JPH06100577B2 - Enlargement method of the surface of the inspected object in ultrasonic flaw detection - Google Patents

Enlargement method of the surface of the inspected object in ultrasonic flaw detection

Info

Publication number
JPH06100577B2
JPH06100577B2 JP3298608A JP29860891A JPH06100577B2 JP H06100577 B2 JPH06100577 B2 JP H06100577B2 JP 3298608 A JP3298608 A JP 3298608A JP 29860891 A JP29860891 A JP 29860891A JP H06100577 B2 JPH06100577 B2 JP H06100577B2
Authority
JP
Japan
Prior art keywords
inspected
plastic material
flaw detection
edge
ultrasonic probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3298608A
Other languages
Japanese (ja)
Other versions
JPH05126802A (en
Inventor
鷹之介 青柳
幸三郎 鈴木
Original Assignee
鈴幸商事株式会社
ビーイー電気株式会社
鈴幸精密工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 鈴幸商事株式会社, ビーイー電気株式会社, 鈴幸精密工業株式会社 filed Critical 鈴幸商事株式会社
Priority to JP3298608A priority Critical patent/JPH06100577B2/en
Publication of JPH05126802A publication Critical patent/JPH05126802A/en
Publication of JPH06100577B2 publication Critical patent/JPH06100577B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は超音波探触子を被検査
体表面の縁の直上、又はそれを通過した外側まで安定し
て移動走査する超音波探傷における被検査体表面の拡大
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for enlarging the surface of an object to be inspected in ultrasonic flaw detection in which the ultrasonic probe is stably moved and scanned just above the edge of the surface of the object to be inspected or to the outside passing through the edge. It is a thing.

【0002】[0002]

【従来の技術】金属等の被検査体の内部傷の検出のため
に超音波探傷法は広く実用化されている。その際に、被
検査体表面に接触媒質流体の薄膜を介して超音波探触子
を接触させて探傷を行う直接接触法が最も一般的であ
る。そして、特に傷位置を事前に知っている場合を除
き、被検査体表面の全体又は必要な一部に対して超音波
探触子を移動走査して探傷を行う。この場合、被検査体
が裁断その他によりその表面に縁を持つことも多く、か
かる場合に、その縁の直下に至る間まで探傷を行うに
は、超音波探触子で被検査体表面を移動走査し、超音波
探触子の中心が被検査体表面の縁の直上か、場合により
僅かながらその外側までに達しなければならない。この
ような時でも、超音波探触子の接触面と被検査体表面の
間に存在する接触媒質流体の膜厚は前面に亘り一定でな
ければ感度誤差を発生するが、もし人間手で超音波探触
子を掴んで移動走査を行う場合、手で感覚と動作に微妙
な操作をなすことで困難ながら可能である。しかし、超
音波探触子を機械的に保持して自動的に移動走査する自
動探傷方式においては、超音波探触子の接触面の一部が
被検査体表面から外れて接触面積が減るので、押付け力
が一定の制御をされる機構の場合には接触媒質の膜厚は
減少し測定誤差を出す。更に、超音波探触子の接触面の
周辺にガイド等に属する検出子を装備してこれを常時被
検査体表面に接触させ、これにより超音波探触子と被検
査体表面の間隔を制御する機構においては、その検出子
の大半は被検査体の縁の外に出るので制御不完全とな
り、探傷の精度は低下する。
2. Description of the Related Art An ultrasonic flaw detection method has been widely put into practical use for detecting internal flaws in an object such as a metal. At that time, the most common method is a direct contact method in which an ultrasonic probe is brought into contact with the surface of the object to be inspected through a thin film of a couplant medium to perform flaw detection. Then, unless the scratch position is known in advance, the ultrasonic probe is moved and scanned on the entire surface of the object to be inspected or a necessary part of the surface of the object to be inspected. In this case, the object to be inspected often has an edge on the surface due to cutting or the like, and in such a case, in order to perform flaw detection up to immediately below the edge, move the surface of the object to be inspected with an ultrasonic probe. The ultrasonic probe must be scanned so that the center of the ultrasonic probe reaches just above the edge of the surface of the object to be inspected or, if necessary, slightly outside thereof. Even in such a case, if the thickness of the fluid of the couplant medium existing between the contact surface of the ultrasonic probe and the surface of the object to be inspected is not constant over the front surface, a sensitivity error will occur. When performing a moving scan by grasping the acoustic probe, it is possible, although it is difficult, by performing a delicate operation on the sense and the motion by hand. However, in the automatic flaw detection method in which the ultrasonic probe is mechanically held and automatically moved and scanned, part of the contact surface of the ultrasonic probe deviates from the surface of the object to be inspected, and the contact area decreases. In the case of a mechanism in which the pressing force is controlled to be constant, the film thickness of the contact medium is reduced and a measurement error occurs. Furthermore, a detector, such as a guide, is installed around the contact surface of the ultrasonic probe, and it is constantly in contact with the surface of the object to be inspected, thereby controlling the distance between the ultrasonic probe and the surface of the object to be inspected. In this mechanism, most of the detectors go out of the edge of the object to be inspected, so control is incomplete, and the accuracy of flaw detection is reduced.

【0003】[0003]

【発明が解決しようとする課題】このようなことから、
直接接触法による自動探傷装置で縁をもつ被検査体の探
傷を実施する時は、その縁の直下までの探傷をせず、縁
から数mm以上の内側までの走査探傷とすることが大半
である。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
When performing flaw detection on an inspected object with an edge using an automatic flaw detection device by the direct contact method, in most cases, the flaw detection is not performed immediately below the edge, but is performed by scanning flaw detection within a few mm or more from the edge. is there.

【0004】直接接触法により縁を持つ被検査体表面の
縁直下までの探傷を要する時に、超音波探触子の接触面
の多くの部分が縁から外に出て接触をしない状態であ
り、且つ接触している部分は、一定の接触媒質流体膜の
厚さを確保せねばならない。もし超音波探触子を手で掴
んで操作する場合は、極めて微妙な熟練者の操作を要す
るが、もし保持機構が超音波探触子を保持する機械的機
構にあっては複雑で高度の制御をせねばならず、いずれ
の場合も複雑或いは高価となる。
When it is necessary to detect flaws just below the edge of the surface of the object to be inspected by the direct contact method, most of the contact surface of the ultrasonic probe goes out of the edge and does not contact. In addition, the contacting portion must ensure a certain couplant fluid film thickness. If the ultrasonic probe is grasped and operated by hand, it requires a very delicate operation of a skilled person, but if the holding mechanism is a mechanical mechanism that holds the ultrasonic probe, it is complicated and highly advanced. It must be controlled, and in either case it is complicated or expensive.

【0005】本発明は上記実情に鑑み、直接接触法によ
る自動探傷装置で縁を持つ被検査体の縁直下までの走査
探傷を安価に且つ容易とし、上記課題を解決する超音波
探傷における被検査体表面の拡大法を提供することを目
的としたものである。
In view of the above situation, the present invention makes it possible to inexpensively and easily perform scanning flaw detection up to directly below the edge of an object to be inspected having an edge by an automatic flaw detection apparatus by the direct contact method, and to solve the above-mentioned problems. The purpose is to provide a method for enlarging the body surface.

【0006】[0006]

【課題を解決するための手段】本発明は、直接接触法に
より縁を持つ被検査体の縁直下までの走査探傷を実施す
る際に、被検査体の表面に面一で滑らかな表面を持ち、
且つ超音波に対して減衰の大きいプラスチック材を被検
査体周辺に密着してモールドを形成し、超音波探触子の
接触面が被検査体の縁の外に出ても、なおその接触面の
全体が被検査体の縁内部と同一の面上にあり、且つ底面
からのエコーの反射がないようにしたものである。
SUMMARY OF THE INVENTION The present invention has a surface which is flush and smooth on the surface of an object to be inspected when performing scanning flaw detection to a position just below the edge of the object to be inspected by a direct contact method. ,
Moreover, even if the contact surface of the ultrasonic probe goes out of the edge of the object to be inspected, a mold is formed by closely adhering a plastic material that has a large attenuation to the ultrasonic wave to the area around the object to be inspected. Is on the same surface as the inside of the edge of the object to be inspected, and echoes are not reflected from the bottom surface.

【0007】[0007]

【作用】上記のように、直接接触法による自動探傷装置
にて、超音波探触子が縁を持つ被検査体の直下の探傷を
行う場合、被検査体の縁の外側が空間であれば、超音波
探触子の接触面の少なからぬ部分が縁の外に出て、超音
波探触子の接触面と被検査体の表面間隔である接触媒質
流体の膜厚を一定の均一値に保つことが困難となるが、
本発明の拡大法によれば、被検査体の周辺に密着して被
検査体の表面に面一の滑らかな面を持ち、且つ超音波の
減衰の大きいプラスチック材をモールド形成してありの
で、超音波探触子の接触面に常に被検査体表面か、又は
そのプラスチック材表面に接触媒質流体膜厚を一定に保
ちつつ走査移動が可能で、被検査体の縁直下の探傷も容
易に可能となり、被検査体の外は、そのプラスチック材
内で超音波が減衰消失するので反射はない。
As described above, when an automatic flaw detector by the direct contact method is used to perform flaw detection directly below an object to be inspected having an ultrasonic probe, if the outside of the edge of the object to be inspected is a space. , A considerable part of the contact surface of the ultrasonic probe goes out of the edge, and the film thickness of the contact medium fluid, which is the surface distance between the contact surface of the ultrasonic probe and the object to be inspected, becomes a uniform value. Difficult to keep,
According to the enlarging method of the present invention, a plastic material having a smooth surface flush with the surface of the object to be intimately adhered to the periphery of the object to be inspected and having a large attenuation of ultrasonic waves is molded, It is possible to scan and move the ultrasonic probe in contact with the surface of the object to be inspected or on the surface of the plastic material while keeping the fluid thickness of the contact medium fluid constant, and it is also possible to easily perform flaw detection directly under the edge of the object to be inspected. Therefore, there is no reflection outside the object to be inspected because the ultrasonic wave attenuates and disappears inside the plastic material.

【0008】[0008]

【実施例】以下、本発明を具体的な実施例に基づいて説
明すれば、次の通りである。
EXAMPLES The present invention will be described below with reference to specific examples.

【0009】図1に示すように表面が平坦で滑らかな台
板1を水平に置き、その上に型枠2を載置する。この型
枠2の表面に測定検査をしようとする表面を下にし台板
1に密接するよう被検査体3を入れて置く。これらの台
板1と型枠2と被検査体3の必要面には予め離型材の表
面処理をしてあるものを用いる。別に硬化容器のプラス
チック材原液に、例えば微小ガラス玉の如き超音波に対
する吸収材を混合攪拌しておく。その混合量は実験的に
決定してよいが、プラスチック材がエポキシ樹脂で吸収
材が直径0.3mm前後のガラス玉であれば、プラスチ
ック材に対して容積比で40%程度がよい。この型枠2
の内側の被検査体3との間に前記した吸収材を混合攪拌
したプラスチック液の必要量を流し込み、これを硬化さ
せる。
As shown in FIG. 1, a flat base plate 1 having a flat surface and a smooth surface is placed horizontally, and a mold 2 is placed thereon. The surface of the frame 2 is placed with the object 3 to be inspected in such a manner that the surface to be measured and inspected is faced down and the surface of the frame 2 is in close contact with the base plate 1. For the necessary surfaces of these base plate 1, mold 2 and inspected body 3, those which have been surface-treated with a release material in advance are used. Separately, an absorbent for ultrasonic waves, such as fine glass beads, is mixed and stirred in the undiluted solution of the plastic material in the curing container. The mixing amount may be determined experimentally, but if the plastic material is an epoxy resin and the absorbing material is a glass ball having a diameter of about 0.3 mm, the volume ratio to the plastic material is about 40%. This formwork 2
The required amount of the plastic liquid obtained by mixing and stirring the above-mentioned absorbent is poured into the inside of the object to be inspected 3 and cured.

【0010】次に、前記プラスチック液が硬化した後に
型枠2を取り去り台板1から外した結果は図2の如くと
なる。この図2は検査測定する表面5を上にした被検査
体3の断面であり、4は被検査体の周辺に密着した硬化
成形したプラスチック材の断面を示し、このプラスチッ
ク材4の表面は被検査体3の表面5と面一である。
Next, after the plastic liquid has hardened, the form 2 is removed and removed from the base plate 1 as shown in FIG. FIG. 2 is a cross section of the inspected body 3 with the surface 5 to be inspected and measured up, and 4 shows a cross section of the cured and molded plastic material that is in close contact with the periphery of the inspected body. It is flush with the surface 5 of the inspection body 3.

【0011】このように、図2の如く周辺にプラスチッ
ク材4を密着成形してある被検査体3の表面5に対して
直接接触法により探傷する際に、超音波探触子(図示せ
ず)の接触面が被検査体3の縁を通過して外に出ても被
検査体3の表面5に代わってプラスチック材4の表面が
存在し、これらが面一であるために接触媒質流体の膜厚
を常に一定に確保する操作は可能であり、被検査体3の
縁直下の探傷も可能となる。
As described above, when the surface 5 of the inspected object 3 on which the plastic material 4 is closely molded as shown in FIG. 2 is to be detected by the direct contact method, an ultrasonic probe (not shown) is used. Even if the contact surface of) passes through the edge of the DUT 3 and goes out, the surface of the plastic material 4 is present instead of the surface 5 of the DUT 3, and since these are flush with each other, the contact medium fluid It is possible to always maintain a constant film thickness, and it is also possible to perform flaw detection immediately below the edge of the inspection object 3.

【0012】前記図1にあって、型枠2を上から見て、
正方形或いは矩形の如く画いたが、上記の目的を達する
ものであれば形は任意である。また、図1で被検査体3
が直方体の如く画いたが、測定検査したい面が平面状で
あればその形の如何を問はない。例えば、蒲鉾型の断面
をもつ小型の被検査体のとき、上記した方法によって出
来たものは図3に示すようになる。即ち、図3におい
て、6は蒲鉾型断面を持つ被検査体で、7はその被検査
体6の表面と面一の表面をもつプラスチック材で、8は
夫々の表面を示す。この図3の如く被検査体6がプラス
チック材7の中に埋め込まれる形になっても差支えな
い。
In FIG. 1 above, when the formwork 2 is viewed from above,
Although it is drawn as a square or a rectangle, the shape is arbitrary as long as it achieves the above purpose. In addition, in FIG.
Although it was drawn like a rectangular parallelepiped, the shape does not matter as long as the surface to be measured and inspected is flat. For example, when a small object to be inspected having a kamaboko-shaped cross section is obtained by the above method, it is as shown in FIG. That is, in FIG. 3, 6 is an inspected object having a kamaboko-shaped cross section, 7 is a plastic material having a surface flush with the surface of the inspected object 6, and 8 is a surface of each. It does not matter if the DUT 6 is embedded in the plastic material 7 as shown in FIG.

【0013】図3の如き場合、被検査体6の底面は露出
せず、プラスチック材7の底面が存在し、これを機械的
に安定して置くことに難点が生ずる時は、型枠2の内側
に金具9を置いて、これも一緒に前記したようにプラス
チック材を流し込み硬化させる。その結果図4に示すよ
うになり、この金具9で機械的に安定して置くことが出
来る。図4にあって、6は被検査体で、7はプラスチッ
ク材を示し、8は被検査体6とプラスチック材7の表面
となる。9はプラスチック材7に埋め込まれた金具で、
該金具9の形、その数、その位置は任意である。また、
前記図3の如き状態で、その硬化したプラスチック材7
に対して任意形状、任意数の金具を取付ける方法であっ
ても差支えない。
In the case shown in FIG. 3, the bottom surface of the inspection object 6 is not exposed, and the bottom surface of the plastic material 7 exists. The metal fitting 9 is placed on the inside, and the plastic material is poured and cured together with the metal fitting 9 as described above. As a result, as shown in FIG. 4, the metal fitting 9 can be placed mechanically and stably. In FIG. 4, 6 is an object to be inspected, 7 is a plastic material, and 8 is the surfaces of the object to be inspected 6 and the plastic material 7. 9 is a metal fitting embedded in the plastic material 7,
The shape, the number and the position of the metal fittings 9 are arbitrary. Also,
In the state shown in FIG. 3, the cured plastic material 7
However, the method of attaching an arbitrary shape and an arbitrary number of metal fittings does not matter.

【0014】上記した方法で、流し込んだプラスチック
材が被検査体表面の上に薄い膜を作って硬化した場合、
研磨等の手段でプラスチック材と被検査体の表面をあら
ためて磨くこととしてもよい。
When the cast plastic material forms a thin film on the surface of the object to be inspected and is cured by the above-mentioned method,
The surfaces of the plastic material and the object to be inspected may be re-polished by a means such as polishing.

【0015】また、流し込み硬化させるプラスチック材
と吸収材は上記目的に合致するものであれば種類は問わ
ない。又、その硬化させる方法も問わない。但し、過熱
硬化方式で高温度を要するものは被検査体の特性、或い
は各要素の膨張を考慮すれば好ましくない。
Further, the plastic material and the absorbent material to be cast and cured may be of any kind as long as they meet the above-mentioned purpose. Further, the method of curing the same does not matter. However, it is not preferable that the overheat curing method requires a high temperature in consideration of the characteristics of the inspection object or the expansion of each element.

【0016】また、図2の如き場合、超音波探触子が被
検査体3の縁の外に出て周辺のプラスチック材4の表面
に達した時、該プラスチック材4は超音波に対する減衰
が大であるので、この底面からのエコーは検出しない。
尚、電子回路の感度を上げて、プラスチック材4の底面
エコーを検出することがあるから、プラスチック材4の
厚さを増すか、吸収材の比率を増せばよい。また、台板
1の材質、型枠2の材質は上記目的を達するものであれ
ば種類を問わない。
In the case of FIG. 2, when the ultrasonic probe goes out of the edge of the DUT 3 and reaches the surface of the surrounding plastic material 4, the plastic material 4 is attenuated by the ultrasonic wave. Since it is large, the echo from this bottom surface is not detected.
Since the sensitivity of the electronic circuit may be increased to detect the bottom echo of the plastic material 4, the thickness of the plastic material 4 may be increased or the ratio of the absorbing material may be increased. Further, the material of the base plate 1 and the material of the mold 2 may be of any type as long as they can achieve the above purpose.

【0017】[0017]

【発明の効果】超音波探傷において、被検査体の必要部
分を裁断してテストピースにし、これに実施することが
多い。このような時、そのテストピース中に存在する傷
の位置が既知でなければ、その全面に対して探傷を実施
する必要があり、その裁断されたテストピースの縁の直
下も除外されない。しかし、既に述べたように直接接触
法による自動探傷装置による時は、縁の直下の傷を検出
する操作は困難であるが、本発明の方法によれば、台板
と型枠と硬化させる超音波に対する減衰が大なるプラス
チック材及び離型材の使用により、被検査体をプラスチ
ック材と一体のモールド成形し、探傷し得るようにする
ことで、容易、安価にそれが実施できる。また、本発明
方法を使用し、手で超音波探触子を掴んで移動走査させ
る時は熟練を要せず、容易に縁直下の傷の検出ができ、
産業上極めて有益である。しかも、超音波探触子が保持
され、これを機械的な機構で自動的に走査する直接接触
法による自動探傷装置においては、その被検査体の縁を
特に問題とせずに走査をさせ、縁を通過した時に全ての
エコーが消失することで縁の位置が検出できるので、被
検査体の輪郭がその内部傷の位置と共に明瞭に示し得る
等の効果を奏する。
EFFECTS OF THE INVENTION In ultrasonic flaw detection, a necessary portion of an object to be inspected is cut into a test piece, which is often performed. In such a case, if the position of the scratch existing in the test piece is not known, it is necessary to perform flaw detection on the entire surface thereof, and the area directly below the edge of the cut test piece is not excluded. However, as described above, when using the automatic flaw detector by the direct contact method, it is difficult to detect a flaw directly below the edge, but according to the method of the present invention, it is possible to cure the base plate and the formwork with each other. By using a plastic material and a mold release material that have large attenuation for sound waves, the object to be inspected can be molded integrally with the plastic material so that flaw detection can be performed, which can be easily and inexpensively implemented. Further, using the method of the present invention, no skill is required when moving and scanning the ultrasonic probe by hand, and it is possible to easily detect a scratch just below the edge,
It is extremely beneficial in industry. Moreover, in the automatic flaw detector by the direct contact method in which the ultrasonic probe is held and automatically scanned by a mechanical mechanism, the edge of the inspected object is scanned without causing any particular problem, Since all the echoes disappear when passing through, the edge position can be detected, so that the contour of the inspection object can be clearly shown together with the position of the internal scratch.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施時の配置を示す説明図。FIG. 1 is an explanatory diagram showing an arrangement at the time of implementing the present invention.

【図2】この発明の方法にてできた被検査体とプラスチ
ック材の断面図。
FIG. 2 is a cross-sectional view of an object to be inspected and a plastic material produced by the method of the present invention.

【図3】矩形状断面以外の形状の被検査体とプラスチッ
ク材の断面図。
FIG. 3 is a cross-sectional view of an inspection object and a plastic material having a shape other than a rectangular cross section.

【図4】金具を取付けた被検査体とプラスチック材の断
面図である。
FIG. 4 is a cross-sectional view of an object to be inspected to which a metal fitting is attached and a plastic material.

【符号の説明】[Explanation of symbols]

1 台板 2 型枠 3 被検査体 4 プラスチック材 5 表面 6 蒲鉾型被検査体 7 プラスチック材 8 表面 9 金具 1 Base plate 2 Formwork 3 Inspected object 4 Plastic material 5 Surface 6 Kamaboko type inspected object 7 Plastic material 8 Surface 9 Metal fittings

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 被検査体表面に接触媒質流体薄膜を介し
て直接超音波探触子の接触面を当てて移動走査し、被検
査体内部の傷の検査を実施する場合に、被検査体の周辺
に密着し被検査体表面と面一になる円滑な表面を得るよ
うプラスチック材をモールド形成して、機械的には被検
査体表面を拡大し、超音波探触子を機械的に安定に移動
走査しうる範囲を被検査体表面の縁又はその外側まで広
げることを特徴とする超音波探傷における被検査体表面
の拡大法。
1. An object to be inspected when a contact surface of an ultrasonic probe is directly applied to the surface of the object to be inspected through a contact medium fluid thin film to move and scan to inspect a flaw inside the object to be inspected. The plastic material is molded to obtain a smooth surface that is in close contact with the periphery of the object and is flush with the surface of the object to be inspected, mechanically enlarging the surface of the object to be inspected and mechanically stabilizing the ultrasonic probe. A method for enlarging the surface of an object to be inspected in ultrasonic flaw detection, characterized in that the range capable of moving and scanning is extended to the edge of the surface of the object to be inspected or to the outside thereof.
JP3298608A 1991-08-29 1991-08-29 Enlargement method of the surface of the inspected object in ultrasonic flaw detection Expired - Lifetime JPH06100577B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3298608A JPH06100577B2 (en) 1991-08-29 1991-08-29 Enlargement method of the surface of the inspected object in ultrasonic flaw detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3298608A JPH06100577B2 (en) 1991-08-29 1991-08-29 Enlargement method of the surface of the inspected object in ultrasonic flaw detection

Publications (2)

Publication Number Publication Date
JPH05126802A JPH05126802A (en) 1993-05-21
JPH06100577B2 true JPH06100577B2 (en) 1994-12-12

Family

ID=17861933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3298608A Expired - Lifetime JPH06100577B2 (en) 1991-08-29 1991-08-29 Enlargement method of the surface of the inspected object in ultrasonic flaw detection

Country Status (1)

Country Link
JP (1) JPH06100577B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3974824A4 (en) * 2019-09-05 2022-07-06 Mitsubishi Heavy Industries, Ltd. Ultrasonic flaw detection method and extension jig

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3974824A4 (en) * 2019-09-05 2022-07-06 Mitsubishi Heavy Industries, Ltd. Ultrasonic flaw detection method and extension jig

Also Published As

Publication number Publication date
JPH05126802A (en) 1993-05-21

Similar Documents

Publication Publication Date Title
WO1987002462A1 (en) Ultrasonic method of measuring dimensions of flaw in solid material
US2525861A (en) Delay system for supersonic inspection
JPH06100577B2 (en) Enlargement method of the surface of the inspected object in ultrasonic flaw detection
JP2001208729A (en) Defect detector
US5046363A (en) Apparatus for rapid non-destructive measurement of die attach quality in packaged integrated circuits
JP2004212308A (en) Method and apparatus for inspecting weld
JP2005043107A (en) Ultrasonic image inspection device
JPH11183445A (en) Flaw detector
Ono et al. Experimental study of construction mechanism of V (z) curves obtained by line-focus-beam acoustic microscopy
JPH02150765A (en) Ultrasonic flaw detecting method
CN218099014U (en) Ultrasonic detection device
JPH05232114A (en) Immunity sensor system and immunity inspecting method using immunity sensor system
Maev et al. Imaging of deep internal layers in layered polymer systems using the ultra-short pulse Acoustic Microscope
JPS629269A (en) Liquid tank for ultrasonic inspection
JPH0752180B2 (en) Ultrasonic testing method
JPH04238208A (en) Ultrasonic sensor
JP2545974B2 (en) Spectrum ultrasound microscope
JPH06130042A (en) Nondestructive inspection apparatus for multilayer plastic tructure
JP2758654B2 (en) Ultrasonic surface roughness measurement method for solids
JPS6275260A (en) Liquid tank for ultrasonic inspection
JPH10213429A (en) Beam-diameter measuring target for ultrasonic-point focusing submerged contact and method and device for measuring beam diameter
RU2055359C1 (en) Prismatic ultrasonic piezoelectric converter
Lodeiro Feasibility of Using Scanning Acoustic Microscopy to Provide Large Area, High Spatial and Thickness Resolution Measurements of Flexible Polymeric Thin Films
SU794496A1 (en) Device for adjusting parameters of ultrasonic flaw detector
JPS63261157A (en) Surface inspecting method