JPH06101516B2 - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device

Info

Publication number
JPH06101516B2
JPH06101516B2 JP60088531A JP8853185A JPH06101516B2 JP H06101516 B2 JPH06101516 B2 JP H06101516B2 JP 60088531 A JP60088531 A JP 60088531A JP 8853185 A JP8853185 A JP 8853185A JP H06101516 B2 JPH06101516 B2 JP H06101516B2
Authority
JP
Japan
Prior art keywords
type impurity
type
semiconductor device
impurity region
convex portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60088531A
Other languages
Japanese (ja)
Other versions
JPS61248464A (en
Inventor
和彦 相良
徹 中村
和郎 中里
得男 久礼
清治 池田
紀之 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60088531A priority Critical patent/JPH06101516B2/en
Publication of JPS61248464A publication Critical patent/JPS61248464A/en
Publication of JPH06101516B2 publication Critical patent/JPH06101516B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、半導体装置の製造方法に関し、詳しくは、耐
α線や外部雑音に強い半導体装置の製造方法に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for manufacturing a semiconductor device that is resistant to α rays and external noise.

〔発明の背景〕[Background of the Invention]

従来の半導体装置は、特開昭56−1556号に記載されてい
るように、P型基板にn型埋込層を設け、さらに、エピ
タキシヤル層を成長させて、この中にトランジスタを形
成していた。しかしながら、このようにして形成された
トランジスタでは、外部よりα線が侵入してp型基板内
で電子正孔対が発生すると、電子が埋込層,エピタキシ
ヤル層内に吸い込まれ、電位変動がおきるので、このト
ランジスタを用いたメモリセルでは、情報が破壊されや
すい、という問題があり、解決が望まれていた。
In a conventional semiconductor device, an n-type buried layer is provided on a P-type substrate and an epitaxial layer is grown to form a transistor therein, as described in JP-A-56-1556. Was there. However, in the transistor thus formed, when α-rays enter from the outside and electron-hole pairs are generated in the p-type substrate, electrons are sucked into the buried layer and the epitaxial layer and potential fluctuations occur. Therefore, there is a problem that information is easily destroyed in the memory cell using this transistor, and a solution has been desired.

一方、本発明者の一人により半導体基板の所定部分をエ
ッチングすることにより凹部とこの凹部によって囲まれ
た凸部とを形成し、凹部上に絶縁膜を形成し、この絶縁
膜上に形成されるとともに凸部の側壁に接触された多結
晶シリコン層にp型不純物を拡散することにより、p型
不純物が拡散されたこの多結晶シリコン層を外部ベース
領域として絶縁膜上に形成し、その後、絶縁膜とこの多
結晶シリコン外部ベース領域とによって囲まれた凸部に
活性ベース領域とエミッタ領域とをセルフアライン技術
を用いて順次に形成することにより、絶縁膜上の多結晶
シリコン外部ベース領域が活性ベース領域と接続された
所謂SICOS構造(SIde wall COntact Structure)の高速
動作、高集積密度を可能としたバイポーラ・トランジス
タが提案されている(特開昭56−1556号参照)。
On the other hand, one of the inventors of the present invention forms a concave portion and a convex portion surrounded by the concave portion by etching a predetermined portion of the semiconductor substrate, forms an insulating film on the concave portion, and forms the insulating film on the insulating film. At the same time, by diffusing a p-type impurity in the polycrystalline silicon layer in contact with the sidewall of the convex portion, the polycrystalline silicon layer in which the p-type impurity is diffused is formed as an external base region on the insulating film, and then the insulating film is formed. An active base region and an emitter region are sequentially formed on a convex portion surrounded by the film and the polycrystalline silicon extrinsic base region by using a self-alignment technique, so that the polycrystalline silicon extrinsic base region on the insulating film is activated. A bipolar transistor capable of high-speed operation and high integration density of a so-called SICOS structure (SIde wall contact structure) connected to a base region has been proposed (JP-A-56). -1556).

〔発明の目的〕[Object of the Invention]

本発明の目的は、上記従来の問題を解決し、外部雑音に
強く、また、耐α線によるソフトエラー発生の恐れが極
めて少ない半導体装置の製造方法を提供することにあ
る。
An object of the present invention is to provide a method for manufacturing a semiconductor device that solves the above-mentioned conventional problems, is resistant to external noise, and has a very low risk of occurrence of a soft error due to resistance to α rays.

また、本発明の他の目的とするところは、上述の所謂SI
COS構造のトランジスタの製造方法と両立し得る半導体
装置の製造方法を提供することにある。
Another object of the present invention is that the so-called SI
It is an object of the present invention to provide a method for manufacturing a semiconductor device that is compatible with a method for manufacturing a COS structure transistor.

〔発明の概要〕[Outline of Invention]

上記目的を達成するために、第1図に示すように、n型
埋込層2とn型拡散層13の間に、周囲を二酸化シリコン
7で包囲されたp型拡散層を設け、基板からの電子の侵
入を防止する。この構造を実現するために、本発明は、
素子分離形成後に、Bを高エネルギ(100〜200KeV)で
イオン注入を行ない、n型埋込層とn型拡散層の間にp
型拡散層を設けるものである。
In order to achieve the above object, a p-type diffusion layer surrounded by silicon dioxide 7 is provided between the n-type buried layer 2 and the n-type diffusion layer 13 as shown in FIG. Prevent the intrusion of electrons. In order to realize this structure, the present invention provides
After element isolation is formed, B is ion-implanted at high energy (100 to 200 KeV), and p is added between the n-type buried layer and the n-type diffusion layer.
A type diffusion layer is provided.

〔発明の実施例〕Example of Invention

以下、本発明の一実施例を、側壁から多結晶Siで電極を
取り出す半導体装置を基に、第2図〜第8図により説明
する。
An embodiment of the present invention will be described below with reference to FIGS. 2 to 8 based on a semiconductor device in which an electrode is taken out from a sidewall by polycrystalline Si.

まず、第2図に示したように、p型Si基板1の表面領域
の所望部分に周知の気相拡散技術を用いてSbを選択的に
ドープして、n型埋込層2を形成した。この後、n型エ
ピタキシヤル層3を成長させて、この表面に、二酸化シ
リコン4,窒化シリコン5,二酸化シリコン6を設けた。続
いて、周知のホトエツチング技術及びドライエツチング
技術を用いて、第3図に示すように、凸型Si領域を形成
した。次に、周知の選択酸化法を用いて、素子間分離用
の二酸化シリコン領域7を設けた(第4図)。さらに、
多結晶Siを堆積して、周知の平坦化技術を用いて、第5
図に示すように、多結晶Si8を上記二酸化シリコン7上
に平坦に埋め込んだ。この後、上記多結晶SiにBをドー
ピングして、熱処理を行ない、p型拡散層10を設けた。
また、n型エピタキシヤル層3にPをドーピングして、
n型拡散層11を形成した(第6図)。
First, as shown in FIG. 2, a desired portion of the surface region of the p-type Si substrate 1 was selectively doped with Sb using a well-known vapor phase diffusion technique to form an n-type buried layer 2. . After that, an n-type epitaxial layer 3 was grown, and silicon dioxide 4, silicon nitride 5, and silicon dioxide 6 were provided on the surface thereof. Then, a convex Si region was formed as shown in FIG. 3 by using the well-known photo-etching technique and dry-etching technique. Next, a well-known selective oxidation method was used to provide a silicon dioxide region 7 for element isolation (FIG. 4). further,
After depositing polycrystalline Si, using a well-known planarization technique,
As shown in the figure, polycrystalline Si 8 was flatly embedded on the silicon dioxide 7. After that, the polycrystalline Si was doped with B and heat-treated to form a p-type diffusion layer 10.
Further, by doping P into the n-type epitaxial layer 3,
An n-type diffusion layer 11 was formed (Fig. 6).

尚、第2図から第6図までの製造工程は、上述の所謂SI
COS構造のトランジスタの製造方法と同じものである。
The manufacturing process from FIG. 2 to FIG.
This is the same as the method for manufacturing a COS transistor.

尚、第6図に示すように、熱処理により多結晶Si層8か
らn型エピタキシャル層3にBが拡散されることにより
形成されるp型拡散層10は、本来は、SICOS構造のトラ
ンジスタの部分で多結晶シリコン外部ベース領域と活性
ベース領域との間の接続抵抗を低減する役割を有する。
Incidentally, as shown in FIG. 6, the p-type diffusion layer 10 formed by the diffusion of B from the polycrystalline Si layer 8 to the n-type epitaxial layer 3 by heat treatment is originally a portion of a transistor having a SICOS structure. And has a role of reducing the connection resistance between the polycrystalline silicon external base region and the active base region.

この後、本発明の特徴であるp型拡散層12を設けるため
に、イオン注入技術を用いて、高加速エネルギ(例え
ば、200KeV)で、Bを選択的にドープした。引き続き、
イオン注入技術を用いてPをドープして、n型拡散層13
を設けた(第7図)。次に、コンタクト穴を形成して、
n型拡散層14,および、シリサイド層15(本例ではPtシ
リサイド)を設けた(第8図)。さらに、Al電極16を形
成して、第1図に示すように、外部雑音、および、耐α
線に強い半導体装置(本例では、シヨツトキーダオー
ド)を実現した。
After that, in order to provide the p-type diffusion layer 12 which is a feature of the present invention, B was selectively doped at a high acceleration energy (for example, 200 KeV) using an ion implantation technique. Continuing,
The n-type diffusion layer 13 is doped with P by using the ion implantation technique.
Was provided (FIG. 7). Next, form contact holes,
An n-type diffusion layer 14 and a silicide layer 15 (Pt silicide in this example) were provided (FIG. 8). Further, as shown in FIG. 1, the Al electrode 16 is formed to prevent external noise and α resistance.
We have realized a semiconductor device that is strong against lines (in this example, a shutter key diode).

すなわち、n型拡散層13とPtシリサイド層15との界面に
は、ショットキー・バリアによるダイオードが形成され
ている。
That is, a diode formed of a Schottky barrier is formed at the interface between the n-type diffusion layer 13 and the Pt silicide layer 15.

特に、このショットキーダイオードが形成されたn型拡
散層13は、SICOS構造のトランジスタの特徴によるp型
拡散層10と本発明の特徴の高加速エネルギのイオン注入
技術によって形成されたp型拡散層12とによってp型Si
基板1から電気的に分離されているので、ショットキー
ダイオードは外部雑音および耐α線に強くなるものであ
る。
Particularly, the n-type diffusion layer 13 in which the Schottky diode is formed is the p-type diffusion layer 10 due to the characteristics of the SICOS structure transistor and the p-type diffusion layer formed by the high acceleration energy ion implantation technology of the present invention. 12 and p-type Si
Since it is electrically isolated from the substrate 1, the Schottky diode is resistant to external noise and α rays.

この半導体装置を用いて、1Kbitパイポーラメモリを試
作した結果、最大雑音電荷量が従来の約1/5となり、ま
た、従来のメモリセルよりも、耐α線強度が約4桁向上
するなど極めて顕著な効果が認められた。
As a result of making a prototype of 1Kbit bipolar memory using this semiconductor device, the maximum noise charge amount is about 1/5 of the conventional one, and the α ray resistance is improved by about 4 digits compared with the conventional memory cell. A remarkable effect was recognized.

尚、上記の実施例において、n型,p型の導電型をすべて
逆にしても、本発明が適用可能であることはもちろんで
ある。
It is needless to say that the present invention can be applied even if all the n-type and p-type conductivity types are reversed in the above embodiment.

〔発明の効果〕〔The invention's effect〕

上記説明から明らかなように、本発明の製造方法を用い
て高集積バイポーラメモリを試作した結果、外部雑音、
およびα線によるソフトエラーに強い半導体装置を実現
できた。
As is apparent from the above description, as a result of trial manufacture of a highly integrated bipolar memory using the manufacturing method of the present invention, external noise,
It was possible to realize a semiconductor device that is resistant to soft errors due to and α rays.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明に製造された半導体装置の一例を示す
断面図、第2図乃至第8図は本発明の半導体装置の製造
方法を説明するため工程断面図である。 1……p型Si基板、2……n型埋込層、3……n型エピ
タキシヤル層、4,6,7,9……二酸化シリコン、5……窒
化シリコン、8……p型多結晶シリコン、10,12……p
型拡散層、11,13,14……n型拡散層、15……Ptシリサイ
ド層、16……Al電極。
FIG. 1 is a sectional view showing an example of a semiconductor device manufactured according to the present invention, and FIGS. 2 to 8 are process sectional views for explaining a method for manufacturing a semiconductor device according to the present invention. 1 ... p-type Si substrate, 2 ... n-type buried layer, 3 ... n-type epitaxial layer, 4,6,7,9 ... silicon dioxide, 5 ... silicon nitride, 8 ... p-type poly Crystal silicon, 10,12 …… p
Type diffusion layer, 11, 13, 14 ... N type diffusion layer, 15 ... Pt silicide layer, 16 ... Al electrode.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 久礼 得男 東京都国分寺市東恋ヶ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 池田 清治 東京都国分寺市東恋ヶ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 本間 紀之 東京都国分寺市東恋ヶ窪1丁目280番地 株式会社日立製作所中央研究所内 (56)参考文献 特開 昭56−1556(JP,A) 特開 昭59−94451(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Tokio Kure, Inventor Tokio Higashi Koigakubo 1-280, Kokubunji City, Tokyo (72) Central Research Laboratory, Hitachi, Ltd. (72) Kiyoji Ikeda 1-280 Higashi Koigakubo, Kokubunji, Tokyo Hitachi Ltd. (72) Inventor Noriyuki Honma Noriyuki Honma 1-280, Higashi Koigakubo, Kokubunji City, Tokyo Inside Hitachi Central Research Laboratory (56) References JP 56-1556 (JP, A) JP 59-94451 ( JP, A)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】半導体基板の所定部分をエッチングするこ
とにより凹部と該凹部によって囲まれた凸部とを形成す
る工程と、 上記凹部上に絶縁膜を形成する工程と、 上記絶縁膜上に多結晶Siを形成する工程と、 上記多結晶Siにp型不純物を拡散することにより、上記
凸部の単結晶Siの側壁に第1のp型不純物領域を形成す
る工程と、 上記凸部の上記単結晶Siに高加速エネルギでp型不純物
をイオン注入することにより上記凸部の上記単結晶Siの
下部に第2のp型不純物領域を形成する工程とを含むこ
とを特徴とする半導体装置の製造方法。
1. A step of forming a concave portion and a convex portion surrounded by the concave portion by etching a predetermined portion of a semiconductor substrate; a step of forming an insulating film on the concave portion; Forming a crystalline Si, forming a first p-type impurity region on a sidewall of the single-crystal Si of the convex portion by diffusing a p-type impurity into the polycrystalline Si; Forming a second p-type impurity region below the single-crystal Si of the convex portion by ion-implanting p-type impurities into the single-crystal Si with high acceleration energy. Production method.
【請求項2】上記第1のp型不純物領域により取り囲ま
れ、上記第2のp型不純物領域より上部の上記凸部の上
記単結晶Siが上記半導体基板の他の部分から電気的に分
離されてなる如き深さに、上記第2のp型不純物領域が
上記イオン注入により形成されることを特徴とする特許
請求の範囲第1項記載の半導体装置の製造方法。
2. The single crystal Si of the convex portion surrounded by the first p-type impurity region and above the second p-type impurity region is electrically isolated from the other part of the semiconductor substrate. The method for manufacturing a semiconductor device according to claim 1, wherein the second p-type impurity region is formed by the ion implantation to a depth as described above.
【請求項3】上記第2のp型不純物領域より上部の上記
凸部の上記単結晶Siにショットキーダイオードが形成さ
れることを特徴とする特許請求の範囲第2項記載の半導
体装置の製造方法。
3. The manufacturing of a semiconductor device according to claim 2, wherein a Schottky diode is formed in the single crystal Si of the convex portion above the second p-type impurity region. Method.
JP60088531A 1985-04-26 1985-04-26 Method for manufacturing semiconductor device Expired - Lifetime JPH06101516B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60088531A JPH06101516B2 (en) 1985-04-26 1985-04-26 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60088531A JPH06101516B2 (en) 1985-04-26 1985-04-26 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPS61248464A JPS61248464A (en) 1986-11-05
JPH06101516B2 true JPH06101516B2 (en) 1994-12-12

Family

ID=13945417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60088531A Expired - Lifetime JPH06101516B2 (en) 1985-04-26 1985-04-26 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JPH06101516B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3159237B2 (en) * 1996-06-03 2001-04-23 日本電気株式会社 Semiconductor device and method of manufacturing the same

Also Published As

Publication number Publication date
JPS61248464A (en) 1986-11-05

Similar Documents

Publication Publication Date Title
JP4108861B2 (en) Bipolar transistor manufacturing method and structure thereof
JP3127455B2 (en) Semiconductor device manufacturing method
US4408387A (en) Method for producing a bipolar transistor utilizing an oxidized semiconductor masking layer in conjunction with an anti-oxidation mask
JP3200169B2 (en) Method of manufacturing semiconductor structure having MOS device and bipolar device
US4978630A (en) Fabrication method of bipolar transistor
US5482873A (en) Method for fabricating a bipolar power transistor
US5104816A (en) Polysilicon self-aligned bipolar device including trench isolation and process of manufacturing same
JPH07176536A (en) Bipolar transistor
US4799099A (en) Bipolar transistor in isolation well with angled corners
EP0231740A2 (en) A polysilicon self-aligned bipolar device and process of manufacturing same
JPH0638478B2 (en) Semiconductor device
JPH06101516B2 (en) Method for manufacturing semiconductor device
EP0253538B1 (en) A vlsi self-aligned bipolar transistor
JP2931243B2 (en) Method for manufacturing semiconductor device
JP2907323B2 (en) Semiconductor device and manufacturing method thereof
EP0316562A2 (en) Semiconductor bipolar transistors with base and emitter structures in a trench and process to produce same
JP2510526B2 (en) Semiconductor device
JP2000252290A (en) Semiconductor device and its manufacture
JP2858510B2 (en) Method for manufacturing semiconductor device
JP2629162B2 (en) Semiconductor device and manufacturing method thereof
JP3186057B2 (en) Method of manufacturing bipolar IC and junction capacitor of bipolar IC
JP3128818B2 (en) Semiconductor integrated circuit
JP2633411B2 (en) Method for manufacturing semiconductor device
JPH0828368B2 (en) Method for manufacturing semiconductor device
JPH0629306A (en) Semiconductor device and manufacture thereof