JPH06130042A - Nondestructive inspection apparatus for multilayer plastic tructure - Google Patents

Nondestructive inspection apparatus for multilayer plastic tructure

Info

Publication number
JPH06130042A
JPH06130042A JP4282919A JP28291992A JPH06130042A JP H06130042 A JPH06130042 A JP H06130042A JP 4282919 A JP4282919 A JP 4282919A JP 28291992 A JP28291992 A JP 28291992A JP H06130042 A JPH06130042 A JP H06130042A
Authority
JP
Japan
Prior art keywords
gas barrier
barrier layer
probes
plastic structure
ultrasonic probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4282919A
Other languages
Japanese (ja)
Inventor
Takahiro Naito
貴弘 内藤
Takekuni Seki
関  武邦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP4282919A priority Critical patent/JPH06130042A/en
Publication of JPH06130042A publication Critical patent/JPH06130042A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To obtain an inspection apparatus wherein it can simultaneously confirm whether a gas barrier layer exists or not in a plurality of parts and it does not cause any inconvenience hygenically by arranging a plurality of ultrasonic probes on the flange circumference of a multilayer plastic structure. CONSTITUTION:For example, eight ultrasonic probes 30 are arranged on the flange circumference of a multilayer plastic structure (e.g. a food container). The probes 30 are changed over sequentially by a channel changeover device 23, and whenever a reflected signal is detected, it is judged by a gas barrier discrimination circuit 21 whether a gas barrier layer exists in its position. A control circuit part 22 repeatedly sends ultrasonic waves to the probes 30 through the changeover device 23, and the reflected signal from a molded product is received by the probes 30. A mechanism operating part 25 which holds an object under test and which brings the probes 30 into contact with the object under test is controlled through a sequencer 24. When the gas barrier layer exists in a container flange part, it can be judged that the gas barrier layer has been formed over the whole circumference of the container.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ガスバリヤー性樹脂層
を含んで、特に食品用途を考慮した合成樹脂層が少なく
とも3層以上の多層プラスチック構造物について、前記
ガスバリヤー層の有無を非破壊で検査する装置に関する
ものである。
BACKGROUND OF THE INVENTION The present invention relates to a multi-layer plastic structure including a gas barrier resin layer and having at least three synthetic resin layers in consideration of food use. It relates to a device to be inspected.

【0002】[0002]

【従来の技術】従来、超音波探触子を用いた非破壊検査
では、探触子を当てた位置のみの検査しか行えず、複数
の箇所を検査する場合は、探触子を当てる場所をその都
度移動させる必要があり、同時に複数の箇所を検査する
ことは不可能であると言う問題点があった。
2. Description of the Related Art Conventionally, in nondestructive inspection using an ultrasonic probe, only the position where the probe is applied can be inspected, and when inspecting a plurality of places, the place where the probe is applied is There is a problem that it is necessary to move each time and it is impossible to inspect a plurality of places at the same time.

【0003】また、超音波は減衰及び反射特性により気
体から固体へ直接入射させることは難しいので、一般に
図8の様に探触子先端と被測定物との間に水または油を
介在させるか、図9の様に被測定物全体を水中に没して
超音波を伝搬させていた。
Further, since it is difficult for the ultrasonic wave to directly enter from gas to solid due to its attenuation and reflection characteristics, generally, as shown in FIG. 8, is water or oil interposed between the tip of the probe and the object to be measured? As shown in FIG. 9, the entire object to be measured was immersed in water to propagate ultrasonic waves.

【0004】しかしながら、製造及び検査工程での衛生
性を保つ必要のある食品用途の容器では、上述の水ある
いは油といった液体は衛生面から到底使用できるもので
はなく、超音波による非破壊検査は有効に活用されてい
ないという問題点があった。
However, in containers for foods, which need to maintain hygiene in the manufacturing and inspection processes, the above liquids such as water or oil cannot be used at all from the viewpoint of hygiene, and nondestructive inspection by ultrasonic waves is effective. There was a problem that it was not used for.

【0005】[0005]

【発明が解決しようとする課題】本発明は以上のような
問題点に着目してなされたもので、その目的とするとこ
ろは、ガスバリヤー層を含む多層プラスチック構造物フ
ランジ周上の複数箇所で、同時にガスバリヤー層の有無
を確認し衛生的にも支障のない多層プラスチック構造物
の非破壊検査装置を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and its object is to provide a plurality of locations on the flange periphery of a multilayer plastic structure including a gas barrier layer. At the same time, another object of the present invention is to provide a nondestructive inspection device for a multi-layered plastic structure which confirms the presence / absence of a gas barrier layer and has no problem in hygiene.

【0006】[0006]

【課題を解決するための手段】本発明は上記課題を解決
するために、多層プラスチック構造物フランジ周上に複
数の超音波探触子を配置させることを特徴とする多層プ
ラスチック構造物の非破壊検査装置であり、さらに図4
に示すように前記超音波探触子10の先端をシリコンゴ
ム11で被覆し、乾燥状態でプラスチック表面に接触さ
せ、その接触、非接触動作を1個の超音波探触子に1個
のエアシリンダを用いて、行わせることを特徴とする前
記の多層プラスチック構造物の非破壊検査装置である。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention is characterized in that a plurality of ultrasonic probes are arranged on the circumference of a flange of a multilayer plastic structure. It is an inspection device, and further shown in FIG.
As shown in FIG. 3, the tip of the ultrasonic probe 10 is covered with silicone rubber 11 and brought into contact with the plastic surface in a dry state, and the contact and non-contact operations are performed by one ultrasonic probe with one air. It is a nondestructive inspection device for the above-mentioned multi-layered plastic structure, characterized in that it is performed using a cylinder.

【0007】[0007]

【作用】本発明によれば、多層プラスチック構造物のフ
ランジ周上に複数の超音波探触子を配置させることで同
時に各位置でのバリア層の有無を検査することが出来、
超音波探触子の先端をシリコンゴムで被覆することに加
え、プラスチック表面への接触、非接触動作を1個の超
音波探触子に1個のエアシリンダを用いることで超音波
探触子と被測定物との間に水あるいは油といった液体を
介在させず、シリコンゴムを用いても安定した押し圧力
と高い密着性が得られ、精度の高い超音波の伝搬と反射
信号の受信が可能となる。
According to the present invention, the presence or absence of the barrier layer at each position can be inspected at the same time by disposing a plurality of ultrasonic probes on the circumference of the flange of the multilayer plastic structure.
In addition to coating the tip of the ultrasonic probe with silicon rubber, the ultrasonic probe uses one air cylinder for one ultrasonic probe for contact and non-contact with the plastic surface. Even if silicone rubber is used, stable pressing force and high adhesion can be obtained without interposing a liquid such as water or oil between the measurement object and the object to be measured, and it is possible to accurately propagate ultrasonic waves and receive reflected signals. Becomes

【0008】[0008]

【実施例】以下、本発明を図面に基づき詳細に説明す
る。本発明の装置が検査対象とする多層プラスチック構
造物は、一例を挙げれば、図10に示すような断面構成
を有し、例えば基材層15にポリプロピレン層とし、接
着剤層16に変性ポリプロピレン層、ガスバリヤー層1
7にガスバリヤー性を有するエチレン酢酸ビニルアルコ
ール共重合体のケン化物などにより5層構成を形成する
容器である。
The present invention will be described in detail below with reference to the drawings. The multilayer plastic structure to be inspected by the device of the present invention has, for example, a cross-sectional structure as shown in FIG. 10. For example, the base material layer 15 is a polypropylene layer and the adhesive layer 16 is a modified polypropylene layer. , Gas barrier layer 1
7 is a container in which a 5-layer structure is formed by a saponified product of an ethylene vinyl acetate alcohol copolymer having a gas barrier property.

【0009】容器フランジ部にガスバリヤー層が有れば
容器全周を通してガスバリヤー層17が、形成されてい
ると判断することが出来る。上記フランジ部ガスバリヤ
ー層17の有無の検査を実現するための装置の一実施例
として、制御装置のブロック図を図5に、非破壊検査装
置の正面、平面、断面説明図を図1、2、3に示す。
If there is a gas barrier layer on the flange portion of the container, it can be judged that the gas barrier layer 17 is formed over the entire circumference of the container. As an example of an apparatus for implementing the inspection of the presence or absence of the flange gas barrier layer 17, a block diagram of a control apparatus is shown in FIG. 5, and a front view, a plane view, and a sectional explanatory view of a nondestructive inspection apparatus are shown in FIGS. 3 shows.

【0010】本実施例は超音波探触子をフランジ円周上
に8個用いたもので、配置された超音波探触子をチャン
ネル切り換え器23により順次切り換えていき、超音波
探触子からの反射信号をガスバリヤー層識別回路21で
その都度、その位置にガスバリヤー層が存在するかどう
か判定する。制御回路部22は、30〜40MHz程度
の周波数の超音波をチャンネル切り換え器23を通し繰
り返し超音波探触子30に送り、成形品からの反射信号
を再び超音波探触子30で受信するものである。
In this embodiment, eight ultrasonic probes are used on the circumference of the flange, and the ultrasonic probes arranged are sequentially switched by the channel switch 23. The gas barrier layer identifying circuit 21 determines whether the gas barrier layer exists at the position of the reflection signal of the signal. The control circuit unit 22 repeatedly sends an ultrasonic wave having a frequency of about 30 to 40 MHz to the ultrasonic probe 30 through the channel switch 23, and the ultrasonic probe 30 receives the reflected signal from the molded product again. Is.

【0011】また、シーケンサー24を通して検査対象
となる多層プラスチック構造物の保持及び超音波探触子
の前記多層プラスチック構造物への接触、非接触の機構
を具備する機構動作部25の制御を行う。
The sequencer 24 holds the multi-layer plastic structure to be inspected and controls the mechanism operating unit 25 having a mechanism for contacting and non-contacting the ultrasonic probe with the multi-layer plastic structure.

【0012】図1において、41は装置架台、50は超
音波探触子架台、42は検査対象となる多層プラスチッ
ク構造物48、49を載せるためのスライドブロック
で、本実施例では同時に2個載せる事ができる。43及
び44はスライドブロック42の移動用エアシリンダ4
5のストロークを制限するストッパで、超音波探触子3
0の位置に正しく、測定する構造物のフランジ部18が
位置するようにスライドブロック42の停止位置を決め
るものである。
In FIG. 1, reference numeral 41 is an apparatus mount, 50 is an ultrasonic probe mount, and 42 is a slide block for mounting multi-layer plastic structures 48, 49 to be inspected. In this embodiment, two slide blocks are mounted at the same time. I can do things. 43 and 44 are air cylinders 4 for moving the slide block 42.
The ultrasonic probe 3 is a stopper that limits the stroke of 5
The stop position of the slide block 42 is determined so that the flange portion 18 of the structure to be measured is correctly positioned at the zero position.

【0013】エアシリンダ46(合計8個)は超音波探
触子30を上下させ容器フランジ部と接触、非接触させ
る働きをする。
The air cylinders 46 (eight in total) serve to move the ultrasonic probe 30 up and down to make contact and non-contact with the container flange.

【0014】本発明による装置は以下のような動作によ
り、ガスバリヤー層の検出を行う。すなわち、スライド
ブロック42に検査する多層プラスチック容器48、4
9を載せ、装置をスタートさせるとエアシリンダ45に
よりスライドブロック42は移動し、ストッパ43また
は44により超音波探触子30に対して正しい位置関係
で停止する。
The device according to the present invention detects the gas barrier layer by the following operations. That is, the slide block 42 has multilayer plastic containers 48, 4 to be inspected.
When 9 is placed and the apparatus is started, the slide block 42 is moved by the air cylinder 45 and stopped by the stopper 43 or 44 in the correct positional relationship with respect to the ultrasonic probe 30.

【0015】次に前記超音波探触子30は、個々に装着
されたエアシリンダ46によりフランジ部18に押し当
てられる。次に制御回路部22からチャンネル切り換え
器23を通して超音波が探触子30から容器フランジ部
18へ入射される。ガスバリヤー層が存在すれば、フラ
ンジ部表面と裏面部に加え、層を構成する樹脂の密度差
からガスバリヤー層17の界面からの反射信号が再び超
音波探触子30により捕捉される。基材層15と接着剤
層16との界面は両樹脂が同じポリプロピレン系で密度
が近似しているため明確な超音波の反射が発生しない。
Next, the ultrasonic probe 30 is pressed against the flange portion 18 by the individually mounted air cylinders 46. Next, ultrasonic waves are incident on the container flange portion 18 from the probe 30 from the control circuit portion 22 through the channel switch 23. If the gas barrier layer exists, the ultrasonic probe 30 again captures a reflection signal from the interface of the gas barrier layer 17 due to the difference in the densities of the resin forming the layer in addition to the front surface and the back surface of the flange portion. At the interface between the base material layer 15 and the adhesive layer 16, since both resins are made of the same polypropylene and have similar densities, clear reflection of ultrasonic waves does not occur.

【0016】捕捉された反射信号は、制御回路部22を
通りガスバリヤー層識別回路21にて反射信号からガス
バリヤー層の有無を検出する。チャンネル切り換え器2
3が内蔵されたタイマーにより、おのおの計8個の超音
波探触子30を順次切り換えていき、上述した動作を繰
り返すことで、フランジ部円周上全体でのガスバリヤー
層が形成されているかどうか確認する事ができる。
The captured reflected signal passes through the control circuit section 22 and the gas barrier layer identification circuit 21 detects the presence or absence of the gas barrier layer from the reflected signal. Channel switch 2
Whether or not the gas barrier layer is formed on the entire circumference of the flange portion by repeating the above operation by sequentially switching the total of eight ultrasonic probes 30 by the timer having the built-in 3 You can check.

【0017】一連の検査が終了するとエアシリンダ46
が上昇して超音波探触子30がフランジ部から非接触状
態となり、エアシリンダ45が再び作動しスライドブロ
ック42に載せられたもう一方の容器側に移動し同様の
手順で検査を行う。この間に、検査の完了した容器を次
の未検査の容器に交換することで連続した検査が可能で
ある。
When a series of inspections is completed, the air cylinder 46
Rises to bring the ultrasonic probe 30 out of contact with the flange portion, the air cylinder 45 operates again and moves to the other container side placed on the slide block 42, and the inspection is performed in the same procedure. In the meantime, continuous inspection is possible by exchanging the container that has been inspected for the next uninspected container.

【0018】図6、図7は1個の超音波探触子から得ら
れた反射信号の1例である。測定した多層プラスチック
容器のフランジ部の肉厚1.0mm、ガスバリヤー層の
厚さは15μmである。図6はガスバリヤー層が正しく
層として存在している良品部で、Sはフランジ表面から
の反射信号、Bはフランジ裏面からの反射信号、Iはガ
スバリヤー層からの反射信号である。
FIG. 6 and FIG. 7 are examples of the reflection signal obtained from one ultrasonic probe. The measured thickness of the flange portion of the multilayer plastic container is 1.0 mm, and the thickness of the gas barrier layer is 15 μm. FIG. 6 is a non-defective portion in which the gas barrier layer is correctly present as a layer, S is a reflection signal from the flange surface, B is a reflection signal from the flange back surface, and I is a reflection signal from the gas barrier layer.

【0019】図7はガスバリヤー層が存在しない不良部
分で、フランジ表面Sと裏面Bの反射信号のみでガスバ
リヤー層からの反射信号が認められない。
FIG. 7 shows a defective portion in which the gas barrier layer does not exist. Only the reflection signals on the front surface S and the back surface B of the flange show no reflection signal from the gas barrier layer.

【0020】ガスバリヤー層識別回路21は、反射信号
SとBの間にガスバリヤー層からの反射信号Iが存在す
るか否かを識別する。前記反射信号の例を示したように
本装置は明確にガスバリヤー層の有無を検査、識別する
ことが可能である。
The gas barrier layer discrimination circuit 21 discriminates whether or not the reflection signal I from the gas barrier layer exists between the reflection signals S and B. As shown in the example of the reflected signal, the present device can clearly inspect and identify the presence or absence of the gas barrier layer.

【0021】ここで、1個の超音波探触子に1個のエア
シリンダを用い被測定物への接触、非接触動作を行わせ
る必要性について述べる。通常の超音波を用いた非破壊
検査では、前述したように超音波探触子先端と被測定物
との間に水または油等の液体を介して密着性を高めてい
る。本発明の装置は、食品用途等の製品では衛生的に問
題となる液体を介さず、シリコンゴムを通して被測定物
中に超音波を伝播させることを可能とするため、個々の
超音波探触子と被測定物との密着性、押し圧力、押し当
て角度の均一性と安定性を高い精度で揃えられるよう
に、1個の超音波探触子に1個のエアシリンダを用い被
測定物への接触、非接触動作を行わせている。
Here, the necessity of using one air cylinder for one ultrasonic probe to perform the contact / non-contact operation with the object to be measured will be described. In the non-destructive inspection using normal ultrasonic waves, as described above, the adhesion is enhanced between the ultrasonic probe tip and the object to be measured through a liquid such as water or oil. The apparatus of the present invention does not involve a liquid which is a hygienic problem in products such as food products, and enables ultrasonic waves to be propagated through the silicon rubber into the object to be measured, so that individual ultrasonic probes are used. To ensure that the ultrasonic probe has one air cylinder and one air cylinder, it is possible to align the adhesion and the pressure to the object to be measured, the pressing force, and the uniformity and stability of the pressing angle with high accuracy. The contacting and non-contacting operations are performed.

【0022】超音波の減衰及び反射特性は上記したよう
な密着性や押し圧力等により変化するため、精度が高く
安定した超音波の入射と反射信号の捕捉を行うには、個
々の超音波探触子が等しい条件で被測定物と接触するこ
とが非常に重要な要件となる。例えば、8個の超音波探
触子を1個の固定治具に装着し1個のやや大型なエアシ
リンダを用い被測定物への接触、非接触動作を行わせた
場合、偏荷重や押し当て角度等の不均一が生じ易く、改
善のための調整も出来ないことは、容易に想像が付くと
ころである。
Since the attenuation and reflection characteristics of ultrasonic waves change depending on the adhesion and pressing force as described above, in order to perform accurate and stable ultrasonic wave incidence and capture of reflected signals, individual ultrasonic probe It is a very important requirement that the tentacles come into contact with the DUT under the same conditions. For example, when eight ultrasonic probes are attached to one fixing jig and one slightly large air cylinder is used to make contact or non-contact with the object to be measured, an unbalanced load or push It is easy to imagine that nonuniformity of the contact angle is likely to occur and adjustment for improvement cannot be performed.

【0023】[0023]

【発明の効果】以上、述べてきたように本発明によれ
ば、多層プラスチック構造物フランジ部におけるガスバ
リヤー層が存在するかどうか明確に判別することが出
来、検査に際して水、油等の液体を使用せずシリコンゴ
ムにて密着性等の超音波による非破壊検査特有の問題を
解消し、衛生面での管理にも問題のない装置が提供でき
る。
As described above, according to the present invention, it is possible to clearly determine whether or not the gas barrier layer is present in the flange portion of the multilayer plastic structure, and to check the liquid such as water or oil during the inspection. It is possible to provide a device that does not use the silicone rubber and solves the problems specific to non-destructive inspection by ultrasonic waves such as adhesion, and has no problem in hygiene management.

【0024】[0024]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の多層プラスチック構造物の
非破壊検査装置の正面説明図である。
FIG. 1 is a front explanatory view of a nondestructive inspection device for a multilayer plastic structure according to an embodiment of the present invention.

【図2】本発明の一実施例の多層プラスチック構造物の
非破壊検査装置の平面説明図である。
FIG. 2 is a plan view of a nondestructive inspection device for a multilayer plastic structure according to an embodiment of the present invention.

【図3】本発明の一実施例の多層プラスチック構造物の
非破壊検査装置のA−A断面説明図である。
FIG. 3 is an AA cross-sectional explanatory view of a nondestructive inspection device for a multilayer plastic structure according to an embodiment of the present invention.

【図4】シリコンゴムで超音波探触子先端を被覆した説
明図である。
FIG. 4 is an explanatory diagram in which the tip of the ultrasonic probe is covered with silicon rubber.

【図5】本発明の一実施例の多層プラスチック構造物の
非破壊検査装置の制御装置のブロック図である。
FIG. 5 is a block diagram of a control device of the nondestructive inspection device for a multilayer plastic structure according to an embodiment of the present invention.

【図6】反射信号の一例(ガスバリヤー層のある場合)
を示すグラフである。
FIG. 6 shows an example of a reflected signal (when a gas barrier layer is provided).
It is a graph which shows.

【図7】反射信号の一例(ガスバリヤー層のない場合)
を示すグラフである。
FIG. 7: Example of reflection signal (without gas barrier layer)
It is a graph which shows.

【図8】液体を介する方法の従来技術の説明図である。FIG. 8 is a prior art illustration of a liquid-mediated method.

【図9】水中に没する方法の従来技術の説明図である。FIG. 9 is an explanatory diagram of a conventional technique of a method of submerging in water.

【図10】本発明が検査対象とする容器の断面の構成を
示す説明図である。
FIG. 10 is an explanatory diagram showing a configuration of a cross section of a container to be inspected by the present invention.

【符合の説明】[Explanation of sign]

1、10…超音波探触子先端 2…被測定物 3…水ま
たは油等の液体 4…超音波探触子 5…被測定物 6
…水 7…水槽 11…シリコンゴム 15…基材層
16…接着剤層 17…ガスバリヤー層 18…容器フ
ランジ部 19…容器本体 21…ガスバリヤー層識別
回路 22…制御回路部 23…チャンネル切り換え器
24…シーケンサー 25…機構動作部 41…装置
架台 42…スライドブロック 43、44…ストッパ
45、46…エアシリンダ 48、49…多層プラス
チック容器 50…超音波探触子架台 S…フランジ表
面からの反射信号 B…フランジ裏面からの反射信号
I…ガスバリヤー層からの反射信号
1, 10 ... Ultrasonic probe tip 2 ... Object to be measured 3 ... Liquid such as water or oil 4 ... Ultrasonic probe 5 ... Object to be measured 6
... water 7 ... water tank 11 ... silicon rubber 15 ... base material layer
16 ... Adhesive Layer 17 ... Gas Barrier Layer 18 ... Container Flange 19 ... Container Main Body 21 ... Gas Barrier Layer Identification Circuit 22 ... Control Circuit 23 ... Channel Switch 24 ... Sequencer 25 ... Mechanism Operating Unit 41 ... Device Stand 42 ... Slide block 43, 44 ... Stopper 45, 46 ... Air cylinder 48, 49 ... Multi-layer plastic container 50 ... Ultrasonic probe mount S ... Reflection signal from flange surface B ... Reflection signal from flange back surface
I ... Reflected signal from gas barrier layer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】ガスバリヤー性樹脂層を含んで合成樹脂が
少なくとも3層以上の多層プラスチック構造物の検査装
置において、前記ガスバリヤー性樹脂層の有無を非破壊
で検査する装置であって、多層プラスチック構造物フラ
ンジ周上に複数の超音波探触子を配置し、同時に複数箇
所の検査を行うことを特徴とする多層プラスチック構造
物の非破壊検査装置。
1. A device for inspecting a multi-layer plastic structure including at least three synthetic resins including a gas barrier resin layer, which is a non-destructive inspection device for the presence or absence of the gas barrier resin layer. A non-destructive inspection device for a multilayer plastic structure, wherein a plurality of ultrasonic probes are arranged on the circumference of a flange of a plastic structure to inspect a plurality of locations at the same time.
【請求項2】前記超音波探触子の先端がシリコンゴムで
被覆され、乾燥状態でプラスチック表面に接触させるこ
とを特徴とする請求項1記載の多層プラスチック構造物
の非破壊検査装置。
2. The nondestructive inspection apparatus for a multilayer plastic structure according to claim 1, wherein the tip of said ultrasonic probe is covered with silicone rubber and brought into contact with the plastic surface in a dry state.
【請求項3】前記超音波探触子のプラスチック表面への
接触、非接触動作を1つの超音波探触子につき、1つの
エアシリンダを用いて行わせることを特徴とする請求項
1又は請求項2記載の多層プラスチック構造物の非破壊
検査装置。
3. The ultrasonic probe according to claim 1 or 2, wherein the ultrasonic probe is brought into contact or non-contact with a plastic surface by using one air cylinder for each ultrasonic probe. Item 2. A nondestructive inspection device for a multilayer plastic structure according to item 2.
JP4282919A 1992-10-21 1992-10-21 Nondestructive inspection apparatus for multilayer plastic tructure Pending JPH06130042A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4282919A JPH06130042A (en) 1992-10-21 1992-10-21 Nondestructive inspection apparatus for multilayer plastic tructure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4282919A JPH06130042A (en) 1992-10-21 1992-10-21 Nondestructive inspection apparatus for multilayer plastic tructure

Publications (1)

Publication Number Publication Date
JPH06130042A true JPH06130042A (en) 1994-05-13

Family

ID=17658814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4282919A Pending JPH06130042A (en) 1992-10-21 1992-10-21 Nondestructive inspection apparatus for multilayer plastic tructure

Country Status (1)

Country Link
JP (1) JPH06130042A (en)

Similar Documents

Publication Publication Date Title
US5372042A (en) Ultrasonic inspection of seal integrity of bond lines in sealed containers
US5303590A (en) Method of and an apparatus for frequency selective ultrasonic inspection of multi-layered structures
EP0276307B1 (en) Composite analyzer tester
US5167157A (en) Nondestructive inspection system for laminated products
KR101882838B1 (en) Peeling inspection method of laminate and peeling inspection device
Schnars et al. Applications of NDT methods on composite structures in aerospace industry
US6072144A (en) Apparatus for measuring the quality of spot welds
EP0276308B1 (en) Ultrasonic method of measuring dimensions of flaw in solid material
JP2550377B2 (en) Improved probe for hybrid analytical test equipment
JP2004333387A (en) Ultrasonic inspection method for welded part
CA2770553A1 (en) Method and device for inspecting the quality of a formed thermoplastic fiber-reinforced plastic component
US3776026A (en) Ultrasonic flaw determination by spectral anaylsis
JPH06130042A (en) Nondestructive inspection apparatus for multilayer plastic tructure
US4380929A (en) Method and apparatus for ultrasonic detection of near-surface discontinuities
CN114184689A (en) Multilayer ceramic capacitor end detection device and detection method
JPS63175762A (en) Adhesion state inspecting method using ultrasonic wave
SU1167493A1 (en) Method of ultrasonic inspection of articles
JPS63221211A (en) Ultrasonic thickness measuring method for laminar body
Chung et al. Ultrasonic detection of interface crack in adhesively bonded DCB joints
KR101291619B1 (en) A diagnosis device for joint of sheet metal using and method checking up joint of sheet metal use of it
SU1165980A2 (en) Method of ultrasonic check of shear waves of plane-parallel articles
JPH06100577B2 (en) Enlargement method of the surface of the inspected object in ultrasonic flaw detection
JP2002181796A (en) Contact medium for probe of ultrasonic flaw detector
JPH0752180B2 (en) Ultrasonic testing method
RU1772721C (en) Ultrasonic contact transducer