の歳差運動によって発生する力 を利用して推進する推進装置に関するものである。 背景技術  The present invention relates to a propulsion device used for propulsion and attitude control of a mobile machine, and in particular, to a propulsion device that utilizes a force generated by precession of a rotating body that rotates at high speed to perform propulsion. Background art
機械の推進装置として、 例えば、 プロペラ飛行機や船舶について いるプロペラやプロべラスク リ ュウ (以下、 単にプロペラという) が挙げられる。 これらの機体や船体にあっては、 熱機関やモータ等 の原動機で得られた回転運動を、 変速機, クラ ッチ等を介して最終 的に、 あるいは直接にプロペラに伝える。 このプロペラは、 前方の 空気や水を後方に押しやるこ とによって、 その反作用で機体や船体 を前方に推進する。 動いている機体や船体を止めるときには、 プロ ペラに原動機の回転を伝えることをやめ、 空気や水の抵抗が停止す るのを待つか、 プロペラを逆に回転させたり、 ピッチを逆にするこ とにより、 後方の空気や水を前方に押しやることによって、 その反 作用で機体や船体を停止させる。  Examples of the propulsion device for a machine include a propeller and a propeller screw (hereinafter simply referred to as a “propeller”) on a propeller airplane or a ship. In these airframes and hulls, the rotational motion obtained by a prime mover such as a heat engine or motor is finally or directly transmitted to the propeller via a transmission, clutch, or the like. The propeller pushes the air and water forward, causing it to propel the fuselage and hull forward. When stopping a moving aircraft or hull, stop transmitting the rotation of the prime mover to the propeller, wait for the air and water resistance to stop, rotate the propeller, or reverse the pitch. This pushes the air and water behind, causing the aircraft and hull to stop.
また、 ジェ ッ ト機やロケッ トは、 ジェ ッ トエンジンやロケッ トェ ンジン等の推進装置が搭載されており、 それらのエンジンが後方に 高速で噴出する微粒子、 およびガスの噴流の反作用で機体を前方に 推進する。  In addition, jet aircraft and rockets are equipped with propulsion devices such as jet engines and rocket engines.The engines react to the jets of fine particles and gas jetting at a high speed in the rearward direction. Propell ahead.
さらに、 自動車や軌道車等の車両は、 原動機で得られた回転運動 が、 変速機, ク ラ ッチ等を介して最終的に車輪に伝えられる。 車輪 は、 その接地点で地面や軌道に対して作用を及ぼし、 その反作用で 地面や軌道が車体を前方に押し出す。 この車輪も、 広義の推進装置 という ことができる。 Furthermore, in vehicles such as automobiles and rail cars, the rotational motion obtained by the prime mover is finally transmitted to the wheels via transmissions, clutches, and the like. The wheels act on the ground or trajectory at the point of contact with the ground, and the ground or trajectory pushes the vehicle forward in the reaction. These wheels are also propulsion devices in a broad sense It can be said.
前述した従来の機搣の推進装置の第 1の問題点は、 その効率が必 ずしもよいとは言えない、 あるいは悪いことであり、 第 2の問題点 は、 得られる速度が小さいことであり、 第 3 の問題点は、 従来の推 進装置のうちのいくつかは周囲の環境によっては推進が不可能なこ とである。  The first problem of the conventional propulsion device described above is that its efficiency is not necessarily good or bad, and the second problem is that the speed obtained is small. Yes, and the third problem is that some of the conventional propulsion systems cannot be propelled depending on the surrounding environment.
プロべラを例に挙げれば、 気体や液体はあらゆる方向に運動する ので、 プロペラが気体や液体をすベて後方に押しやり、 その反作用 として船体や機体を推進するわけではない。 推進そのものを考えれ ば、 後方に押しやられる気体や液体は、 直線的に後方に流れればよ いが、 プロペラにあっては必ず渦流を生じ、 これが効率を大き く低 下させる。 また、 特に空気等の気体中をプロペラで推進する場合、 圧縮された気体の温度の上昇によつても効率は低下するので、 効率 は悪く、 得られる速度も小さい。 また、 プロペラは、 気体か液体の 中でしか使用できない。  In the case of a propeller, for example, gases and liquids move in all directions, so propellers do not push the hull or airframe as a reaction by pushing all the gas or liquid backward. Considering the propulsion itself, the gas or liquid that is pushed backward should just flow backward in a straight line, but a propeller always generates a vortex, which greatly reduces the efficiency. In addition, when propelling a gas such as air with a propeller, the efficiency also decreases because the temperature of the compressed gas increases, so the efficiency is low and the speed obtained is low. Also, propellers can only be used in gas or liquid.
ジエツ トエンジンやロケッ トエンジンについては、 得られる速度 はプロペラよりは概して大きいが、 それでも限界がある。 また、 ジ ヱ ッ トェンジンは、 酸素のある大気中でしか推進できない。  For jet and rocket engines, the speed gained is generally greater than for propellers, but there are still limitations. Also, jet engines can only be propelled in oxygenated atmospheres.
車輪は、 接地点の摩擦が推進の効率に大きな影響を及ぼし、 特に. 摩擦が小さい場合には、 車輪は空転して効率が低下する。 また、 大 きな速度を必要とする場合、 車輪のころがり摩擦が推進に対する抵 抗となり、 効率が低下する。 さらに、 車輪は、 液体のなかでは殆ど 車体を推進できない。  For wheels, the friction at the ground contact point has a large effect on the efficiency of propulsion, especially when the friction is small, the wheels spin and the efficiency drops. Also, when a high speed is required, the rolling friction of the wheels becomes a resistance to propulsion, and the efficiency is reduced. In addition, the wheels can hardly propel the vehicle in the liquid.
この発明の目的は、 推進の効率がよ く、 得られる速度が大き く、 しかも、 使用される環境のいかんをとわずに推進できる推進装置を 提供することである。 発明の開示 An object of the present invention is to provide a propulsion device which has a high propulsion efficiency, a high speed, and can be propelled regardless of the environment in which it is used. Disclosure of the invention
前述した問題点を解決するために、 この発明による推進装置は、 歳差運動を利用して推進する推進装置であって、 主軸 (高速回転の 回転軸) を中心にして面転自在に支持された剛性の高い回転体と, 前記主軸を中心にして前記回転体を高速で回転駆動する高速駆動手 段と, 前記回転体の主軸に一致しないまたは平行でない少な く とも 2本の入力軸と, 前記入力軸を中心にして前記面転体を前記高速駆 動手段の面転より も低速で面転駆動する低速駆動手段とから構成し てある。  In order to solve the above-described problems, a propulsion device according to the present invention is a propulsion device that utilizes precession motion, and is supported so as to freely roll around a main shaft (a high-speed rotation shaft). A rotating body having high rigidity, a high-speed driving means for rotating the rotating body at a high speed about the main shaft, at least two input shafts which are not coincident with or parallel to the main shaft of the rotating body, Low-speed driving means for driving the surface rolling body at a lower speed than the high-speed driving means around the input shaft.
また、 この発明による推進装置は、 歳差運動を利用して推進する 推進装置であって、 主軸を中心にして画転自在に支持された剛性の 高い少なく とも 2個の回転体と, 前記各主軸を中心にして前記各回 転体を高速で回転駆動する高速駆動手段と, 前記各回転体に少なく とも 1本づっ設けられ、 その主蚰に一致しないまたは平行でない入 力軸と, 前記各入力軸を中心にして前記各回転体を前記高速駆動手 段の回転より も低速で回転駆動する低速駆動手段と, 前記低速躯動 手段からの回転力が前記各入力軸の回転方向を交互にまたは同時に 変更するように制御する制御手段とから構成してある。  Further, a propulsion device according to the present invention is a propulsion device for propulsion using precession, wherein at least two high-rigidity rotators supported rotatably around a main shaft, A high-speed driving means for rotating each of the rotating bodies at a high speed around the main shaft; an input shaft provided at least one for each of the rotating bodies, which does not coincide with or is not parallel to the main shaft; Low-speed driving means for driving each of the rotating bodies at a lower speed than rotation of the high-speed driving means around an axis; and rotating force from the low-speed driving means alternately rotating the rotation direction of each of the input shafts. And control means for controlling the change at the same time.
このとき、 前記少なく とも 2つの回転体を複数組設ける場合に、 前記各回転体の主軸と前記各回転体の入力軸との双方に対して直交 する直線が、 前記各面転体の正逆両方向への低速な回転の際に、 一 致する局面があるように連続して配置してもよい。  At this time, when a plurality of sets of the at least two rotators are provided, a straight line orthogonal to both the main axis of each rotator and the input axis of each rotator is the normal / reverse of each of the surface rotators. In low-speed rotation in both directions, they may be arranged continuously so that there is a matching phase.
さ らに、 この発明による推進装置は、 歳差運動を利用して推進す る推進装置であって、 主軸を中心にして面転自在に支持された剛性 の高い回転体と, 前記主軸を中心にして前記回転体を高速で回転躯 動する高速駆動手段と, 前記画転体の主軸に一致しないまたは平行 でない第 1 の入力軸と, 前記第 1 の入力軸に平行な第 2 の入力軸と, 前記各入力軸を中心として前記高速駆動手段の回転より も低速で面 転駆動する低速駆動手段と, 前記低速駆動手段からの面転力が前記 回転体を前記第 1 の入力軸を中心に第 1 の方向に面転させ、 前記第 2の入力軸を中心に第 2の方向に西転させ、 前記第 1および第 2の 入力蚰を面転させることなく元の位置に復帰する制御手段とから構 成してめる。 Further, a propulsion device according to the present invention is a propulsion device for propelling using a precession motion, comprising: a highly rigid rotating body supported rotatably around a main shaft; High-speed driving means for rotating and rotating the rotating body at a high speed; a first input shaft that does not coincide with or is not parallel to the main axis of the image body; and a second input shaft that is parallel to the first input shaft. When, A low-speed driving unit that performs a surface rolling operation at a lower speed than the rotation of the high-speed driving unit around each of the input shafts, and a surface rolling force from the low-speed driving unit causes the rotating body to rotate around the first input shaft. Control means for turning the surface in the direction of No. 1 and westward in the second direction around the second input shaft, and returning the first and second inputs to the original position without turning the surface. It is composed of
このとき、 前記面転体を複数個設ける場合に、 前記各面転体の主 軸と前記第 1の入力軸の双方に対して直交する直線、 および、 前記 主軸と前記第 2の入力軸との双方に対して直交する直線が、 前記各 面転体の正逆両方向への低速な回転をする際に、 一致する局面があ るように配置してもよい。  At this time, in the case where a plurality of the flattened bodies are provided, a straight line orthogonal to both the main axis of each of the flattened bodies and the first input shaft; and the main shaft and the second input shaft. A straight line perpendicular to both of the two may be arranged so that there is a coincident phase when the respective surface rolling bodies rotate at low speed in both forward and reverse directions.
さらにまた、 この発明による推進装置は、 歳差運動を利用して推 進する推進装置であって、 主軸を中心にして面転自在に支持され、 剛性が高く、 正 n 4 角形 ( n 4 は 4以上の偶数) の各頂点の位置に 配置された n 4 ffiの面転体と, 前記各主軸を中心にして前記各面転 体を高速で面転駆動する高速駆動手段と, 前記面転体同士を結ぶ直 線が前記正 n 4 角形の中心を通らない 2個を 1組として、 その 1組 の回転体同士を結ぶ前記正 n 4 角形の中心を通らない、 前記直線に 一致しないまたは平行でない、 かつ、 前記面転体の主軸と一致しな いまたは平行でない、 かつ、 前記正 n 4 角形の面に直交する入力軸 と, 前記入力軸を中心として前記面転体を前記高速駆勖手段の画転 より も低速で回転する低速駆動手段と, 前記 1組の面転体を前記入 力軸を中心にして同時に面転し、 次いで、 前記条件と同一な他の 1 組の回転体を同時に面転し、 以下、 前記条件と同一なさらに他の 1 組の画転体の回転を操り返したのち、 前記全回転体を同時に逆方向 に回転するように前記低速駆動手段を制御する制御手段とから構成 してある。 さらにまた、 この発明による推進装置は、 歳差運動を利用して推 進する推進装置であって、 主蚰を中心にして面転自在に支持され、 剛性が高く、 正 n 3 角形 ( n 3 は 3以上の整数) の各頂点の位置に 配置された n 3 個の回転体と, 前記各主軸を中心にして前記各回転 体を高速で回転駆動する高速駆動手段と, 前記回転体同士を結ぶ直 線が前記正 n 3 角形の中心を通らない 2個を 1組として、 その 1組 の回転体同士を結ぶ前記正 n 3 角形の中心を通らない、 前記直線に 一致しないまたは平行でない、 かつ、 前記回転体の主軸と一致しな いまたは平行でない、 かつ、 前記正 n 3 角形の面に平行な入力軸と, 前記入力軸を中心として前記回転体を前記高速駆動手段の回転より も低速で面転する低速駆動手段と, 前記 1組の回転体を前記入力軸 を中心にして同時に回転し、 次いで、 前記条件と同一な、 前記 1組 のう ちの 1個を舍むかまたは舍まない他の 1組を同時に回転し、 以 下、 前記条件と同一なさらに他の 1組の回転体の回転を繰り返すよ うに前記低速駆動手段を制御する制御手段とから構成してある。 Furthermore, propulsion device according to the present invention, there is provided a propulsion system for promotion by using the precession, are Menten rotatably supported around the main shaft, stiffness is high, the positive n 4 square (n 4 is (Even number of 4 or more) each of the vertices of n 4 ffi disposed at the positions of the vertices; high-speed driving means for driving each of the surface rotators at a high speed around the respective spindles; 2 the straight line connecting the body with each other does not pass through the center of the positive n 4 square as one set, the not through a positive n 4 square central connecting the set of rotary bodies, does not coincide with the straight line or not parallel and not parallel the main axis consistent with such Imatawa of the surface rolling body, and an input shaft perpendicular to the positive n 4 square plane, drive the high speed the surface rolling body about said input shaft (4) The low-speed driving means rotating at a lower speed than the image rotation of the means, and Simultaneously roll around the axis, and then simultaneously roll another set of rotating bodies with the same conditions as above, and then operate the rotation of still another set of image rolling bodies with the same conditions as above. After returning, the control means controls the low-speed driving means so as to simultaneously rotate all the rotating bodies in the opposite direction. Furthermore, propulsion device according to the present invention, there is provided a propulsion system for promotion by using the precession, Menten is rotatably supported around the main蚰, high rigidity, positive n 3 triangle (n 3 N is an integer of 3 or more), n 3 rotating bodies arranged at the positions of the vertices, high-speed driving means for rotating each of the rotating bodies at high speed around each of the spindles, and linearity said connecting as a positive n 3 triangle two pair that does not pass through the center of said not through a positive n 3 triangular central connecting the set of rotary bodies, not to do or parallel match the straight line, and, wherein a match with the main axis of the rotating body Imatawa not parallel, and the parallel input shaft to the positive n 3 triangular faces, than the rotation of the high-speed driving means said rotary member about said input shaft Low-speed driving means for rolling the surface at a low speed; Rotate simultaneously around the center, and then simultaneously rotate one other of the one set or the other set identical to the above condition, and And control means for controlling the low-speed driving means so as to repeat the rotation of one set of rotating bodies.
この発明を構成する前記回転体は、 その回転体を駆動する原動機 の一部または全部を成して、 高速で回転するようにしてもよい。  The rotating body that constitutes the present invention may constitute a part or all of a motor that drives the rotating body, and may rotate at a high speed.
前記主軸は、 前記入力軸と直交するようにしてもよい。  The main axis may be orthogonal to the input axis.
前記入力軸を舍む面を境界面として、 前記回転体を分割した場合 に、 その双方の角運動量が等しいようにしてもよい。  When the rotating body is divided by using a surface that surrounds the input shaft as a boundary surface, the two may have the same angular momentum.
前記面転体は、 その外周を支持体で支えるよう にしてもよい。  The outer surface of the surface rolling body may be supported by a support.
前記入力軸は、 低速な回転の伝達に用いられる回転運動の回転軸 と異なる軸に設定する支持構造を有するようにしてもよい。 このと き、 前記支持構造は、 前記回転体の主軸を受ける軸受けまたは支持 体に設けられた少な く とも 2個の凸部が、 円状の案内溝に案内され て移動するように構成してもよい。  The input shaft may have a support structure that is set to a different axis from the rotation axis of the rotational motion used for transmitting the low-speed rotation. At this time, the support structure is configured such that at least two projections provided on a bearing or a support for receiving a main shaft of the rotating body are guided by a circular guide groove and move. Is also good.
また、 前記支持構造は、 前記案内溝が、 途中で弦を共有する 2つ の半円づつに曲がったものであり、 かつ、 もう 1つの同様に曲がつ た溝が、 互いに他の円状の溝の曲がった結果できあがった半円状の 溝と組み合わせると、 2つの不連続な円状の溝を形成する位置に組 み合わせ、 前記 2個の凸部を有するものである軸受けまたは支持体 の、 一方の凸部が一方の溝内を、 他方の凸部が他方の溝内を移動す ることによって、 前記轴受け窣たは支持体が半回転するたびにその 回転軸が変更するように構成してもよい。 さらに、 前記支持構造は、 前記面転体の主軸を受ける軸受けまたは支持体に設られた円状の溝 部が、 少なく とも 3本の案内突起に沿って移動するように構成して もよい。 In addition, in the support structure, the guide groove may share two strings in the middle. When two other similarly curved grooves are combined with the other semi-circular groove resulting from the bending of the other circular groove, two non-circular grooves are formed. Combined at positions forming a continuous circular groove, one of the bearings or the support having the two convex portions has one convex portion in one groove and the other convex portion in the other. By moving in the groove, the rotation axis may be changed each time the bearing or the support rotates half a turn. Further, the support structure may be configured such that a circular groove provided in a bearing or a support for receiving a main shaft of the surface rolling member moves along at least three guide protrusions.
この発明による推進装置は、 前述したように構成してあるので、 外界に作用を及ぼすことなく、 推進装置自体に、 ひいては推進装置 を取り付けたなんらかの機械に、 等加速度運動を与えることができ る。  Since the propulsion device according to the present invention is configured as described above, it is possible to impart a constant acceleration motion to the propulsion device itself, and eventually to any machine on which the propulsion device is attached, without exerting any effect on the outside world.
この外界に作用を及ぼすことがない、 という ことは、 外界の環境 がいかなるものであっても、 推進の効率は下がることがない、 とい う ことである。 車輪のように、 接地面の摩擦によって効率が低下す ることはないし、 プロペラのように渦流を生じて効率を低下させる こともない。 そして、 真空中であっても、 気体中であっても、 液体 中であっても、 固体中であっても (その固体もろとも推進すること にはなるが) 推進が可能である。 また、 推進装置あるいは推進装置 を取り付けたなんらかの機械の運動をしている速度にも関係なく加 速し推進することが可能である。 したがって、 推進装置自体、 また はこれを取り付けた機械の空間内における角度変化 (回転) を利用 し、 外界に対して一切の作用を及ぼすことなく、 等しい加速度を与 ぇ繞けることができるので、 効率のよい推進を行う ことができ、 得 られる速度の限界を、 大幅に引き上げることも可能である。 図面の簡単な説明 Having no effect on the outside world means that no matter what the environment of the outside world, the efficiency of propulsion will not be reduced. Unlike wheels, the efficiency does not decrease due to friction of the ground contact surface, nor does it reduce the efficiency due to eddy currents like a propeller. And it can be propelled in a vacuum, in a gas, in a liquid, or in a solid (although that solid will be propelled). It is also possible to accelerate and propell regardless of the speed at which the propulsion device or any machine equipped with the propulsion device is moving. Therefore, the same acceleration can be applied without using any action on the outside world by using the angle change (rotation) in the space of the propulsion device itself or the machine to which the propulsion device is attached. Efficient propulsion can be performed, and the speed limit obtained can be greatly increased. BRIEF DESCRIPTION OF THE FIGURES
第 1図〜第 4図は、 この発明の推進装置の第 1 の実施形態を示し た図であって、 第 1図は斜視図、 第 2図, 第 3図は平面図、 第 4図 は側面図である。  1 to 4 are views showing a first embodiment of a propulsion device according to the present invention. FIG. 1 is a perspective view, FIGS. 2 and 3 are plan views, and FIG. It is a side view.
第 5図は、 この発明の推進装置の第 2の実施形態を示した斜視図 である。  FIG. 5 is a perspective view showing a second embodiment of the propulsion device of the present invention.
第 6図は、 この発明の推進装置の第 3の実施形態を示した斜視図 である。  FIG. 6 is a perspective view showing a third embodiment of the propulsion device of the present invention.
第 7図, 第 8図は、 この発明の推進装置の第 4 の実施形態に用い られる回転体を示した図であって、 第 7図は斜視図、 第 8図は平面 図である。  7 and 8 are views showing a rotating body used in a fourth embodiment of the propulsion device of the present invention. FIG. 7 is a perspective view, and FIG. 8 is a plan view.
第 9図, 第 1 0図は、 この発明の推進装置の第 5 の実施形態に用 いられる面転体を示した図であって、 第 9図は斜視図、 第 1 0図は 側面図である。  9 and 10 are views showing a surface rolling body used in a fifth embodiment of the propulsion device of the present invention. FIG. 9 is a perspective view, and FIG. 10 is a side view. It is.
第 1 1図は、 この発明の推進装置の第 6 の実施形態を示した斜視 図である。  FIG. 11 is a perspective view showing a sixth embodiment of the propulsion device of the present invention.
第 1 2図は、 この発明の推進装置の第 7 の実施形態に用いられる 回転体を示した平面図である。  FIG. 12 is a plan view showing a rotating body used in a seventh embodiment of the propulsion device of the present invention.
第 1 3図〜第 2 0図は、 この発明の推進装置の各実施形態に用い るこ とができる回転体、 または回転体とその支持体の変形例を示し た図である。 発胡を実施するための最良の形態  FIG. 13 to FIG. 20 are views showing a modified example of the rotating body or the rotating body and its support that can be used in each embodiment of the propulsion device of the present invention. Best form for carrying out Huhu
以下、 添付した図面を参照しながら、 この発明をさらに詳しく説 明する。  Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings.
第 1図において、 回転体 1 は、 剛性の高い素材で成形されており、 直線 Aの位置にある回転軸 (主軸) を中心に、 直線 Aの矢印方向 に高速で! II転しているとする。 この回転体 1を、 その回転軸と一致 しない、 または平行でない直線 B (入力軸) を中心として、 直線 B の矢印方向に、 回転体 1 の回転速度より も低速で面転する。 すると、 面転体 1 の回転軸は、 直線 Cの位置に移動する。 このとき、 面転体 1 の回転軸は、 空間内における角度を変更したことになり、 歳差運 動を生ずる。 この歳差運動により、 この推進装置は、 ほぼ直線 Dを 回転軸 (出力軸) として、 直線 Dの矢印の方向に、 装置全体を面転 する。 In Fig. 1, the rotating body 1 is formed of a highly rigid material, and the rotation axis (spindle) at the position of the straight line A is centered in the direction of the arrow of the straight line A. Fast! II Suppose you are turning. The rotating body 1 is rolled around a straight line B (input shaft) that is not coincident with or parallel to the rotation axis in the direction of the straight line B at a speed lower than the rotation speed of the rotating body 1. Then, the rotation axis of the plane rolling element 1 moves to the position of the straight line C. At this time, the rotation axis of the plane rolling element 1 has changed the angle in the space, and the precession movement occurs. Due to this precession, the propulsion device flattens the entire device in the direction of the arrow of the straight line D with the substantially straight line D as a rotation axis (output shaft).
これを、 第 1図の推進装置を上方から見た第 2図によって描く と、 面転体 1 の面転軸は、 装置の回転軸である直線 Dを中心に、 直線 H の位置まで面転したことになる。 ついで、 面転体 1を、 その回転軸 と一致しない、 または平行でない直線 Eを中心として、 直線 Eの矢 印方向に、 回転体 1 の面転速度より も低速で回転する。 すると、 回 転体 1 の回転軸は直線 Cの位置から直線 Fの位置に移動する。 この ときも、 面転体 1 の回転軸は、 空間内における角度を変更したこと になり、 歳差運動を生ずる。 この歳差運動により、 この推進装置は, ほぼ直線 Gを回転軸として、 直線 Gの矢印の方向に装置全体を回転 する。 これを第 2図によって描く と、 面転体 1の回転軸は直線 Hの 位置から直線 I の位置に回転したことになる。  Drawing this from Fig. 2 when the propulsion device shown in Fig. 1 is viewed from above, the surface rotation axis of the surface rolling element 1 is centered on the straight line D, which is the rotation axis of the device, up to the position of the straight line H. It will be done. Then, the surface rotating body 1 is rotated around the straight line E that is not coincident with or parallel to the rotation axis at a lower speed than the surface rotating speed of the rotating body 1 in the direction of the arrow of the straight line E. Then, the rotation axis of the rotating body 1 moves from the position of the straight line C to the position of the straight line F. Also at this time, the rotation axis of the plane rolling body 1 has changed the angle in the space, and precession occurs. Due to this precession, the propulsion device rotates the entire device in the direction of the arrow of the straight line G about the rotation axis of the substantially straight line G. If this is drawn in FIG. 2, the rotation axis of the surface rolling body 1 has rotated from the position of the straight line H to the position of the straight line I.
上述したような、 高速で面転する回転体 1に対する、 その回転軸 と一致しない、 または平行でない、 直線 Bおよび、 直線 Eを中心と する、 面転体 1 の画転速度より も低速な面転を操り返すと、 装置全 体は、 あるいは装置を取り付けたなんらかの機械は、 第 2図のごと く一定の方向に移動することができる。  As described above, for the rotating body 1 rotating at high speed, a plane centered on the straight line B and the straight line E, which is not coincident with or parallel to the rotation axis, is lower than the image speed of the flat body 1 By turning again, the entire device, or any machine on which the device is mounted, can move in a certain direction, as shown in Fig. 2.
もっとも、 そのような低速の面転を長時間に亙って行う とすれば 高速で面転する回転体 1 は、 第 1図の上方に移動を続けなければな らず、 その移動距離は次第に大き く なるばかりである。 回転体 1 の装置に対する位置を大き く変更せずに装置を長時間に 亙って一定の方向に移動しつづけるためには、 以下のような行程の 操作を行えばよい (その行程の最初の段階は、 第 1図のように、 回 転体 1 の回転軸が直線 Aの位置にあり、 高速で回転する回転体 1 の 回転方向は、 直線 Aの矢印の方向であるとする) 。 However, if such low-speed surface rolling is performed over a long period of time, the rotating body 1 that performs high-speed surface rolling must continue to move upward in FIG. 1, and the moving distance gradually increases. It is just getting bigger. In order to keep the apparatus moving in a fixed direction for a long time without significantly changing the position of the rotating body 1 with respect to the apparatus, the following operation may be performed (the first operation of the operation). The stage is as shown in Fig. 1, where the rotation axis of the rotating body 1 is at the position of the straight line A, and the rotating direction of the rotating body 1 rotating at high speed is the direction of the arrow of the straight line A).
まず、 第 1行程は回転体 1を、 直線 Bを中心として、 直線 Bの矢 印の方向に低速で回転する。 その結果、 回転体 1 の回転軸は、 直線 Aの位置から直線 Cの位置に移動する。 第 2行程として、 回転体 1 を、 直線 Eを中心として、 直線 Eの矢印の方向に低速で回転する。 その結果、 回転体 1 の回転軸は、 直線 Cの位置から直線 Fの位置に 移動する。  First, in the first step, the rotating body 1 is rotated at a low speed around the straight line B in the direction of the arrow of the straight line B. As a result, the rotation axis of the rotating body 1 moves from the position of the straight line A to the position of the straight line C. As a second step, the rotating body 1 is rotated around the straight line E at a low speed in the direction of the arrow of the straight line E. As a result, the rotation axis of the rotating body 1 moves from the position of the straight line C to the position of the straight line F.
第 3行程として、 回転体 1 の回転方向を直線 Aの矢印の方向とは 逆にし、 高速で回転させる。 第 4行程は、 回転体 1を、 直線 Eを中 心として、 直線 Eの矢印の逆の方向に低速で回転する。 その結果、 回転体 1 の回転軸は、 直線 Fの位置から直線 Cの位置に移動する。 第 5行程として、 直線 Bを中心として、 直線 Bの矢印の逆の方向に 低速で面転する。 その結果、 回転体 1 の回転軸は、 直線 Cの位置か ら直線 Aの位置に移動する。 第 6行程として、 回転体 1 の回転方向 を再び逆にし、 第 1行程開始前と同じ、 直線 Aの矢印の方向に戻す。 以上の 6行程の操作を操り返す。  As a third step, the rotating direction of the rotating body 1 is reversed from the direction of the arrow of the straight line A, and the rotating body 1 is rotated at a high speed. In the fourth step, the rotating body 1 is rotated around the straight line E at a low speed in the direction opposite to the arrow of the straight line E. As a result, the rotation axis of the rotating body 1 moves from the position of the straight line F to the position of the straight line C. In the fifth step, the vehicle turns around the straight line B at a low speed in the direction opposite to the arrow of the straight line B. As a result, the rotation axis of the rotating body 1 moves from the position of the straight line C to the position of the straight line A. In the sixth stroke, the rotating direction of the rotating body 1 is reversed again, and is returned to the same direction as the arrow of the straight line A before the start of the first stroke. Repeat the above six steps.
この場合の装置の移動を、 第 1図の推進装置を上方から見た第 3 図によって描く こ ととする。 第 1行程開始前の、 回転体 1 の回転軸 が直線 Lの位置にあるとする。 第 1行程によって、 これは直線 の 位置から直線 Mの位置に移動する。 第 2行程によって、 直線 Mの位 置から直線 Nの位置に移動する。 第 3行程によっては移動しない。  The movement of the device in this case shall be depicted by Fig. 3 when the propulsion device shown in Fig. 1 is viewed from above. It is assumed that the rotation axis of the rotating body 1 is at the position of the straight line L before the start of the first stroke. By the first stroke, it moves from the position of the straight line to the position of the straight line M. The second stroke moves from the position of the straight line M to the position of the straight line N. Does not move depending on the third step.
ところで、 高速で面転する面転体の面転方向と、 その回転軸に一 致しない、 または平行でない、 低速な回転の方向の双方が逆になれ ば、 歳差運動による回転の方向は変わらないから、 第 4行程によつ て面転体 1の回転軸は、 直線 Nの位置から直線 0の位置に移動する。 第 5行程によって、 直線 0の位置から直線 Pの位置に移動する。 第 6行程によつては移動しない。 By the way, it is possible to reverse both the direction of rotation of a high-speed surface rolling body and the direction of low-speed rotation that is not aligned or parallel to its axis of rotation. For example, since the direction of rotation due to precession does not change, the rotation axis of the surface rolling element 1 moves from the position of the straight line N to the position of the straight line 0 by the fourth stroke. The fifth stroke moves from the position of the straight line 0 to the position of the straight line P. It does not move by the sixth process.
以上の、 高速で面転する面転体に対する、 2本の軸を中心とした、 異なるときにおける、 画転体の面転速度よりも低速で行った回転の 結果、 装置は移動したのだが、 この移動は、 装置の面転、 あるいは 装置の空間内における角度変化の結果の移動なのであって、 なんら かの作用を外界に及ぼし、 その反作用としての移動とは異なるもの である。  The device moved as a result of the rotation performed on the two-axis, different times at a lower speed than the surface rotation speed of the image rolling body for the high-speed flat surface rolling body at different times. This movement is the result of a face roll of the device or a change in the angle of the device in space, and it has some effect on the outside world and is different from the movement as a reaction.
なお、 高速で回転する回転体 1 の回転軸と一致しない、 または平 行でない軸を中心として、 面転体の面転速度より も低速な面転を与 える構造には、 第 4図のように電磁石の磁力と重力とによる駆動構 造がある。 これは、 高速で面転する画転体 1 のシャフ ト 2を、 矢印 方向に可動な軸受け 3で支持し、 さらにこの軸受け 3を、 コイル 5 とそのコイル 5内を可動な鉄芯 4 とからなる電磁石の、 鉄芯端部に 設けた軸受け 6で支持するものである。 いま、 一方のコイルに電流 を通せば、 鉄芯 4 は上方に移動し、 電流を切れば重力によって鉄芯 4は下方に移動する。  Note that a structure that gives a face rotation at a speed lower than the face rotation speed of the surface rolling body around an axis that does not coincide with or is not parallel to the rotation axis of the rotating body 1 that rotates at high speed is shown in Fig. 4. There is a driving structure based on the magnetic force of an electromagnet and gravity. In this method, the shaft 2 of the image transfer body 1 that rotates at high speed is supported by a bearing 3 movable in the direction of the arrow, and the bearing 3 is further separated from a coil 5 and an iron core 4 movable in the coil 5. The electromagnet is supported by a bearing 6 provided at the end of the iron core. Now, if an electric current is passed through one coil, the iron core 4 moves upward, and if the electric current is cut off, the iron core 4 moves downward by gravity.
ただし、 この電磁石による駆動は、 要は面転体に対して低速な面 転を与えるための一手段にすぎず、 この他にも原動機により面転す るカムとプッ シュロ ッ ドを用いて、 あるいはクラ ンクを用いて低速 な回転を与えることも可能であり、 さらにそれらと弾性体を組み合 わせた構造とすることも可能である。  However, driving by an electromagnet is merely a means of giving a low-speed surface rolling to the surface rolling element, and in addition to this, using a cam and a push rod that perform the surface rolling by the prime mover, Alternatively, it is possible to give a low-speed rotation using a crank, and it is also possible to adopt a structure in which they are combined with an elastic body.
なお、 異なるときに、 回転体の回転速度より も低速で面転すると は、 それらの低速な回転が時間的に一部重複することを禁ずるもの ではない。 仮に一部で重複したとしても、 それは低速回転の回転の 中心を移動させるだけだからである。 It should be noted that, at different times, to roll over at a speed lower than the rotation speed of the rotating body does not mean that those low-speed rotations partially overlap in time. Even if it partially overlaps, it is It just moves the center.
また、 高速で回転する回転体を、 その回転軸の空間内における角 度を変更せずに往復、 または回転して移動させ、 その途上の 1地点 において、 回転体に対し、 低速な、 正方向への回転を、 その外の 1 地点において逆方向への回転をする構造の推進装置にあつては、 低 速な回転の回転軸の回転体に対する位置は変わらないが、 装置上の 位置は変わっているのであって、 低速な回転の回転軸は 2本以上の ものという ことができる。 第 5図は、 高速で回転する面転体の他の実施形態を示すもので、 高速で回転する回転体が、 別々の 2本の回転軸 (主軸) を有する、 すなわち 2個のものであり、 そのそれぞれが、 各 1本の低速な面転 軸 (入力轴) を有するものである。  In addition, the rotating body that rotates at high speed is moved back and forth or rotated without changing the angle in the space of the rotation axis, and at one point along the way, the rotating body is slower and forward with respect to the rotating body. In the case of a propulsion device with a structure that rotates in the opposite direction at one other point, the position of the low-speed rotating shaft with respect to the rotating body does not change, but the position on the device changes. Therefore, it can be said that there are two or more rotation axes for low-speed rotation. FIG. 5 shows another embodiment of a high speed rotating surface rolling body. The high speed rotating body has two separate rotating axes (main shafts), that is, two rotating bodies. , Each of which has one low-speed bearing axis (input 轴).
この推進装置のシャーシ Ί には、 電源であるバッテリ 8 とモータ 9およびモータ 1 0、 さらに、 その 2つのモータの回転するタイ ミ ングと面転の方向を制御するスィ ッチ 1 1 を有する。 モータ 9が回 転すると、 その回転はプーリ 1 2 , ベル ト 1 3 , プーリ 1 4へと伝 わり、 減速されてプーリ 1 4を取り付けた支持体 1 5を低速で回転 する。 支持体 1 5 にはモータ 1 6および、 電源であるバッテリ 1 7 が取り付けてある。 モータ 1 6が面転すると、 その回転はプーリ 1 8 , ベル ト 1 9 , プーリ 2 0へと増速して伝わる。 支持体 1 5 は、 画転体 2 1 を支持しており、 従って、 支持体 1 5を回転することは、 すなわち回転体 2 1 を回転するこ とになる。 この回転体 2 1 に、 プ ーリ 2 0 は取り付けてあつて、 回転体 2 1 を高速で画転する。  The chassis の of the propulsion device has a battery 8 serving as a power supply, a motor 9 and a motor 10, and a switch 11 for controlling the rotating timing of the two motors and the direction of the face rotation. When the motor 9 rotates, the rotation is transmitted to the pulley 12, the belt 13, and the pulley 14, and the rotation is reduced to rotate the support 15 on which the pulley 14 is mounted at a low speed. A motor 16 and a battery 17 as a power supply are attached to the support 15. When the motor 16 rolls, its rotation is transmitted to the pulley 18, the belt 19, and the pulley 20 at an increased speed. The support 15 supports the image transfer body 21, and thus, rotating the support 15 means rotating the rotator 21. The pulley 20 is attached to the rotator 21 to image the rotator 21 at high speed.
また、 モータ 1 0が回転すると、 その回転はプーリ 2 2 , ベル ト 2 3 , プーリ 2 4へと伝わり、 減速されてプーリ 2 4を取り付けた 支持体 2 5を低速で面転する。 支持体 2 5 にはモータ 2 6および、 電源であるバッテリ 2 7が取り付けてある。 モータ 2 6が回転する と、 その回転はブーリ 2 8 , ベルト 2 9 , プーリ 3 0へと増速して 伝わる。 支持体 2 5 は、 面転体 3 1を支持しており、 従って、 支持 体 2 5を画転することはすなわち、 画転体 3 1を回転することにな る。 この面転体 3 1に、 プーリ 3 0 は取り付けてあつて、 画転体 3 1を高速で面転する。 Further, when the motor 10 rotates, the rotation is transmitted to the pulley 22, the belt 23, and the pulley 24, and the speed is reduced, so that the support 25 on which the pulley 24 is mounted rotates at low speed. The support 2 5 has a motor 26 and Battery 27, which is the power supply, is installed. When the motor 26 rotates, the rotation is transmitted to the burry 28, the belt 29, and the pulley 30 at an increased speed. The support 25 supports the flat body 31, and thus, to image the support 25, that is, to rotate the image body 31. The pulley 30 is attached to the flat body 31 to roll the flat body 31 at high speed.
なお、 ここでは面転体 2 1および回転体 3 1 は、 それぞれモータ 1 6 , モータ 2 6によって駆動されるものとしているが、 これは必 ずしもモータである必要はなく、 その他の原動機であってもかまわ ない。  Here, it is assumed that the surface rolling body 21 and the rotating body 31 are driven by the motor 16 and the motor 26, respectively, but this is not necessarily required to be a motor. It does not matter.
また、 ここでは、 モータの面転を面転体や支持体に伝達するため にプーリ とベルトとを用いたが、 これは、 歯車, 歯車とチヱーン, 歯車とシャフ ト等、 通常の動力の伝達に用いられる他の構造であつ てもかまわない。  In this case, a pulley and a belt are used to transmit the motor's surface rotation to the surface rolling element and the support. However, this is the transmission of ordinary power such as gears, gears and chains, and gears and shafts. Other structures used for the above may be used.
さらにまた、 支持体の低速な面転のタイ ミ ングと方向とを制御す るのがスィ ッチとなっているが、 これも他の、 例えば機械的な構造 によるものであってもかまわない。  Furthermore, the switch controls the timing and direction of the slow rolling of the support, but this can also be due to other, for example, mechanical, structures. .
さて、 この推進装置 (あるいはこの推進装置がなんらかの機械に 取り付けられた状態にあつても同様である) のシャーシ 7が水平な 状態にあり、 双方の支持体 1 5 , 2 5が第 5図の状態にあって、 回 転体 2 1が直線 Qの矢印の方向に、 回転体 3 1が直線 Sの矢印の方 向に高速で面転しているものとし、 スィ ツチ 1 1が、 以下のスィ ッ チ切り替えを一周期として行う ものとする。 そのスィ ッチ切り替え とは、 まず、 モータ 9を回転し、 支持体 1 5を直線 Rの矢印の方向 に 1 8 0 ° 回転する。 その回転の終了後、 モータ 1 0を回転し、 支 持体 2 5を直線 Tの矢印の方向に 1 8 0 ° 面転する。 その回転の終 了後、 モータ 9およびモータ 1 0を同時に逆回転し、 支持体 1 5を 直線 Rの矢印の逆の方向に 1 8 0。 、 支持体 2 5を直線 Tの矢印の 逆の方向に 1 8 0 ° 、 それぞれ回転する。 Now, the chassis 7 of this propulsion device (or even when this propulsion device is attached to some machine) is in a horizontal state, and both supports 15 and 25 are shown in FIG. In this state, it is assumed that the rotating body 21 is rotating at high speed in the direction of the arrow of the straight line Q and the rotating body 31 is rotating at a high speed in the direction of the arrow of the straight line S. Switch switching is performed as one cycle. First, the motor 9 is rotated, and the support 15 is rotated 180 ° in the direction of the arrow of the straight line R. After the end of the rotation, the motor 10 is rotated, and the support 25 is turned 180 ° in the direction of the arrow of the straight line T. After the end of the rotation, the motor 9 and the motor 10 are simultaneously rotated in the reverse direction, and the support 15 is rotated. 1 80 in the direction opposite to the arrow of the straight line R. The support 25 is rotated 180 ° in the direction opposite to the arrow of the straight line T, respectively.
次に、 この場合の装置全体の作用について述べる。 まず、 支持体 1 5を直線 Rの矢印の方向に 1 8 0 ° 回転すると、 高速で回転する 面転体 2 1 の回転軸は、 その空間内における角度が変更するので、 歳差運動が生ずる。 歳差運動の力は、 直線 Qを中心として、 直線 Q の矢印の方向に装置全体を回転させる。 1 8 0 。 の面転が終了する と、 高速で回転する回転体 2 1 の、 装置に対する回転方向は、 当初 の直線 Qの矢印の方向から、 直線 Qの矢印の逆の方向へと、 その方 向を変える。  Next, the operation of the entire apparatus in this case will be described. First, when the support 15 is rotated by 180 ° in the direction of the arrow of the straight line R, the rotation axis of the high-speed rotating facet 21 changes its angle in the space, so that precession occurs. . The precession force rotates the entire device about the straight line Q in the direction of the arrow of the straight line Q. 1 8 0. When the rotation of the rotating body 21 is completed, the direction of rotation of the rotating body 21 rotating at high speed changes from the direction of the arrow of the straight line Q to the direction opposite to the arrow of the straight line Q. .
次いで、 支持体 2 5を直線 Tの矢印の方向に 1 8 0 ° 回転すると、 高速で回転する回転体 3 1 の回転軸は、 その空間内における角度が 変更するので歳差運動を生ずる。 歳差運動の力は、 直線 Sを中心と して、 直線 Sの矢印の方向に装置全体を回転させる。 1 8 0 ° の回 転が終了すると、 高速で面転する回転体 3 1 の、 装置に対する回転 方向は、 当初の直線 Sの矢印の方向から、 直線 Sの矢印の逆の方向 へと、 その方向を変える。  Next, when the support 25 is rotated 180 ° in the direction of the arrow of the straight line T, the rotation axis of the rotator 31 rotating at a high speed changes its angle in the space, so that precession occurs. The force of the precession rotates the entire device around the straight line S in the direction of the arrow of the straight line S. When the 180 ° rotation is completed, the rotating direction of the rotating body 31 rotating at high speed with respect to the device changes from the direction of the arrow of the original straight line S to the direction opposite to the arrow of the straight line S. Change direction.
次いで、 支持体 1 5を直線 Rの矢印の逆の方向に 1 8 0 ° 、 支持 体 2 5を直線 Tの矢印の逆の方向に 1 8 0 ° 、 同時に回転すると、 双方の回転体 2 1 , 3 1 に生ずる歳差運動の力は、 内力となって、 装置は回転しない。 この同時の回転によって、 それぞれの回転体 2 1 , 3 1 の、 高速で画転する回転方向は、 それぞれ当初の方向に戻 つたことになる。  Next, when the support 15 is simultaneously rotated by 180 ° in the direction opposite to the arrow of the straight line R and the support 25 is simultaneously rotated by 180 ° in the direction opposite to the arrow of the straight T, both rotating bodies 2 1 The force of precession generated in, 31 becomes an internal force and the device does not rotate. As a result of this simultaneous rotation, the rotating directions at which the rotating bodies 21 and 31 rotate at high speed have returned to their original directions.
以上の一周期が終了すると、 推進装置はその異なる位置を中心と して、 時をずらして正逆両方向に画転し、 その結果、 平行に移動し たこ とになる。 そして、 以下第 2 , 第 3 , あるいはそれ以降のどの 周期においても、 同様の平行移動を得ることができる。 なお、 ここ で述べたスィ ッチの切り替えの一周期は、 必ずしもこの通りである 必要はない。 また、 2基の支持体の完全に別々の時における低速な 回転をも求めてはいない。 2基の支持体の低速な回転が、 仮に時間 的に一部重複したとしても、 歳差運動の力が全ての時間において同 一でない限りは、 内力となる力、 あるいは互いに相殺しあう力以外 の力が、 装置全体を面転させるのである。 ただし、 装置を画転させ ないで、 高速で面転する回転体の回転方向を、 当初の向きに戻すと きの面転は完全に同時であることが望ましい。 At the end of one cycle, the propulsion device is shifted in time in both the forward and reverse directions around the different position, and as a result, has moved in parallel. The same translation can be obtained in any of the second, third, and subsequent cycles. Note that here The one cycle of switch switching described in the above does not necessarily have to be this way. Nor does it require slow rotation of the two supports at completely separate times. Even if the slow rotations of the two supports partially overlap in time, as long as the precession forces are not the same at all times, other than internal forces or forces that cancel each other out This force turns the entire device. However, it is desirable that the rotation of the rotating body that rotates at high speed at the high speed without returning the device to the initial direction is completely simultaneous.
なお、 低速な回転の角度をここでは 1 8 0 ° としているが、 これ は必ずしも 1 8 0 ° でなければならないのではない。 第 6図は、 入力軸に低速な面転を与える他の実施形態を示したも のである。  Note that the low-speed rotation angle is set to 180 ° here, but this does not necessarily have to be 180 °. FIG. 6 shows another embodiment in which the input shaft is given a low speed rolling.
この例の推進装置のシャーシ 3 2には、 電源であるバッテリ 3 3 とモータ 3 4があって、 モータ 3 4の回転は、 プーリ 3 5 , ベルト The propulsion unit chassis 32 in this example has a battery 33 and a motor 34 that are power supplies. The rotation of the motor 34 is performed by pulleys 35 and belts.
3 6 , プーリ 3 7へと伝わり、 減速される。 プーリ 3 7 は、 力ムシ ャフ ト 3 8を低速で回転させる。 カムシャフ ト 3 8 には、 カム 3 9 とカム 4 0が取り付けてあり、 プッシュロ ッ ド 4 1 , プッシュロ ッ ド 4 2を押し上げる。 さらに、 プッシュロ ッ ド 4 1 , 4 2の上部に は、 押し上げられたブッ シュロ ッ ド 4 1 , 4 2を押し下げるための ばね 4 3およびばね 4 が取り付けてある。 It is transmitted to 36, pulley 37, and is decelerated. Pulley 37 rotates force shaft 38 at low speed. The cam shaft 38 has a cam 39 and a cam 40 mounted thereon, and push up the push rods 41 and 42. Further, a spring 43 and a spring 4 for pushing down the pushed-up bus rods 41, 42 are attached to the upper portions of the push rods 41, 42.
カム 3 9 とカム 4 0 の形状は、 以下の 2つの条件のいずれかに合 つたものであればよい。 その第 1 は、 2つのブッ シュロ ッ ド 4 1 , The shape of the cam 39 and the cam 40 may be any shape that meets one of the following two conditions. The first is two bus rods 4 1,
4 2を同時に押し上げる行程と、 別々の時にばねの力で押し下げる 行程をもつものであり、 その第 2 は、 別々の時に押し上げる行程を もち、 同時に押し下げる行程をもつものである。 ただし、 これら力 ム 3 9 , 4 0およびプッシュロ ッ ド 4 1 , 4 2によって後述の揺動 体 5 0 に揺動を与える構造自体は本発明にとって不可欠のものなの ではなく、 揺動体 5 0によって支持された、 高速で面転する回転体 4 9に対して上記行程を有する揺動を与えることが不可欠なのであ る。 従って、 ここでいう、 カム 3 9 , 4 0 とプッシュロ ッ ド 4 1 , 4 2によってなる構造を、 同様の作用を有する他の構造、 例えば、 揺動体の回転を検出するセンサと組み合わせて作動する電磁石や、 原動機等に置き換えることも可能である。 It has a process of pushing up 2 at the same time and a process of pushing down with spring force at different times. The second is a process having a process of pushing up at different times and a process of pushing down at the same time. However, these forces 39, 40 and the push rods 41, 42 cause the swing described later. The structure itself for giving the swing to the body 50 is not indispensable to the present invention, but gives the swing having the above-described stroke to the rotating body 49 supported by the swing body 50 and rotating at high speed. It is essential. Therefore, the structure composed of the cams 39, 40 and the push rods 41, 42 is operated in combination with another structure having the same function, for example, a sensor for detecting the rotation of the oscillator. It can be replaced with electromagnets or prime movers.
さらに、 装置には揺動体 5 0があり、 この揺動体 5 0には、 バッ テリ 3 3 によって回転するモータ 4 5が取り付けてあり、 モータ 4 5 の回転はプーリ 4 6 , ベル ト 4 7 , プーリ 4 8へと伝わる。 ブー リ 4 8 は、 モータ 4 5の回転より も高速で、 揺動体 5 0が支持した 回転体 4 9を回転させる。  Further, the device has an oscillating body 50, and a motor 45, which is rotated by a battery 33, is attached to the oscillating body 50. The rotation of the motor 45 is controlled by a pulley 46, a belt 47, It is transmitted to pulley 4-8. The bully 48 rotates the rotating body 49 supported by the rocking body 50 at a higher speed than the rotation of the motor 45.
揺動体 5 0 には、 回転体 4 9 の回転轴 (主軸) に一致しない、 ま たは平行でない、 互いに平行な 2本の低速の回転轴 (入力轴) とな るシャフ ト 5 1およびシャフ ト 5 2が取り付けてある。 シャフ ト 5 1およびシャフ ト 5 2 は、 プッシュロ ッ ド 4 1およびプッ シュロ ッ ド 4 2にそれぞれ取り付けた軸受け 5 3および軸受け 5 4によって 支えられている。 この軸受け 5 3 , 5 4 は、 プッ シュロ ッ ド 4 1 , 4 2 の直線運動をシャフ ト 5 1 , 5 2が阻害しないように、 ブッ シ ュロ ッ ド 4 1 , 4 2の直線運動の方向およびシャフ ト 5 1 , 5 2の 方向の双方に対して直角な方向に可動な構造である必要がある。  The oscillating body 50 includes a shaft 51 and a shaft that are two low-speed rotations 轴 (input し な い) that do not coincide with or are not parallel to the rotation 轴 (spindle) of the rotating body 49. G 52 is attached. The shafts 51 and 52 are supported by bearings 53 and 54 attached to the push rod 41 and the push rod 42, respectively. The bearings 53 and 54 are used for the linear movement of the bus rods 41 and 42 so that the shafts 51 and 52 do not hinder the linear movement of the push rods 41 and 42. The structure must be movable in a direction perpendicular to both the direction and the directions of the shafts 51 and 52.
さて、 この推進装置の回転体 4 9 の回転方向が直線 Uの矢印の方 向であり、 カム 3 9およびカム 4 0 の形がプッ シュロ ッ ド 4 1 およ びプッ シュロ ッ ド 4 2を別々のときに、 ばね 4 3 , 4 4 との作用に よって押し下げ、 同時に押し上げるものとして、 装置全体の作用に ついて述べる。  Now, the rotation direction of the rotating body 49 of this propulsion device is in the direction of the arrow of the straight line U, and the shapes of the cams 39 and 40 correspond to the push rods 41 and 42. The operation of the entire system will be described assuming that it is pushed down by the action of the springs 43 and 44 at the same time and is pushed up at the same time.
いま、 カム 3 9 の回転およびばね 4 3 の作用によってプッ シュ口 ッ ド 4 1が押し下げられ、 プッシュロ ッ ド 4 2の位置はそのままで ある、 という状態となったとする。 このとき、 揺動体 5 0 は、 シャ フ ト 5 2を中心として、 高速で面転する面転体 4 9の回転速度より も低速で回転運動をしたことになる。 この低速な回転運動は、 画転 体 4 9 の回転軸の空間内における角度を変更したことになって、 歳 差運動を生ずる。 この歳差運動は、 装置全体を、 ほぼ、 直線 Wを中 心として直線 Wの矢印の方向に画転する。 Now, by the rotation of the cam 3 9 and the action of the spring 4 3, the push Assume that the rod 41 is pushed down, and the position of the push rod 42 remains unchanged. At this time, the oscillating body 50 has rotated around the shaft 52 at a speed lower than the rotation speed of the surface rolling body 49 that performs a high-speed surface rolling. This low-speed rotational movement changes the angle of the rotation axis of the image body 49 in the space, and causes precession. In this precession, the entire device is almost completely moved in the direction of the arrow of the straight line W with the straight line W as the center.
つぎに、 カム 4 0の面転およびばね 4 4の作用によってプッシュ ロ ッ ド 4 2が押し下げられ、 ブッシュロ ッ ド 4 1の位置はそのまま である、 という状態になったとする。 このときも、 揺動体 5 0 は、 シャフ ト 5 1を中心として、 高速で面転する面転体 4 9 の面転速度 より も低速で回転運動をしたことになる。 この低速な回転運動も、 面転体 4 9の回転軸の空間内における角度を変更したことになって, 歳差運動を生ずる。 この歳差運動は、 装置全体を、 ほぼ、 直線 Vを 中心として、 直線 Vの矢印の方向に回転する。 すなわち、 装置は、 その異なる位置を中心として、 時をずらして正逆両方向に面転し、 その結果、 装置は平行に移動したことになる。  Next, it is assumed that the push rod 42 is pushed down by the surface rotation of the cam 40 and the action of the spring 44, and the bush rod 41 remains at the same position. Also at this time, the oscillating body 50 has rotated around the shaft 51 at a lower speed than the face rolling speed of the face rolling body 49 rotating at a high speed. This low-speed rotation also causes precession by changing the angle of the rotation axis of the plane rolling element 49 in the space. This precession rotates the whole device about the straight line V in the direction of the arrow of the straight line V. In other words, the device turns around the different position in the forward and reverse directions with a time lag, and as a result, the device moves in parallel.
ついで、 カム 3 9およびカム 4 0が、 プッシュロ ッ ド 4 1および プッ シュロ ッ ド 4 2を同時に押し上げる。 揺動体 5 0が支持する画 転体 4 9 は、 空間内における角度を変更せずに元の位置に復帰し、 この場合は歳差運動を生じない。 したがって、 装置は動かない。 以上をもって、 カムの第 1周期が終了したものであるとすれば、 第 2 , 第 3の、 あるいはそれ以降のどの周期においても、 同様の、 装置全体の空間内における回転の結果として、 平行に移動すること ができる。  Then, the cam 39 and the cam 40 push up the push rod 41 and the push rod 42 at the same time. The image body 49 supported by the rocking body 50 returns to the original position without changing the angle in the space, and in this case, precession does not occur. Therefore, the device does not move. Given the above, if the first cycle of the cam has ended, then in any second, third, or subsequent cycle, the same rotation as a result of rotation in the space of the entire device will result in a parallel You can move.
なお、 ここでは、 高速で回転する面転体の回転軸の空間内におけ る角度を変更せずに元の位置に復帰する経過は直線運動になつてい るが、 これは必ずしも直線運動でなければならないのではない。 仮 に曲線運動ではあつても、 回転軸の空間内における角度を変更せず に元の位置に復帰することは、 他の構造によって、 十分に可能であ る。 Here, the process of returning to the original position without changing the angle in the space of the rotating shaft of the high speed rotating surface rolling element is a linear motion. However, this does not necessarily have to be a linear motion. Even if it is a curvilinear motion, it is sufficiently possible to return to the original position without changing the angle in the space of the rotation axis by other structures.
このように、 高速で回転する回転体の回転軸の、 空間内における 角度を変更せずに元の位置に復帰する構造とすると、 回転体の高速 な回転の方向を変更することな く、 一定の方向に移動が可能なので, 同一時間内になるベく大きな移動距離を得よう とする場合には、 効 率を大き く上げることが可能になる。 第 7図は、 回転体の個数、 およびそのそれぞれの入力軸の他の実 施形態を示したものある。 つまり、 回転体が、 別々の n ( n : 自然 数) 本の主軸を有する、 すなわち、 n個のものであり、 そのそれぞ れが、 各 2本の入力軸を有する場合を示している。 こ こでは、 この 発明の推進装置の主要部分である回転体と主軸および入力軸とを抽 出して示してある。  In this way, if the rotation axis of the rotating body that rotates at high speed is configured to return to the original position without changing the angle in space, the rotating body rotates at a constant speed without changing the direction of high-speed rotation. Since it is possible to move in the direction of, it is possible to greatly increase the efficiency when trying to obtain a very large moving distance within the same time. FIG. 7 shows another embodiment of the number of rotating bodies and their respective input shafts. In other words, this shows a case where the rotating body has n (n: natural number) main axes that are separate, that is, n, each of which has two input axes. Here, a rotating body, a main shaft, and an input shaft, which are main parts of the propulsion device of the present invention, are extracted and shown.
第 6図のような推進装置は、 その作動中に必ず揺れを生ずる。 こ れは、 装置全体の空間内における角度を変更する原動力となった面 転体の歳差運動による回転の中心となる軸 (主軸) 力 低速な面転 にともなって変動することに起因する。 そして、 この揺れは装置の 効率を低下させる。  The propulsion device shown in Fig. 6 always shakes during its operation. This is due to the fact that the shaft (main shaft), which is the center of rotation due to the precession motion of the rolling element that changed the angle in the space of the entire device due to precession, fluctuates due to low-speed rolling. And this swing reduces the efficiency of the device.
いま、 その推進装置を取り付けたなんらかの機械が、 その構造上、 または形態上、 揺れないものであるならば効率は低下しないが、 そ うでなければ推進装置を第 7図の構造とすることによって、 揺れを 防ぐことができる。  Now, if any machine to which the propulsion device is attached does not shake due to its structure or form, the efficiency will not decrease, but otherwise the propulsion device will have the structure shown in Fig. 7. , Can prevent shaking.
それは、 第 6図の推進装置を構成要素として、 その複数個を、 揺 動体のそれぞれの低速な回転の回転軸と、 高速で回転する回転体の 回転軸との、 双方に対して直交するそれぞれの直線が、 揺動体の正 逆両方向への低速な回転にともなって、 一致する局面を有する位置 に連続した構造とすることである。 It consists of the propulsion device shown in Fig. 6 as a component, and a plurality of the The structure is such that each straight line perpendicular to both the rotation axis and the rotation axis is continuous at a position having a coincident phase with the low-speed rotation of the oscillator in both the forward and reverse directions.
第 7図において、 推進装置は、 面転体 5 5 , 回転体 5 6 , 回転体 5 7の、 計 3偭の高速で回転する面転体を有する。 そして、 面転体 5 5 は、 その回転軸に一致しない、 または平行でない、 低速な回転 の画転軸 a と回転軸 d とを有し、 以下同様に回転体 5 6 は回転軸 b と回転軸 e とを、 面転体 5 7 は回転軸 c と回転軸 f とを有する。 そ して、 この推進装置は、 画転体 5 5の面転軸とその低速な面転の回 転軸 a との双方に対して直交する軸、 回転体 5 6 の面転軸とその低 速な回転の回転軸 b との双方に対して直交する軸、 回転体 5 7の回 転軸とその低速な回転の回転軸 c との双方に対して直交する軸の、 以上 3つの軸が同一の直線上にあり、 かつ、 回転体 5 5の回転軸と その低速な回転の回転軸 dとの双方に対して直交する軸、 回転体 5 6の面転軸とその低速な面転の画転軸 e との双方に対して直交する 軸、 回転体 5 7の回転軸とその低速な回転の回転敏 f との双方に対 して直交する軸の、 以上 3つの軸もまた同一の直線上にある、 そう した局面を有している。  In FIG. 7, the propulsion device has a planar rolling element 55, a rotating body 56, and a rotating body 57, which rotate at a high speed of 3 mm in total. Further, the surface rolling body 55 has an image rotation axis a and a rotation axis d of low-speed rotation that are not coincident with or parallel to the rotation axis, and similarly, the rotation body 56 also rotates with the rotation axis b. The plane evolving body 57 has a rotation axis c and a rotation axis f. The propulsion device includes an axis orthogonal to both the plane of rotation of the image bearing body 55 and the rotation axis a of its low-speed plane rotation, the plane of rotation of the rotating body 56 and its low plane rotation. These three axes are the axis orthogonal to both the rotation axis b of the high-speed rotation and the axis orthogonal to both the rotation axis of the rotating body 57 and the rotation axis c of the low-speed rotation. An axis that is on the same straight line and that is orthogonal to both the rotation axis of the rotating body 55 and the rotation axis d of its low-speed rotation; The above three axes, which are orthogonal to both the printing axis e and the axis orthogonal to both the rotation axis of the rotating body 57 and the rotational speed f of its low-speed rotation, are also the same. It has such a position on a straight line.
いま、 この推進装置の 3個の回転体 5 5 , 5 6 , 5 7が、 同時に 同じ角度だけ、 それぞれ回転軸 a , 回転軸!), 回転軸 cを中心とし て、 画転体 5 5 , 5 6 , 5 7 の面転速度より も低速で面転したとす る。 これを側面から描いた図によって示すと、 第 8図のように、 高 速で画転する回転体 5 5 , 5 6 , 5 7 の回転軸が低速で矢印の方向 に面転することになる。 すると、 それぞれの高速で面転する回転体 の画転軸と、 それぞれの低速な回転の回転軸との双方に対して直交 する 3つの軸、 軸 g, 軸 h , 軸 i は、 それらが一致していた局面か ら、 一致しない局面へ、 軸 j , 軸 k , 軸 £へと移行する。 各回転体に生ずる歳差運動が装置全体を面転しょう とする、 その 回転の軸は、 回転体の面転蚰と低速な回転の回転軸との双方に対し て直交する軸であるから、 装置全体の回転にとっては、 その軸が複 数個の回転体に関し、 一致していることが最も効率がよい。 一致し ない局面では、 効率は悪い。 その効率の悪さとは、 歳差運動の力が 装置全体を回転させる以外の部分、 つまり、 内力として消費される からにほかならない。 そして、 その内力として消費される以外の力 にのみよって、 装置全体はさきに述べた 3つの軸が一致したところ の 1つの軸を中心として画転する。 この場合、 各回転体が、 低速な 面転にともなって、 その高速な回転の回転軸が変動することによつ ておきた揺れはおこらない。 揺れとして生ずる歳差運動の力は、 内 力として消費されるからである。 Now, the three rotating bodies 5 5, 5 6, 5 7 of this propulsion device are the same angle at the same time, respectively, rotating axis a, rotating axis! ), Suppose that the face rolls around the rotation axis c at a speed lower than the face rotation speed of the image elements 55, 56, 57. If this is shown by a diagram drawn from the side, as shown in Fig. 8, the rotating shafts of the rotating bodies 55, 56, 57 that roll at high speed will roll in the direction of the arrow at low speed. . Then, three axes, axis g, axis h, and axis i, which are orthogonal to both the rotation axis of the rotating body rotating at high speed and the rotation axis of each low speed rotation, are one of them. From the phase that has been aligned, the axis j, the axis k, and the axis £ are shifted to the unmatched phase. The precession that occurs in each rotating body tends to flatten the entire device. The axis of rotation is orthogonal to both the rotating face of the rotating body and the slow rotation axis. For the rotation of the entire device, it is most efficient if the axes are the same for multiple rotating bodies. Inconsistent phases are inefficient. The inefficiency is nothing but the fact that the force of precession is consumed as an internal force except for rotating the entire device. Then, only by the force other than that consumed as the internal force, the entire device is rolled around one axis where the three axes described above coincide. In this case, each rotating body does not shake due to the rotation of the high-speed rotation changing with the low-speed face roll. This is because the power of precession that occurs as shaking is consumed as internal force.
このことは、 3つの軸が一致しない局面からの、 それぞれの回転 体の逆方向への低速な回転に関しても同様のことがいえる。 低速な 回転の回転軸 d , 回転軸 e , 回転軸 f を中心として、 同時に同じ角 度の逆回転によって、 3つの軸が一致する局面に向かう過程におい ても、 装置全体を面転させる軸は 1つのものとすることができ、 効 率を低下させる揺れを防ぐことができる。 第 9図は、 回転体の個数、 およびそのそれぞれの入力軸の他の実 施形態を示すものである。 つまり、 回転体が、 別々の 2 n ( n : 自 然数) 本の主軸を有する、 すなわち、 2 n個のものであり、 そのそ れぞれが、 各 1本の入力軸を有する場合を示している。 こ こでは、 この発明の主要部分、 すなわち回転体と主軸と入力軸とを抽出して 示してある。  The same can be said for the low-speed rotation of each rotating body in the opposite direction from the situation where the three axes do not coincide. Even in the process of going toward a phase where the three axes coincide by the reverse rotation of the same angle at the same time about the rotation axis d, rotation axis e, and rotation axis f of low-speed rotation, the axis that turns the entire device is It can be one, and can prevent shaking that reduces efficiency. FIG. 9 shows another embodiment of the number of rotating bodies and their respective input shafts. In other words, it is assumed that the rotating body has 2 n (n: natural number) separate main axes, that is, 2 n pieces, each of which has one input axis. Is shown. Here, the main parts of the present invention, that is, the rotating body, the main shaft, and the input shaft are extracted and shown.
第 5図のような推進装置もまた、 その作動中に必ず揺れを生ずる。 これは、 装置全体の空間内における角度を変更する原動力となつ た画転体の歳差運動による面転の中心となる軸 (主軸) が、 低速な 回転にともなって、 変動することに起因する。 そして、 この揺れは 装置の効率を低下させる。 The propulsion device as shown in Fig. 5 always shakes during its operation. This is the driving force that changes the angle in the space of the entire device. This is due to the fact that the axis (main axis), which is the center of the plane rotation due to precession of the image transfer body, fluctuates with low-speed rotation. And this swing reduces the efficiency of the device.
いま、 この推進装置を取り付けたなんらかの機械が、 その構造上、 または形態上、 揺れないものであるならば効率は低下しないが、 そ うでなければ、 推進装置を第 9図の構造とすることによって、 揺れ を防ぐことができる。  Now, if the machine equipped with this propulsion device does not shake due to its structure or form, the efficiency will not decrease, but otherwise the propulsion device shall have the structure shown in Fig. 9. By doing so, shaking can be prevented.
それは、 第 5図の推進装置を構成要素として、 その複数個を、 支 持体のそれぞれの低速な回転の回転鋤と、 高速で面転する面転体の 回転軸との、 双方に対して直交するそれぞれの直線が、 支持体の正 逆両方向への低速な面転にともなって、 一致する局面を有する位置 に連続した構造とすることである。  It consists of the propulsion device shown in Fig. 5 as a component, and a plurality of the propulsion devices, with respect to both the low-speed rotating plow of the support and the high-speed surface-rotating rotating shaft of the support. The structure is such that each of the orthogonal straight lines is continuous at a position having a coincident phase with the slow rotation of the support in both the forward and reverse directions.
第 9図において、 推進装置は面転体 5 8およびその低速な回転の 回転軸 P , 回転体 5 9およびその低速な面転の回転軸 s , 回転体 6 0およびその低速な回転の回転軸 q、 面転体 6 1およびその低速な 画転の回転軸 t , .面転体 6 2およびその低速な面転の回転軸 r , 面 転体 6 3およびその低速な面転の回転軸 uを有する。 そして、 この 推進装置は、 西転体 5 8の回転軸とその低速な面転の回転軸 P との 双方に対して直交する軸、 回転体 6 0 とその低速な回転の HI転軸 q との双方に対して直交する軸、 面転体 6 2 とその低速な回転の面転 軸 r との双方に対して直交する軸の、 以上 3つの軸が同一の直線上 にあるという局面を有し、 かつ、 面転体 5 9の回転軸とその低速な 面転の回転軸 s との双方に対して直交する軸、 回転体 6 1 とその低 速な面転の回転軸 t との双方に対して直交する軸、 面転体 6 3 とそ の低速な回転の面転軸 uとの双方に対して直交する軸の、 以上 3つ の軸もまた同一の直線上にある、 そう した局面を有する。  In Fig. 9, the propulsion device is composed of a rotating body 58 and its low-speed rotation axis P, a rotating body 59 and its low-speed rotation axis s, a rotating body 60 and its low-speed rotation axis. q, Rotational axis of surface rolling element 61 and its low-speed image rotation t, Rotation axis of surface rotation body 62 and its low-speed rotation r, Rotational axis of surface-rotating body 63 and its low-speed rotation u Having. The propulsion device is composed of an axis orthogonal to both the rotation axis of the west body 58 and the rotation axis P of the low-speed surface rotation, the rotation body 60 and the HI rotation axis q of the low-speed rotation. The axis orthogonal to both of these two axes, and the axis orthogonal to both the surface rolling body 62 and its low-speed rotating surface rotation axis r, has the aspect that the above three axes are on the same straight line. And an axis orthogonal to both the rotation axis of the surface rotation body 59 and the rotation axis s of the low speed surface rotation, and both the rotation body 61 and the rotation axis t of the low speed surface rotation. The three axes that are perpendicular to both the axis of rotation and the axis of rotation orthogonal to both the plane of rotation 63 and its low-speed rotation plane of rotation u are also on the same straight line. Have aspects.
いま、 この推進装置の回転体 5 8 , 画転体 6 0 , 回転体 6 2が、 それぞれ低速な回転の回転軸 P , 回転軸 q , 回転軸 r を中心に、 同 時に 1 8 0 ° 回転したとする。 すると、 それぞれの高速で回転する 回転体の回転蚰と、 それぞれの低速な面転の回転軸との双方に対し て直交する 3つの軸は、 それが一致しない局面から一致する局面を 経て再び一致しない局面へと移行する。 一致する局面は、 第 1 0図 における、 直線 Vと一致する瞬間である。 それぞれの面転体に生ず る歳差運動が装置全体を回転しょう とする、 その回転の軸は、 画転 体の回転軸と、 低速な回転の回転軸との双方に対して直交する軸で あるから、 装置全体の回転にとっては、 その軸が、 複数個の回転体 に関し、 一致していることが最も効率がよい。 一致しない局面では、 効率は悪い。 その効率の悪さとは、 歳差運動の力が装置全体を回転 させる以外の部分、 つまり、 内力として消費されるからにほかなら ない。 そして、 その内力として消費される以外の力にのみよつて、 装置全体はさきに述べた 3つの軸が一致したところの 1 つの軸 Vを 中心として回転する。 この場合、 それぞれの面転体が、 低速な回転 にともなって、 その高速な面転の回転軸が変動することによってお きた揺れはおこ らない。 揺れとして生ずる歳差運動の力は、 内力と して消費されるからである。 Now, the rotating body 5 8, the image body 60, and the rotating body 62 of this propulsion device are Let it be assumed that the rotations are 180 ° around the rotation axis P, rotation axis q, and rotation axis r of the low-speed rotation at the same time. Then, the three axes orthogonal to both the rotation of the rotating body that rotates at high speed and the rotation axis of each low-speed face-to-face rotation coincide from the non-coincident phase through the coincident phase again. Move to a phase where no. The coincident phase is the moment coincident with the straight line V in FIG. The precession generated in each of the surface rolling elements tends to rotate the entire device. The axis of rotation is orthogonal to both the rotating axis of the image rolling body and the rotation axis of low-speed rotation. Therefore, for the rotation of the entire apparatus, it is most efficient that the axis is the same for a plurality of rotating bodies. Efficiency is poor in disagreement situations. The inefficiency is nothing less than the fact that the force of precession is consumed as an internal force except for rotating the entire device. Then, the entire device rotates around one axis V where the three axes described above coincide only by the force other than that consumed as the internal force. In this case, each of the flat surfaces does not shake due to the rotation of the high-speed flat surface fluctuating with the low-speed rotation. This is because the power of precession that occurs as shaking is consumed as internal force.
このことは、 低速な回転の回転軸 s , 回転軸 t , 回転軸 uを中心 とする回転に関しても全く 同様なことがいえ、 装置全体は 1 つの軸、 直線 wを中心として面転する。 つまり、 装置の構造をこのようなも のにすることによって、 装置全体を回転する回転軸を、 計 2つにす ることができ、 効率を低下させる揺れを防ぐことができる。 第 1 1図は、 回転体の個数、 およびそのそれぞれの位置関係、 お よび低速な回転、 およびその回転軸の他の実施形態を示すものであ る。 第 1 1図は、 この発明の推進装置の、 回転体を 4基、 それぞれ支 持した支持体を、 正方形の角の位置に取り付けたものの斜視図であ る。 推進装置のシャーシ 6 4には、 電源であるバッテリ 6 5 と、 モ ータ 6 6が取り付けてある。 モータ 6 6が回転すると、 その回転は プ一リ 6 7 , ベルト 6 8 , プーリ 6 9へと減速して伝わり、 ブーリThe same can be said for the rotation about the rotation axis s, the rotation axis t, and the rotation axis u of the low-speed rotation, and the entire device turns around one axis, the straight line w. In other words, by adopting such a structure of the device, it is possible to reduce the number of rotation shafts for rotating the entire device to two in total, and to prevent a swing that reduces efficiency. FIG. 11 shows another embodiment of the number of rotating bodies, their respective positional relationships, low-speed rotation, and their rotating shafts. FIG. 11 is a perspective view of a propulsion device of the present invention in which four rotating bodies, each of which supports a rotating body, are mounted at the corners of a square. A battery 65 serving as a power supply and a motor 66 are attached to the chassis 64 of the propulsion device. When the motor 66 rotates, the rotation is transmitted to the pulley 67, belt 68, and pulley 69 at a reduced speed.
6 9を取り付けた支持体 7 0を低速で SI転する。 支持体 7 0は、 面 転体 7 1を支持しており、 回転体 7 1 は、 支持体 7 0に取り付けた、 モータ 7 2の回転が、 プーリ 7 3 , ベル ト 7 4 , プーリ 7 5へと増 速して伝わることにより、 高速で回転する。 装置はこのほかに同じ 構造の支持体によって支持された面転体 7 6 , 回転体 7 7 , 回転体The SI 70 is rotated at low speed on the support 70 on which 6 9 is attached. The support 70 supports the rolling element 71, and the rotating body 71 is mounted on the support 70, and the rotation of the motor 72 is controlled by pulleys 73, belts 74, and pulleys 75. The motor rotates at a high speed by transmitting at an increased speed. In addition, the device is a flat-body 7 6, a rotary body 7 7, and a rotary body supported by a support having the same structure.
7 8を有する。 Has 7 8
この推進装置が有するこれら 4個の高速で回転する回転体 7 1 , T 6 , 7 7 , 7 8の、 それらの回転軸に一致しない、 または平行で ない轴 (入力軸) を中心とする低速な西転は、 すべてスィ ツチ 7 9 によってそのタイ ミ ングと回転の方向が制御される。  The four high-speed rotating bodies 7 1, T 6, 7 7, 7 8 of this propulsion device do not coincide with or are not parallel to their rotation axes. Low speed around the (input shaft) The switch 79 controls the timing and the direction of rotation for all the westward turns.
さて、 この推進装置の支持体のそれぞれが第 1 1図の状態にあり、 装置の外側から見たときのそれぞれの画転体の面転方向 (以下、 面 転体の高速な回転の面転方向はすべて、 装置の外側から見たときの 方向とする) 力 回転体 7 1 と回転体 7 8 とが時計の方向に高速で 画転し、 画転体 7 6 と面転体 7 7 とは時計の逆方向に高速で回転し ているものとし、 スィ ッチ 7 9力く、 以下のスィ ツチの切り替えの行 程を一周期として行う ものとする。  Now, each of the supports of the propulsion device is in the state shown in Fig. 11, and the surface rolling direction of each image plate when viewed from the outside of the device (hereinafter referred to as the high speed rotation of the surface All directions are the directions as viewed from the outside of the device.) Force The rotating body 71 and the rotating body 78 rotate at high speed in the clockwise direction, and the rotating body 76 and the rotating body 77 Is rotating at a high speed in the reverse direction of the clock, and the switch is powerful, and the following switch switching process is performed as one cycle.
そのスィ ッチ切り替えの行程とは、 第 1行程は、 回転体 7 1を図 面上方から見て時計の方向に (以下、 画転体の低速な回転の酉転方 向は全て図面上方から見たときの方向とする) 1 8 0 ° 、 面転体 7 6を時計の逆方向に 1 8 0 0 、 それぞれ同時に回転する。 第 2行程 は、 上記画転の終了後、 面転体 7 7を時計の方向に 1 8 0 ° 、 回転 体 7 8を時計の逆方向に 1 8 0 ° 、 それぞれ同時に回転する。 第 3 行程は、 すべての回転体を同時に、 第 1行程、 第 2行程のときの逆 方向に、 それぞれ 1 8 0 ° 回転する。 以上の行程からなる周期であ る The switch switching process is as follows. In the first process, the rotating body 71 is viewed clockwise as viewed from above the drawing (hereinafter, the direction of low-speed rotation of the image printing body is all from above the drawing). see the direction when the) 1 8 0 °, Mententai 7 6 1 8 0 0 in the opposite direction of the watch, each rotate simultaneously. In the second step, after the end of the above image transfer, the surface rolling body 77 is rotated 180 ° clockwise. The body 78 rotates 180 ° in the opposite direction of the clock, each rotating simultaneously. In the third stroke, all the rotating bodies are simultaneously rotated by 180 ° in the opposite directions to those in the first and second strokes. A cycle consisting of the above steps
この場合の装置全体の作用について述べる。 まず、 第 1行程にお いて、 回転体 7 1を時計の方向に 1 8 0 0 回転すると、 高速で回転 する回転軸は、 その空間内における角度が変化するので歳差運動を 生ずる。 また、 回転体 7 6を時計の逆方向に 1 8 0 ° 回転すると、 全く同様に歳差運動を生ずる。 面転体 7 1 と回転体 7 6 とにそれぞ れ生ずる歳差運動の力は、 その双方を結んだ直線を回転軸として、 装置全体を図面手前から見て、 時計の方向に回転させる。 この回転 軸以外の軸を中心として装置全体を回転させる力は、 内力となって、 外へは現れない。 The operation of the entire apparatus in this case will be described. First, have you the first step, 1 8 0 0 rotates in the direction of the rotary member 71 clockwise, the rotary shaft that rotates at high speed, causing precession the angle in that space is changed. Further, when the rotating body 76 is rotated 180 ° in the reverse direction of the clock, precession occurs in the same manner. The force of the precession generated in each of the flat body 71 and the rotating body 76 rotates the entire device in a clockwise direction with the straight line connecting both of them as a rotation axis as viewed from the front of the drawing. The force that rotates the entire device about an axis other than the rotation axis is an internal force and does not appear outside.
次いで、 第 2行程において、 回転体 7 7 の時計方向への、 回転体 7 8の時計の逆方向への、 同時の 1 8 0 ° の面転によっても、 双方 の回転体は、 それぞれ歳差運動を生ずる。 それぞれに生ずる歳差運 動の力は、 回転体 7 7 と回転体 7 8 とを結んだ直線を回転軸として、 装置全体を図面手前から見て、 時計の逆方向に面転させる。 この回 転軸以外の軸を中心として装置全体を回転させる力は、 内力となつ て、 外へは現れない。  Next, in the second stroke, both the rotating bodies are precessed by the simultaneous 180 ° rotation of the rotating body 77 in the clockwise direction and the rotating body 780 in the opposite direction of the clock, respectively. Causes movement. The force of the precession generated in each case turns around the straight line connecting the rotating body 77 and the rotating body 78 in the direction opposite to the clock when the entire apparatus is viewed from the front of the drawing. The force that rotates the entire device about an axis other than the rotation axis is an internal force and does not appear outside.
さらに、 第 3行程において、 すべての面転体を同時に回転した場 合に、 各回転体に生ずる歳差運動の力は、 内力となって、 外へは現 れないので、 装置は動かない。  Furthermore, in the third step, when all the surface rolling bodies are rotated at the same time, the force of the precession generated in each of the rotating bodies becomes an internal force and does not appear outside, so the device does not move.
以上の一周期が終了すると、 推進装置はその異なる回転軸 (出力 軸) を中心として、 時をずら して回転運動をし、 そのそれぞれの回 転は、 装置の中心を上方に持ち上げるものである。 その結果、 装置 は上方に平行移動したことになる。 そして、 以下第 2、 第 3、 ある いばそれ以降のどの周期においても、 同様に平行に移動することが できる。 At the end of one cycle above, the propulsion device will rotate around its different rotation axis (output shaft) at different times, with each rotation lifting the center of the device upward. . As a result, the device has been translated upward. And there are the second, third, In any subsequent cycle, it can move in parallel as well.
なお、 ここで述べたスィ ツチの切り替えの一周期の行程は、 必ず しもこのとおりのものでなく ともよい。 例えば、 この周期の次に回 転体 7 1 と回転体 7 8 との同時の低速な回転を、 その次に回転体 7 6 と面転体 7 7 との同時な低速な回転を行ってもよい。 さらにまた、 ここでは回転体の低速な回転は、 互いに隣接するもの同士を同時に 回転させたが、 回転体の個数が 5個を超える推進装置にあっては、 互いに隣接しない、 例えば中間に面転体を 1偭以上をおいて、 その 左右の回転体に同時に低速な回転を与えても同様の作用が得られる。 ただし、 同時に低速で回転させる 2個の面転体の、 回転体同士を結 ぶ直線が、 面転体を配した正多角形の中心を通るものにあっては、 同様の作用は得られない。 なぜならば、 その場合の装置全体の回転 によっては平行な移動は得られないからである。 第 1 2図は、 面転体の個数、 およびそのそれぞれの位置関係、 お よび低速な面転、 および入力軸の他の実施形態を、 この発明の推進 装置の主要部分、 すなわち面転体と主軸と入力軸とを抽出して示し たものである。  It should be noted that the process of one cycle of switch switching described here does not necessarily have to be as described above. For example, after this cycle, the low-speed rotation of the rotating body 71 and the rotating body 78 simultaneously and then the low-speed rotation of the rotating body 76 and the flat body 77 simultaneously Good. Furthermore, here, the low-speed rotation of the rotating body is such that adjacent ones are simultaneously rotated.However, in the case of a propulsion device having more than five rotating bodies, they are not adjacent to each other. The same effect can be obtained even if the left and right rotators are given low speed rotation at the same time with the body at least 1 mm apart. However, the same effect cannot be obtained if the straight line connecting the two rotating bodies, which rotate at low speed simultaneously, passes through the center of the regular polygon on which the rotating bodies are arranged. . This is because parallel movement cannot be obtained depending on the rotation of the entire apparatus in that case. FIG. 12 is a diagram showing the number of surface rolling elements, their respective positional relationships, low-speed surface rolling, and another embodiment of the input shaft, as a main part of the propulsion device of the present invention, The main axis and the input axis are extracted and shown.
第 1 2図に示した推進装置は、 高速で画転する 3偭の回転体、 す なわち回転軸 A Aを中心として高速で回転する画転体 8 0 と、 回転 軸 A Bを中心として高速で回転する画転体 8 1 と、 回転軸 A Cを中 心として高速で面転する面転体 8 2 とを有する。 そして、 それぞれ の面転体 8 1 〜 8 3を低速で画転する回転軸は、 3個の回転体 8 1 〜 8 3を配した正三角形の面に平行なものであり、 面転体 8 0 は面 転軸 B Aを中心として低速な回転をし、 以下同様に、 面転体 8 1 は IS転軸 B Bを、 画転体 8 2 は画転軸 B Cを、 それぞれ中心として低 速な回転をする。 The propulsion device shown in Fig. 12 has a 3 偭 rotating body that rotates at high speed, i.e., a rotating body 80 that rotates at high speed around the rotation axis AA, and a high-speed rotation around the rotation axis AB. It has a rotating image bearing member 81 and a surface rotating member 82 rotating at high speed around the rotation axis AC. The rotation axis for rotating each of the rotating bodies 81 to 83 at a low speed is parallel to the surface of an equilateral triangle in which the three rotating bodies 81 to 83 are arranged. 0 rotates at a low speed around the plane rotation axis BA, and thereafter, similarly, the plane rotation body 8 1 has the IS rotation axis BB, the image plane 8 2 has the image rotation axis BC, and the like. Make a quick rotation.
つぎに、 このように構成された推進装置のスィ ツチの切り替えの 周期とその作用について説明する。  Next, the switching cycle of the switch of the propulsion device thus configured and its operation will be described.
この推進装置は、 3個の面転体 8 1 〜 8 3 の回転軸が、 全て正三 角形の面に平行である場合を示している。 そして、 その高速の回転 の方向は、 装置の外側から見て、 回転体 8 0のみが時計の逆方向に 他のすべては時計の方向に回転しているものとする。 そして、 低速 な回転の方向は、 2個の同時に低速な回転をするその回転軸の交点 からそれぞれの回転体を見たときの方向として表す。  This propulsion device shows a case where the rotation axes of the three surface rolling bodies 81 to 83 are all parallel to the surface of a regular triangle. The direction of the high-speed rotation is that only the rotator 80 is rotating in the opposite direction to the clock when viewed from the outside of the device, and all other components are rotating in the clockwise direction. Then, the direction of the low-speed rotation is expressed as a direction when each rotating body is viewed from the intersection of the two rotation axes simultaneously rotating at a low speed.
第 1行程として、 面転体 8 0を、 回転軸 B Aを中心として時計の 方向に 1 8 0 ° 、 回転体 8 1 を、 回転軸 B Bを中心として時計の逆 方向に 1 8 0 ° 、 同時に回転する。 すると歳差運動の力によつて、 装置は直線 C Aを回転軸として回転する。  As a first step, the plane rolling body 80, 180 ° in the clockwise direction around the rotation axis BA, the rotating body 81, 180 ° in the clockwise direction around the rotation axis BB, simultaneously Rotate. Then, the device rotates about the straight line C A as a rotation axis by the force of precession.
前記行程の終了後、 第 2行程として、 面転体 8 1 を、 回転軸 B B を中心として時計の方向に 1 8 0 ° 、 回転体 8 2を回転軸 B Cを中 心として時計の逆の方向に 1 8 0。 、 同時に回転する。 すると歳差 運動の力によって、 装置は直線 C Bを回転軸として、 面転する。  After the end of the above-mentioned process, as a second process, the surface rolling body 81 is rotated 180 ° clockwise around the rotation axis BB, and the rotation body 82 is rotated counterclockwise around the rotation axis BC. To 180. , Rotate at the same time. Then, due to the force of the precession, the device turns around the straight line CB as the rotation axis.
さ らに、 前記行程の終了後、 第 3行程として、 回転体 8 2を、 回 転軸 B Cを中心として時計の方向に 1 8 0 ° 、 回転体 8 0を、 回転 軸 B Aを中心として時計の逆の方向に 1 8 0 ° 、 同時に回転する。 すると歳差運動の力によって、 装置は直線 C Cを回転軸として、 面 転する。  Further, after the end of the stroke, as a third stroke, the rotating body 82 is rotated clockwise around the rotation axis BC by 180 °, the rotating body 80 is rotated clockwise around the rotation axis BA. 180 ° in the opposite direction, rotating simultaneously. Then, due to the force of precession, the device turns around the straight line C C as the rotation axis.
以上の 3行程が行われ、 一周期が終了すると、 装置はその異なる 回転軸を中心として、 時をずらして回転運動をし、 そのそれぞれの 回転の全ては、 装置の中心を図の手前 (もしもこの図を、 装置を真 上から眺めたものと考えるならば、 上方) に持ち上げるものである。 その結果、 装置は、 上方に平行移動したことになる。 そして、 以下 第 2、 第 3、 あるいはそれ以降のどの周期においても、 同様に平行 に移動することができる。 When the above three steps have been completed and one cycle is completed, the device makes a rotational movement around its different rotation axis with a time lag, and all of the rotations of the device are made with the center of the device in front of the figure. If you think of this diagram as looking at the device from directly above, you will lift it upwards. As a result, the device has been translated upward. And In the second, third, or any subsequent cycle, it can move in parallel as well.
また、 低速な西転の回転軸をこのようなものとすると、 装置上の 低速な回転の回転方向は、 逆転する必要がないうえに、 すべての面 転体を同時に逆方商に回転させる必要もなく効率的である。  Also, if the rotation axis of the low-speed westward rotation is like this, the rotation direction of the low-speed rotation on the device does not need to be reversed, and it is necessary to simultaneously rotate all the gyroplanes in the opposite quotient. Not so efficient.
ただし、 瞵接する面転体 2個を 1組として同時に面転させる場合 に限っていえば、 回転体の個数は 3個のときが最も効率がよ く、 個 数が増加するほど効率は低下する。 それは、 装置が面転する回転軸 と、 面転体に生ずる歳差運動の力それ自体の回転軸との角度の開き が次第に大き く なるからである。 ちなみに、 その角度の開きは、 3 個の場合で 3 0 ° , 4個の場合 4 5 ° , 5個の場合 5 4 ° , 6個の 場合 6 0 ° である。 第 1 3図は、 高速で面転する画転体の駆動に関する他の実施形態 を示したものである。 この例の回転体は、 シャフ ト 8 5の周囲を回 転する原動機 8 3およびフライホイール 8 4 とから構成されている t このように回転体自体が原動機の一部、 または全部をなしていれば、 装置全体の重量を軽減することができ、 そのことは、 装置の回転角 度の増大をもたらすので、 効率的である。 第 1 4図は、 入力軸に関する他の実施形態を示すものである。 こ の例の画転体 8 6 は、 主軸となる回転軸 8 7 と、 入力軸となる面転 軸 8 8 とを直交するように配置したものである。 歳差運動の力は、 高速で画転する面転体 8 6の面転軸 8 7 の空間内における角度を変 更することによって生ずるので、 高速の回転体 8 6の回転軸 8 7 と 直交する低速な回転の回転軸 8 8のときに最も効率的に現れ、 装置 全体に面転する力を及ぼす。 第 1 5図は、 回転体および入力軸に関する他の実施形態を示すも のである。 高速で回転する回転体 8 9を、 その回転軸 9 0 と一致し ないまたは平行でない、 低速な回転の回転軸を舍む境界面 9 1 によ つて上下に分割した場合に、 その上下双方で高速で回転する回転体 8 9の角運動量が等しいものである。 低速な回転の回転軸をこのよ うなものとすることで、 装置の無用の振動、 揺れを防ぐことができ る。 その最も簡単な構造は、 均質な材料で、 上下対称な形の回転体However, the efficiency is best when the number of rotating bodies is three, and the efficiency decreases as the number of rotating bodies increases, provided that only two adjacent rolling bodies are rolled simultaneously as a set. This is because the angle between the rotation axis on which the device rolls and the rotation axis of the precession force generated on the surface rolling body becomes gradually larger. By the way, the angle difference is 30 ° for 3 pieces, 45 ° for 4 pieces, 54 ° for 5 pieces, and 60 ° for 6 pieces. FIG. 13 shows another embodiment relating to the drive of the image transfer body which is turned at high speed. Rotation of this example, if form t Thus rotator itself is constructed around the shafts bets 8 5 from the engine 8 3 and the flywheel 8 4 which is rotating part of the motor, or all For example, the weight of the entire device can be reduced, which leads to an increase in the rotation angle of the device, which is efficient. FIG. 14 shows another embodiment relating to the input shaft. In the image transfer body 86 of this example, a rotation shaft 87 serving as a main shaft and a plane rotation shaft 88 serving as an input shaft are arranged so as to be orthogonal to each other. The force of the precession is generated by changing the angle in the space of the plane rotation axis 87 of the high speed rotating body 86, and is orthogonal to the rotating axis 87 of the high speed rotating body 86. It appears most efficiently when the rotating shaft 8 rotates slowly and exerts a rolling force on the entire device. FIG. 15 shows another embodiment relating to the rotating body and the input shaft. When the rotating body 89 rotating at high speed is divided into upper and lower parts by the boundary surface 91 which does not coincide with or is not parallel to the rotating axis 90 and has a rotating axis of low-speed rotation, The rotating bodies 89 rotating at high speed have the same angular momentum. The use of such a low-speed rotating shaft can prevent unnecessary vibration and shaking of the device. The simplest structure is made of a homogeneous material and a vertically symmetric rotating body
8 9を作製し、 その重心 9 2を通る軸を、 低速な回転の回転軸とす る と fcる。 第 1 6図は、 回転体の支持に関する他の実施形態を示すものであ る。 高速で回転する回転体 9 3 は、 放置すればその回転軸 9 4を空 間内において一定に保とう とする。 その回転体 9 3 に対し、 強制的 に空間内における角度を変更すると、 その軸受けの部分には大きな 機械的負担がかかる。 その負担をより大きな部分に分散することに よって、 装置全体の耐久性を増すことが可能である。 そのために、 第 1 6図のように、 高速で回転する回転体 9 3の外周で、 支持体 9 5を用いて支持することが効果的である。 第 1 7図は、 回転体の支持および低速な回転をする構造に関する 他の実施形態を示すもので、 回転体の回転軸を含む面での断面図で ある。 面転体 9 6を支持した軸受け 9 7が、 少な く とも 2個の凸部Fc is made, and the axis passing through the center of gravity 92 is set as the rotation axis of low-speed rotation. FIG. 16 shows another embodiment relating to the support of the rotating body. If the rotating body 93 rotating at high speed is left as it is, it tries to keep its rotating shaft 94 constant in the space. If the angle of the rotating body 93 in the space is forcibly changed, a large mechanical load is applied to the bearing portion. By distributing the burden to a larger part, it is possible to increase the durability of the entire device. Therefore, as shown in FIG. 16, it is effective to use a support 95 around the outer periphery of the rotating body 93 rotating at high speed. FIG. 17 shows another embodiment of the structure for supporting the rotating body and rotating at a low speed, and is a cross-sectional view of a plane including the rotating shaft of the rotating body. The bearing 97 supporting the rolling element 96 has at least two projections
9 8を有し、 その凸部 9 8力^ 円状の溝 9 9内を移動することによ つて、 低速な回転をする。 第 1 8図は、 第 1 7図から円状の溝 9 9を省略し、 その構内を移 動する凸部 9 8 の軌跡 1 0 0を示した斜視図である。 低速な回転を このような構造によって、 高速で画転する面転体 9 6 に与えるよう にすると、 低速な面転を画転体 9 6に与えるために、 原動機による 面転運動をシャフ トをもって伝達する場合に、 自在綞手との組み合 わせによって、 シャフ トの回転軸と異なる低速な回転の回転軸を簡 単な構造で設定することができる。 第 1 9図は、 画転体の支持および低速な回転をする構造に関する 他の実施形態を示すもので、 画転体の回転軸を舍む面での断面図で ある。 軸受け 9 7 は、 円状の凹部 1 0 1を有し、 案内突起 1 0 2に よってその動きを規制し、 低速な回転をする。 第 2 0図は、 低速な回転をする構造に関する他の実施形態を支持 体または軸受けの描く軌跡を抽出して示した斜視図である。 円伏の 溝が、 途中で弦を共有する 2つの半円づつに曲がったものであり、 かつ、 もう 1つの同様に曲がった溝が、 互いに他の円状の溝の曲が つた結果できあがった半円状の溝と組み合わせると、 2つの不連続 な円状の溝を形成する位置に組み合わせ、 その溝内を 2つの凸部を 有する支持体または軸受けの一方の凸部 1 0 3がー方の溝内を、 他 方の凸部 1 0 4が他方の溝内を移動する場合の、 それぞれの凸部 1 0 3 , 1 0 4の軌跡を示すのが軌跡 1 0 5、 および軌跡 1 0 6であ る。 低速な面転をする構造をこのようなものとすることによって、 支持体または軸受けが、 半回転するたびにその回転軸を変更するこ とが、 簡単な構造で可能となる。 回転軸の変更は、 第 1 2図に関す る説明末尾で述べた、 面転体個数の増加に伴う効率低下を防ぐ、 有 効な構造である。 低速な回転の面転軸を、 このような構造をもって 自由に設定することによって、 装置が回転する回転軸と、 面転体に 生ずる歳差運動の力それ自体の回転軸との角度の開きを小さ くする こともできる。 産業上の利用可能性 A low-speed rotation is achieved by moving the projection 98 in the circular groove 99. FIG. 18 is a perspective view showing the locus 100 of the convex portion 98 moving in the premises by omitting the circular groove 99 from FIG. Slow rotation If such a structure is used to apply a high-speed surface rolling to the surface rolling body 96, a low-speed surface rolling is applied to the image rolling body 96. In combination with the universal hand, a low-speed rotation axis different from the shaft rotation axis can be set with a simple structure. FIG. 19 is a cross-sectional view of another embodiment of the structure for supporting the image-forming body and rotating at a low speed, taken along a plane covering the rotation axis of the image-forming body. The bearing 97 has a circular concave portion 101, and its movement is regulated by the guide protrusion 102, and the bearing 97 rotates at a low speed. FIG. 20 is a perspective view showing another embodiment relating to a structure that rotates at a low speed by extracting a trajectory drawn by a support or a bearing. An indented groove is bent in two semicircles that share a string along the way, and another similarly bent groove is formed as a result of the other circular grooves being bent together. When combined with a semi-circular groove, it is combined at a position where two discontinuous circular grooves are formed, and one of the convex portions 103 of the support or bearing having two convex portions is formed in the groove. The locus of each of the convex portions 103 and 104 when the other convex portion 104 moves in the other groove is shown by the locus 105 and the locus 10. Six. By adopting such a structure that performs a low-speed rolling, it is possible to change the rotation axis every time the support or the bearing makes a half turn with a simple structure. The change of the rotation axis is an effective structure that prevents the decrease in efficiency due to the increase in the number of surface rolling bodies, as described at the end of the description related to FIG. By freely setting the surface rotation axis of low-speed rotation with such a structure, the angle between the rotation axis of the device rotating and the rotation axis of the precession force generated in the surface rolling body itself can be increased. Make smaller You can also. Industrial applicability
以上のように、 この発明の推進装置は、 地上や水上での輸送機械 の移動や、 または水中, 空中もしく は宇宙空間で輸送機械の移動や 姿勢制御、 さらに、 ロボッ ト等の産業機械の可動部分の移動または 姿勢制御などに利用することができる。  As described above, the propulsion device of the present invention can be used to move a transport machine on the ground or on the water, or to control the movement and attitude of the transport machine in water, in the air or in space, and to control industrial machines such as robots It can be used for moving or controlling the position of a movable part.

Claims

請求 の 筆 囲 Requested brush pen
1. 歳差運動を利用して推進する推進装置であって、 主軸を中心 にして回転自在に支持された剛性の高い面転体と, 前記主軸を中 心にして前記面転体を高速で回転駆動する高速駆動手段と, 前記 面転体の主軸に一致しないまたは平行でない少なく とも 2本の入 力軸と, 前記入力軸を中心にして前記回転体を前記高速駆動手段 の面転より も低速で回転駆動する低速駆動手段とから構成した推 1. A propulsion device for propulsion using precession, comprising a rigid rigid body that is rotatably supported around a main shaft and a high speed rigid body with the main shaft as a center. High-speed driving means for rotating and driving, at least two input shafts which are not coincident with or parallel to the main axis of the surface rolling body, and Low-speed driving means that rotates at low speed
2. 歳差運動を利用して推進する推進装置であって、 主軸を中心 にして面転自在に支持された剛性の高い少なく とも 2個の西転体 と, 前記各主軸を中心にして前記各回転体を高速で回転駆動する 高速駆動手段と, 前記各回転体に少なく とも 1本づっ設けられ、 その主軸に一致しないまたは平行でない入力軸と, 前記各入力軸 を中心にして前記各面転体を前記高速駆動手段の回転よりも低速 で回転駆動する低速駆動手段と, 前記低速駆動手段からの回転力 が前記各入力軸の面転方向を交互にまたは同時に変更するように 制御する制御手段とから構成した推進装置。 2. A propulsion device for propulsion using precession motion, comprising at least two highly rigid gyroscopic bodies which are supported so as to be able to roll around the main shaft, and High-speed driving means for rotating each rotating body at a high speed; at least one input shaft provided at each rotating body and not coincident with or parallel to the main axis thereof; A low-speed driving means for rotating the rolling element at a lower speed than the rotation of the high-speed driving means; and a control for controlling the rotational force from the low-speed driving means to alternately or simultaneously change the plane rotation directions of the input shafts. And a propulsion device comprising:
3. 前記少なく とも 2つの回転体を複数組設ける場合に、 前記各 面転体の主軸と前記各回転体の入力軸との双方に対して直交する 直線が、 前記各回転体の正逆両方向への低速な回転の際に、 一致 する局面があるように連続して配置したことを特徴とする請求の 範囲第 2項記載の推進装置。  3. When a plurality of sets of the at least two rotating bodies are provided, a straight line orthogonal to both the main axis of each of the surface rolling bodies and the input axis of each of the rotating bodies is in both forward and reverse directions of each of the rotating bodies. 3. The propulsion device according to claim 2, wherein the propulsion device is arranged continuously so that there is a coincident phase when the motor rotates at a low speed.
4. 歳差運動を利用して推進する推進装置であって、 主軸を中心 にして画転自在に支持された剛性の高い画転体と, 前記主軸を中 心にして前記回転体を高速で画転駆動する高速駆動手段と, 前記 画転体の主軸に一致しないまたは平行でない第 1 の入力軸と, 前 記第 1 の入力軸に平行な第 2 の入力軸と, 前記各入力軸を中心と して前記高速駆動手段の回転より も低速で面転駆動する低速駆動 手段と, 前記低速駆動手段からの回転力が前記回転体を前記第 1 の入力軸を中心に第 1 の方向に回転させ、 前記第 2の入力軸を中 心に第 2の方向に回転させ、 前記第 1および第 2の入力軸を回転 させることなく元の位置に復帰する制御手段とから構成した推進 4. A propulsion device for propulsion using precession, wherein a highly rigid image body supported rotatably around the main shaft and the rotating body at a high speed around the main shaft. High-speed driving means for image driving; a first input shaft that is not coincident with or parallel to the main axis of the image printing body; A second input shaft parallel to the first input shaft, low-speed driving means for carrying out surface rolling around each of the input shafts at a speed lower than rotation of the high-speed driving means, and Rotating force rotates the rotator in a first direction around the first input shaft, rotates the rotator in a second direction around the second input shaft, and outputs the first and second inputs. Control means that returns to the original position without rotating the shaft
5. 前記回転体を複数個設ける場合に、 前記各回転体の主軸と前 記第 1 の入力軸の双方に対して直交する直線、 および、 前記主軸 と前記第 2の入力軸との双方に対して直交する直線が、 前記各回 転体の正逆両方向への低速な回転をする際に、 一致する局面があ るように配置したことを特徴とする請求の範囲第 4項記載の推進 5. When a plurality of the rotating bodies are provided, a straight line orthogonal to both the main axis of each of the rotating bodies and the first input axis, and both the main axis and the second input axis. 5. The propulsion according to claim 4, wherein a straight line perpendicular to the rotating body is arranged so that there is a coincident phase when the respective rotating bodies rotate at low speed in both forward and reverse directions.
6. 歳差運動を利用して推進する推進装置であって、 主軸を中心 にして回転自在に支持され、 剛性が高く、 正 n 4 角形 ( n 4 は 4 以上の偶数) の各頂点の位置に配置された ii 4 個の回転体と, 前 記各主軸を中心にして前記各回転体を高速で回転駆動する高速駆 動手段と, 前記回転体同士を結ぶ直線が前記正 n 4 角形の中心を 通らない 2個を 1組として、 その 1組の回転体同士を結ぶ前記正 n 4 角形の中心を通らない、 前記直線に一致しないまたは平行で ない、 かつ、 前記回転体の主軸と一致しないまたは平行でない、 かつ、 前記正 n 4 角形の面に直交する入力軸と, 前記入力軸を中 心として前記回転体を前記高速駆動手段の面転より も低速で面転 する低速駆動手段と, 前記 1組の回転体を前記入力軸を中心にし て同時に回転し、 次いで、 前記条件と同一な他の 1組の画転体を 同時に回転し、 以下、 前記条件と同一なさ らに他の 1組の回転体 の回転を繰り返したのち、 前記全回転体を同時に逆方向に回転す るように前記低速駆動手段を制御する制御手段とから構成した推 6. A propulsion apparatus for propulsion by using the precession is rotatably supported around the main shaft, stiffness is high, the position of each apex of a regular n 4 square (n 4 is an even number of 4 or more) and ii 4 pieces of rotating body disposed in a high-speed drive motion means for rotating the pre-Symbol each rotary body around the respective spindle at a high speed, the straight line connecting the rotating bodies of the positive n 4 square Two sets that do not pass through the center are regarded as one set, do not pass through the center of the regular n-tetragon connecting the pair of rotating bodies, do not coincide with the straight line or are not parallel, and coincide with the main axis of the rotating body not city or parallel, and an input shaft perpendicular to the positive n 4 square surface, and low-speed driving means for surface rolling slower than Menten of the high-speed drive means the rotating body as centered on the input shaft , The set of rotating bodies are simultaneously rotated about the input shaft, The other one set of image rotating bodies same as the above condition is simultaneously rotated, and thereafter, the rotation of the other one set of rotating body is repeated under the same condition as above, and then the all the rotating bodies are simultaneously rotated in opposite directions. Rotate Control means for controlling the low-speed drive means as described above.
7. 歳差運動を利用して推進する推進装置であって、 主軸を中心 にして面転自在に支持され、 剛性が高く、 正 n 3 角形 ( n 3 は 3 以上の整数) の各頂点の位置に配置された n 3 個の面転体と, 前 記各主軸を中心にして前記各面転体を高速で回転駆動する高速駆 動手段と, 前記面転体同士を結ぶ直線が前記正 n 3 角形の中心を 通らない 2個を 1組として、 その 1組の回転体同士を結ぶ前記正 n 3 角形の中心を通らない、 前記直線に一致しないまたは平行で ない、 かつ、 前記面転体の主軸と一致しないまたは平行でない、 かつ、 前記正 n 3 角形の面に平行な入力軸と, 前記入力軸を中心 として前記回転体を前記高速駆動手段の回転より も低速で回転す る低速駆動手段と, 前記 1組の面転体を前記入力軸を中心にして 同時に回転し、 次いで、 前記条件と同一な、 前記 1組のうちの 1 個を舍むかまたは含まない他の 1組を同時に面転し、 以下、 前記 条件と同一なさらに他の 1組の回転体の面転を繰り返すように前 記低速駆動手段を制御する制御手段とから構成した推進装置。7. A propulsion apparatus for propulsion by using the precession, are Menten rotatably supported around the main shaft, stiffness is high, positive n 3 triangle of each vertex of the (n 3 is an integer of 3 or more) N three surface rolling elements arranged at the position, high-speed driving means for rotating each of the surface rolling elements at a high speed around each of the spindles, and a straight line connecting the surface rolling elements with each other. n 3 rectangular two not pass through the center of one set, the not through a positive n 3 triangular central connecting the set of rotary bodies, not to do or parallel match the straight line, and wherein the surface rolling body not spindle does not match or parallel, and slow the positive n 3 triangular input shaft parallel to the plane, it rotates the rotary member about said input shaft at a lower speed than the rotation of the high-speed drive means Driving means, and simultaneously rotating the pair of surface rolling bodies around the input shaft; Another set of the same set, which does not include or include one of the sets, is simultaneously turned, and thereafter, another set of rotating bodies which is the same as the above conditions is repeatedly turned. The propulsion device comprises the control means for controlling the low-speed drive means as described above.
8. 前記回転体は、 その回転体を駆動する原動機の一部または全 部を成して、 高速で面転することを特徴とする請求の範囲第 1項 または第 2項または第 3項または第 4項または第 5項または第 6 項または第 7項記載の推進装置。 8. The rotating body according to claim 1, wherein the rotating body forms a part or the whole of a motor that drives the rotating body, and turns over at high speed. Propulsion device according to paragraph 4 or 5 or 6 or 7.
9. 前記主軸は、 前記入力軸と直交することを特徴とする請求の 範囲第 1項または第 2項または第 3項または第 4項または第 5項 または第 6項または第 7項記載の推進装置。  9. The propulsion according to claim 1, wherein the main shaft is orthogonal to the input shaft. 9. The propulsion according to claim 1 or 2, wherein the main shaft is orthogonal to the input shaft. apparatus.
1 0. 前記入力軸を舍む面を境界面として、 前記面転体を分割した 場合に、 その双方の角運動量が等しいことを特徴とする請求の範 囲第 1項または第 2項または第 3項または第 4項または第 5項ま たは第 6項または第 Ί項記載の推進装置。10. The method according to claim 1, wherein when the surface rolling body is divided by using a plane covering the input shaft as a boundary surface, the two angular momentums are equal to each other. 3 or 4 or 5 Or the propulsion device according to paragraph 6 or Ί.
1. 前記回転体は、 その外周を支持体で支えることを特徴とする 請求の範囲第 1項または第 2項または第 3項または第 4項または 第 5項または第 6項または第 7項記載の推進装置。 1. The rotating body is supported on its outer periphery by a supporting body. 9. The method according to claim 1, wherein the rotating body is supported by a supporting body. Propulsion device.
2. 前記入力軸は、 低速な回転の伝達に用いられる回転運動の回 転軸と異なる軸に設定する支持構造を有することを特徴とする請 求の範囲第 1項または第 2項または第 3項または第 6項または第 7項記載の推進装置。  2. The claim as claimed in claim 1, wherein the input shaft has a support structure that is set on a shaft different from a rotation shaft of a rotary motion used for low-speed rotation transmission. Propulsion device according to paragraph or paragraph 6 or 7.
3. 前記支持構造は、 前記回転体の主軸を受ける軸受けまたは支 持体に設けられた少なく とも 2個の凸部が、 円状の案内溝に案内 されて移動するように構成したことを特徴とする請求の範囲第 1 2項記載の推進装置。  3. The support structure is characterized in that at least two projections provided on a bearing or a support for receiving a main shaft of the rotating body are guided by a circular guide groove and move. The propulsion device according to claim 12, wherein
4. 前記支持構造は、 前記案内溝が、 途中で弦を共有する 2つの 半円づつに曲がったものであり、 かつ、 もう 1 つの同様に曲がつ た溝が、 互いに他の円状の溝の曲がった結果できあがった半円状 の溝と組み合わせると、 2つの不連続な円状の溝を形成する位置 に組み合わせ、 前記 2個の凸部を有するものである軸受けまたは 支持体の、 一方の凸部が一方の溝内を、 他方の凸部が他方の溝内 を移動することによって、 前記軸受けまたは支持体が半面転する たびにその回転軸が変更するように構成したことを特徴とする請 求の範囲第 1 3項記載の推進装置。  4. In the support structure, the guide groove is bent in two semicircles that share a string in the middle, and another similarly bent groove is formed in another circular shape. When combined with a semi-circular groove formed as a result of bending of the groove, it is combined at a position where two discontinuous circular grooves are formed, and one of the bearing or the support having the two convex portions, By moving the protrusion in one groove and the other protrusion in the other groove, the rotation axis changes each time the bearing or the support rotates half-plane. The propulsion device according to paragraph 13 of the claim.
5. 前記支持構造は、 前記回転体の主軸を受ける軸受けまたは支 持体に設られた円状の溝部が、 少なく とも 3本の案内突起に沿つ て移動するように構成したことを特徴とする請求の範囲第 1 2項 記載の推進装置。 5. The support structure is characterized in that a circular groove provided in a bearing or a support for receiving a main shaft of the rotating body moves along at least three guide protrusions. The propulsion device according to claim 12, wherein
PCT/JP1989/001131 1988-11-10 1989-11-01 Propelling apparatus WO1990005242A1 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP28241688 1988-11-10
JP28241588 1988-11-10
JP63/282314 1988-11-10
JP63/282415 1988-11-10
JP28241488 1988-11-10
JP63/282416 1988-11-10
JP196289 1989-01-10
JP1/1962 1989-01-10

Publications (1)

Publication Number Publication Date
WO1990005242A1 true WO1990005242A1 (en) 1990-05-17

Family

ID=27453516

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1989/001131 WO1990005242A1 (en) 1988-11-10 1989-11-01 Propelling apparatus

Country Status (2)

Country Link
AU (1) AU4505989A (en)
WO (1) WO1990005242A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008153397A1 (en) * 2007-06-15 2008-12-18 Kei International N.V. Method and device for generating a force vector
JP2010540830A (en) * 2007-10-08 2010-12-24 アストリウム・エス・エー・エス Device for powering rocket engine pumps using inertial disks
FR3088385A1 (en) * 2018-11-09 2020-05-15 Yoann Le Paire PROPELLER DEVICE

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2293608A1 (en) * 1974-12-03 1976-07-02 Siritzky Alain Gyroscopic motor for propulsion - has rotating primary shaft with transverse shafts for rotors
DE2721153A1 (en) * 1977-05-11 1978-11-30 Pompe Heinz Juergen Dipl Ing Vehicle drive motor - uses two contra-rotating rotation-symmetrical bodies, producing centrifugal forces
JPS598599A (en) * 1982-07-06 1984-01-17 ジエフレイ・コリン・ナツセル Propelling device by gyroscope and operating body into which the device is incorporated
JPS6056182A (en) * 1983-09-07 1985-04-01 Ono Junichi Propulsion force generating method and system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2293608A1 (en) * 1974-12-03 1976-07-02 Siritzky Alain Gyroscopic motor for propulsion - has rotating primary shaft with transverse shafts for rotors
DE2721153A1 (en) * 1977-05-11 1978-11-30 Pompe Heinz Juergen Dipl Ing Vehicle drive motor - uses two contra-rotating rotation-symmetrical bodies, producing centrifugal forces
JPS598599A (en) * 1982-07-06 1984-01-17 ジエフレイ・コリン・ナツセル Propelling device by gyroscope and operating body into which the device is incorporated
JPS6056182A (en) * 1983-09-07 1985-04-01 Ono Junichi Propulsion force generating method and system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008153397A1 (en) * 2007-06-15 2008-12-18 Kei International N.V. Method and device for generating a force vector
EP2017475A1 (en) * 2007-06-15 2009-01-21 Kei International N.V. Method and device for generating a force vector
JP2010540830A (en) * 2007-10-08 2010-12-24 アストリウム・エス・エー・エス Device for powering rocket engine pumps using inertial disks
FR3088385A1 (en) * 2018-11-09 2020-05-15 Yoann Le Paire PROPELLER DEVICE

Also Published As

Publication number Publication date
AU4505989A (en) 1990-05-28

Similar Documents

Publication Publication Date Title
US6719244B1 (en) VTOL aircraft control using opposed tilting of its dual propellers or fans
CN107161309B (en) A kind of deflector type vector propeller and submarine navigation device
CN105216999B (en) Freedom degree parallel connection type vector propulsion device and the underwater robot with the device
CN105539831A (en) Amphibious power propulsion device suitable for sea and air and multi-axis aircraft
WO1998031952A1 (en) Dual-drive three-speed differential transmission for gimbal actuator
CN108750144B (en) Three-dimensional coordinated type rope system satellite
WO2003086857A8 (en) Aerodynamic lifting-thrusting propulsion device
US20100307290A1 (en) Apparatus, system and method for gyroscopic propulsion and/or steering
CN110605943A (en) Bionic amphibious propeller
US20030047015A1 (en) Centrifugal propulsion system
WO1990005242A1 (en) Propelling apparatus
US6860166B2 (en) Torque induced propulsion system
US8757316B2 (en) Trochoid drive system
US8181907B2 (en) Wing-drive mechanism and vehicle employing same
US7008276B1 (en) Propulsion system
US20050247145A1 (en) Three-dimension motive machine
WO2005035363A1 (en) A thruster for propelling and directing a vehicle without interacting with environment and method for making the same
US11260962B1 (en) Centrifugal-force-propulsion and control system (CFPandCS) and applications
US20040103729A1 (en) Dual-axis centrifugal propulsion system
Buzzatto et al. The omnirotor platform: a versatile, multi-modal, coaxial, all-terrain vehicle
CN107002640B (en) Propulsion system
CN112407298A (en) Direction-changeable thruster
JP2012107524A (en) Device for obtaining propulsive force from self-rotating rotor
JP2021173215A (en) Propulsion device and aircraft with propulsion device
JPH06101623A (en) Propulsion machinery

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BB BG BR DK FI HU JP KR LK MC MG MW NO RO SD SU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BF BJ CF CG CH CM DE FR GA GB IT LU ML MR NL SE SN TD TG