JPH06100399A - Production of boron phoshide nitride - Google Patents

Production of boron phoshide nitride

Info

Publication number
JPH06100399A
JPH06100399A JP24962492A JP24962492A JPH06100399A JP H06100399 A JPH06100399 A JP H06100399A JP 24962492 A JP24962492 A JP 24962492A JP 24962492 A JP24962492 A JP 24962492A JP H06100399 A JPH06100399 A JP H06100399A
Authority
JP
Japan
Prior art keywords
substrate
gas
boron
high frequency
boron nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24962492A
Other languages
Japanese (ja)
Inventor
Naohiro Toda
直大 戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP24962492A priority Critical patent/JPH06100399A/en
Publication of JPH06100399A publication Critical patent/JPH06100399A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To obtain BPxN1-x film used for coating film, etc., having high hardness and high environmental resistance by specifying substrate temperature using high-frequency plasma CVD method under reduced pressure in synthesizing boron nitride phosphide from gas mixture containing N, P and B atoms as essential components and a hydrogen-containing gas. CONSTITUTION:A washed substrate 1 is installed on a substrate holder 2 connected to a high frequency electric source 3 and an electrode opposite to the holder is ground. The substrate holder 2 is heated by a heater 5 and then the substrate 1 is heated to 850-1400 deg.C by a heater 5 and the raw material gases are allowed to flow into a reaction chamber 6 to keep the interior of the reaction chamber 6 to prescribed pressure and high frequency bias is applied onto the substrate 1 to form high frequency plasma 7 on the substrate. Thereby, raw material gasses are allowed to react with each other to readily synthesis BPxN1-x on the substrate. Furthermore, at least part of the hydrogen gas is preferably substituted with a halogen gas and/or a dilute gas.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高硬度被膜、高耐環境性
被膜などに用いられる窒化燐化ホウ素薄膜の製造方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a boron nitride phosphide thin film used for a high hardness coating, a high environmental resistance coating and the like.

【0002】[0002]

【従来の技術】高硬度被膜、高耐環境性被膜としては、
窒化ホウ素(BN)がすでに良く知られている。ホウ素
と窒素のみからなる固体については主として4つの結晶
相が報告されている。六方晶(h−BN)、立方晶(c
−BN)、ウルツ鉱型六方晶(w−BN)、菱面晶体
(r−BN)である。この中で高硬度被膜や、機能性デ
バイスへの応用が期待されるのはc−BNである。c−
BNは閃亜鉛鉱型結晶構造を有し、全ての結晶中でダイ
ヤモンドに次いで2番目に硬く、耐熱性、耐環境性、熱
伝導特性に優れる。BeやSiをその中にドーピングす
ることにより、おのおのn,p型伝導を示すことも知ら
れている。c−BNの合成法には高圧合成法と気相合成
法があり、前者はコストが高く、製品には不純物を多く
含み、数mm以下の微小な結晶しか得られない。一方後
者では単相薄膜を得ることが困難であり、100nm以
下の微小結晶しか得られないので、いずれにしてもc−
BNの合成は困難である。
2. Description of the Related Art As a high hardness coating and a high environmental resistance coating,
Boron nitride (BN) is already well known. Mainly four crystalline phases have been reported for solids consisting only of boron and nitrogen. Hexagonal (h-BN), cubic (c
-BN), wurtzite hexagonal (w-BN), and rhombohedral (r-BN). Among these, c-BN is expected to be applied to high hardness coatings and functional devices. c-
BN has a zinc blende type crystal structure, is the second hardest in all crystals after diamond, and has excellent heat resistance, environmental resistance, and heat conduction characteristics. It is also known that by doping Be or Si therein, each exhibits n- and p-type conduction. There are two methods for synthesizing c-BN, a high-pressure synthesizing method and a vapor-phase synthesizing method. The former is high in cost, and the product contains a large amount of impurities, and only fine crystals of several mm or less can be obtained. On the other hand, in the latter case, it is difficult to obtain a single-phase thin film, and only fine crystals of 100 nm or less can be obtained.
The synthesis of BN is difficult.

【0003】窒素と同じV族元素に燐(P)があり、ホ
ウ素と燐のみからなる燐化ホウ素(BP)は立方晶閃亜
鉛鉱型結晶であり、やはり高硬度を有する。また、その
中のB又はPが僅かに過剰になることにより各々n,p
型伝導を示す。気相合成法によりSi単結晶又はSiC
単結晶上にエピタキシャル成長させることにより単結晶
が得られる。但し、c−BNほど硬くはなく、化学的耐
久性もc−BNには劣っている。
Phosphorus (P) is contained in the same group V element as nitrogen, and boron phosphide (BP) consisting of boron and phosphorus is a cubic zinc blende type crystal and also has a high hardness. In addition, when B or P in them is slightly excessive, n and p are respectively increased.
Shows type conduction. Si single crystal or SiC by vapor phase synthesis method
A single crystal is obtained by epitaxially growing on the single crystal. However, it is not as hard as c-BN and is inferior in chemical durability to c-BN.

【0004】さらに、ホウ素,燐,窒素の三成分のみか
らなる固体については従来殆ど報告されておらず、下記
の二つの文献程度である。 特開昭63−65081号公報には、立方晶窒化ホウ
素(c−BN)被膜の密着力増強用に界面にB(P,
N)結晶を合成することが提案されており、燐源として
はPCl3 ,PH3 、ホウ素源としてはBCl3 ,BH
3 、窒素源としてはNH3 ,N2 などを用いて、B
(N,P)を300℃〜800℃、5〜20Torrの
減圧プラズマCVD法により合成したとの記載がある。
得られた立方晶窒化ホウ素膜はX線回折法によりc−B
N構造が確認され、マイクロビッカーズ硬さ4000k
g/mm2 以上であると記載されているが、界面に設け
たB(N,P)膜についての確認はなされていない。 S.Motojima, H.Hotta, K.Goto ; Mater.Lett. 8 (19
89)457に記載の論文には、非晶質B−N−P三元系透光
性固体を合成することが記載され、原料としてPC
3 、BCl3 、NH3 、H2 及びAr を用いて、熱C
VD法により、温度500〜700℃で非晶質B−N−
P三元系透光性固体を得ている。 上記およびの合成法では非晶質又は極めて結晶性の
悪い膜しか得られない。
Further, almost no reports have so far been made on solids consisting of only three components of boron, phosphorus and nitrogen, and the following two documents are the only ones. In Japanese Patent Laid-Open No. 63-65081, B (P, P, is added to the interface to enhance the adhesion of a cubic boron nitride (c-BN) film.
N) It has been proposed to synthesize crystals, PCl 3 and PH 3 as phosphorus sources, and BCl 3 and BH as boron sources.
3 , using NH 3 , N 2 or the like as a nitrogen source,
It is described that (N, P) was synthesized by a low pressure plasma CVD method at 300 ° C. to 800 ° C. and 5 to 20 Torr.
The obtained cubic boron nitride film was c-B by X-ray diffractometry.
N structure confirmed, Micro Vickers hardness 4000k
Although it is described as g / mm 2 or more, no confirmation has been made for the B (N, P) film provided on the interface. S.Motojima, H.Hotta, K.Goto; Mater.Lett. 8 (19
89) 457, the synthesis of an amorphous BNP ternary translucent solid is described, and PC is used as a raw material.
using l 3 , BCl 3 , NH 3 , H 2 and Ar, heat C
Amorphous B-N-at a temperature of 500 to 700 ° C. according to the VD method.
A P-ternary translucent solid is obtained. The above synthesis methods (1) and (2) can yield only an amorphous film or a film having extremely poor crystallinity.

【0005】[0005]

【発明が解決しようとする課題】ところで、立方晶窒化
ホウ素は性質が優れているものの、前記したように合成
が極めて難しい。特に気相合成方ではμmサイズの単結
晶すら得られていない。また、立方晶燐化ホウ素は単結
晶合成が比較的容易であるが、得られているものは電子
移動度が比較的低く、また硬度もc−BNには劣る。一
方、ホウ素、燐、窒素3成分のみからなる固体について
は、上記の如く従来殆ど報告がない。従来合成されてい
るB−N−P三元系物質は、800℃以下で合成されて
いるため非晶質または結晶性の極めて悪い多結晶体にし
かならない。本発明は以上のような現状に鑑みてなされ
たものであり、c−BNよりも容易に合成可能であり且
つBPよりも優れた性質を持つ物質、すなわち窒化燐化
ホウ素BPX 1-X の製造方法を提供しようとするもの
である。
Although cubic boron nitride has excellent properties, it is extremely difficult to synthesize it as described above. In particular, even a single crystal of μm size has not been obtained by the vapor phase synthesis method. Further, although cubic boron phosphide is relatively easy to synthesize a single crystal, the obtained one has a relatively low electron mobility and a hardness inferior to that of c-BN. On the other hand, there have been almost no reports on solids consisting of only boron, phosphorus and nitrogen as described above. Since the conventionally synthesized B-N-P ternary substance is synthesized at 800 ° C. or lower, it can only be a polycrystal having an amorphous or extremely poor crystallinity. The present invention has been made in view of the above circumstances, and is a substance that can be synthesized more easily than c-BN and has properties superior to BP, that is, boron nitride phosphide BP X N 1-X. The present invention is intended to provide a manufacturing method of.

【0006】[0006]

【課題を解決するための手段】上記課題を解決する手段
として本発明は、窒素原子、燐原子、ホウ素原子をそれ
ぞれ必ず1種類以上含む気体及び水素含有ガスから窒化
燐化ホウ素を基板上に合成する方法において、減圧下で
高周波プラズマCVD法を用い、且つ基板加熱温度を8
50℃〜1400℃とすることを特徴とする窒化燐化ホ
ウ素の製造方法を提供する。本発明において、上記水素
含有ガスの少なくとも一部をハロゲンガス及び/または
希ガスで置換することを特に好ましい実施態様として挙
げることができる。
Means for Solving the Problems As a means for solving the above problems, the present invention synthesizes boron nitride phosphide on a substrate from a gas containing at least one kind of nitrogen atom, phosphorus atom and boron atom and a gas containing hydrogen. In this method, the high frequency plasma CVD method is used under reduced pressure, and the substrate heating temperature is set to 8
A method for producing boron nitride phosphide, characterized in that the temperature is 50 ° C to 1400 ° C. In the present invention, substituting at least a part of the hydrogen-containing gas with a halogen gas and / or a rare gas can be mentioned as a particularly preferred embodiment.

【0007】[0007]

【作用】以下、図に基づいて本発明を説明する。図1に
おいて、洗浄した基板1は基板ホルダー2上に設置され
る。基板ホルダー2には高周波電源3がつながってお
り、また対極に設置される電極4はアースされている。
また基板ホルダー2は加熱ヒーター5を用いて加熱でき
る。上記装置の反応チェンバー6中を、まず10-6To
rr以下まで真空引きした後、加熱ヒーター5により基
板1を所定の温度、すなわち850〜1400℃まで加
熱する。所定の温度に達した後に原料ガスを流して所定
の圧力にし、高周波バイアスを印加して高周波プラズマ
を基板1上で形成することにより、原料ガスを反応せし
めてBPX 1-X を基板1上に合成する。
The present invention will be described below with reference to the drawings. In FIG. 1, the cleaned substrate 1 is placed on a substrate holder 2. A high frequency power source 3 is connected to the substrate holder 2, and an electrode 4 installed on the counter electrode is grounded.
Further, the substrate holder 2 can be heated by using the heater 5. First, in the reaction chamber 6 of the above apparatus, 10 −6 To
After vacuuming to rr or less, the heater 1 heats the substrate 1 to a predetermined temperature, that is, 850 to 1400 ° C. After reaching a predetermined temperature, a raw material gas is caused to flow to have a predetermined pressure, and a high frequency bias is applied to form a high frequency plasma on the substrate 1, whereby the raw material gas is reacted and BP X N 1-X is transferred to the substrate 1. Combine on top.

【0008】窒化ホウ素にはsp3 混成軌道で構成され
た閃亜鉛鉱型立方晶系の存在が知られているが、その合
成は極めて難しい。一方、燐化ホウ素は熱CVD法で容
易に合成され、Si単結晶基板上でエピタキシャルに成長
することが知られている。同じV族の窒素がsp2 やs
p混成軌道を取り易いのに対し、一般に燐の結合に関与
する電子の取り易い軌道はp軌道のほか、sp3 、sp
2 d、sp2 2 などである。sp2 混成軌道は比較的
取り難い。このこともあり、BPは標準状態における安
定相がsp3 混成軌道で構成される閃亜鉛鉱型であり、
1992年5月現在、BとPが1:1の組成比を取る結
晶としては閃亜鉛鉱型以外の結晶形は見つかっていな
い。以上より、ホウ素と窒素と燐の三元からなる結晶
は、燐が入るために窒化ホウ素よりも閃亜鉛鉱型立方晶
形の合成が容易であるという利点がある。
It is known that boron nitride has a zinc blende type cubic system composed of sp 3 hybrid orbitals, but its synthesis is extremely difficult. On the other hand, it is known that boron phosphide is easily synthesized by the thermal CVD method and grows epitaxially on a Si single crystal substrate. The same group V nitrogen is sp 2 or s
While p-orbitals are easy to take, in general, electrons that are involved in phosphorus bonds are easy to take, as well as p orbitals, sp 3 , sp
2 d, sp 2 d 2 and the like. The sp 2 hybrid orbit is relatively difficult to take. For this reason, BP is a sphalerite type whose stable phase in the standard state is composed of sp 3 hybrid orbitals.
As of May 1992, no crystal form other than zinc blende type has been found as a crystal in which B and P have a composition ratio of 1: 1. As described above, the crystal composed of ternary elements of boron, nitrogen and phosphorus has an advantage that the zinc blende type cubic crystal form is easier to synthesize than boron nitride because it contains phosphorus.

【0009】なお、本発明における燐化窒化ホウ素BP
X 1-X が立方晶系を取り得るxの範囲は、0.1<x
<1である。目的の組成(BPX 1-X )に対し、Bを
1とすると、NはBに対するガス中原子比で 3(1−
x)>N>(1−x)、Pは P>10x であること
が必要である。成膜温度が多角なるにつれ、N/Bおよ
びP/Nの比率を高くする必要がある。得られる膜中の
B、P、Nの特に好ましい範囲としては、1>x>0.
6である。
The boron phosphide nitride BP according to the present invention
The range of x in which X N 1-X can take a cubic system is 0.1 <x
<1. If B is 1 with respect to the target composition (BP X N 1-X ), N is 3 (1-
x)>N> (1-x), P needs to be P> 10x. It is necessary to increase the ratio of N / B and P / N as the film forming temperature becomes various. A particularly preferable range of B, P and N in the obtained film is 1>x> 0.
It is 6.

【0010】本発明に用いる原料ガスとしては、以下の
ものが挙げられる。燐(P)源として、Pの水素化物例
えばPH3 ,PH5 など、Pのハロゲン化物例えばPF
3 ,PCl3 ,PBr3,PI3 など、有機燐化合物例え
ば P(CH3)3 ,P(C25)3 などが挙げられる。
ホウ素(B)源として、Bの水素化物例えば B2
6 ,B410など、Bのハロゲン化物例えばPF3
BCl3 ,BBr3,BI3 など、有機ホウ素化合物例え
ば B(CH3)3 ,B(C25)3 などが挙げられる。
窒素(N)源として、Nの水素化物例えば NH3 ,N
24 ,N3 Hなど、Nのハロゲン化物例えば NF,
NCl3 など、有機窒素化合物例えばフェノールアミン
などが挙げられる。
The source gases used in the present invention include the following. As a phosphorus (P) source, P hydrides such as PH 3 and PH 5 , P halides such as PF
3 , PCl 3 , PBr 3 , PI 3 and the like, and organic phosphorus compounds such as P (CH 3 ) 3 and P (C 2 H 5 ) 3 can be mentioned.
As a source of boron (B), a hydride of B such as B 2
H 6 , B 4 H 10, etc. B halides such as PF 3 ,
BCl 3 , BBr 3 , BI 3 and the like, and organic boron compounds such as B (CH 3 ) 3 and B (C 2 H 5 ) 3 can be mentioned.
As a nitrogen (N) source, a hydride of N, for example, NH 3 , N
2 H 4 , N 3 H, etc. N halides such as NF,
Examples include organic nitrogen compounds such as NCl 3 and the like, such as phenolamine.

【0011】本発明においては上記した各原料ガスに更
に水素含有ガスを加える。水素含有ガスによるB原子の
希釈濃度は1.0%以下であることが好ましい。1.0
%を越えるとホウ素原子の析出速度が大きくなりすぎ、
ホウ素−ホウ素の結合を形成し易くなるため、結晶性の
良いものが得られない。該水素含有ガスとしては、
2 ,H2 O, HFなどの他、CH4 等の有機系ガスを
用いることもできる。また、水素含有ガスの少なくとも
一部を例えばF2,Cl2 ,Br2等のハロゲンガス及び/
または例えば He ,Ne ,Ar ,Kr ,Xe などの希
ガスで置換することが特に好ましい。上記ガスはホウ素
−ホウ素、また燐−燐などの、BPX1-X を合成する
のに好ましくない結合の形成を抑制するほか、六方晶な
どの同素体をエッチング除去する効果があるものと考え
られる。ただし、その一部をハロゲンガス及び/又は希
ガスで置換される水素含有ガスには窒素,燐,ホウ素の
水素化物は含まれない。
In the present invention, in addition to the above raw material gases,
Add hydrogen-containing gas to. Of B atom by hydrogen containing gas
The dilution concentration is preferably 1.0% or less. 1.0
%, The deposition rate of boron atoms becomes too high,
Since it is easy to form a boron-boron bond,
I can't get a good one. As the hydrogen-containing gas,
H 2, H2O, HF, etc., CHFourSuch as organic gas
It can also be used. In addition, at least the hydrogen-containing gas
For example, F2, Cl2, Br2Halogen gas such as /
Or, for example, He, Ne, Ar, Kr, Xe, etc.
It is particularly preferable to replace with gas. The above gas is boron
-BP, such as boron or phosphorus-phosphorusXN1-XSynthesize
In addition to suppressing the formation of unfavorable bonds,
It is thought that any allotrope has an effect of removing by etching
To be However, part of it may be halogen gas and / or rare gas.
The hydrogen-containing gas that is replaced by gas is nitrogen, phosphorus, or boron.
Does not include hydrides.

【0012】本発明において、基板は温度850℃〜1
400℃の範囲内に加熱する。850℃未満では結晶化
しない。1400℃を越えるとこの温度に耐え得る基板
が少ない。また燐や窒素が抜け易く、立方晶にならない
ので不都合である。基板の加熱手段としては、例えば図
1に5として示す加熱ヒーター、ハロゲンランプ、赤外
線照射などこの種の技術分野で公知の各種加熱手段を用
いることができる。
In the present invention, the substrate has a temperature of 850 ° C. to 1
Heat in the range of 400 ° C. It does not crystallize below 850 ° C. If it exceeds 1400 ° C, there are few substrates that can withstand this temperature. It is also inconvenient because phosphorus and nitrogen are easily released and cubic crystals are not formed. As the heating means for the substrate, various heating means known in this technical field such as a heater, a halogen lamp, and infrared irradiation shown as 5 in FIG. 1 can be used.

【0013】合成時の圧力については、加熱方法にもよ
るが、0.01Torr〜150Torrの範囲が好ま
しい。0.01Torr未満では流せるガスの流量が極
端に小さくなり、成膜速度が極めて小さくなるため実用
的でない。また高周波プラズマによる放電を維持するこ
とが難しくなり、且つ反応管内のガスの流れが長くなる
ため、結晶性の悪い膜しか得られない。また、減圧条件
は用いる周波数などにより異なり、例えば13.56M
Hz の高周波プラズマの場合では0.5〜5Torr、
2.45MHz のマイクロ波プラズマの場合では5〜1
00Torr程度が好ましい範囲である。
The pressure during synthesis depends on the heating method, but is preferably in the range of 0.01 Torr to 150 Torr. If it is less than 0.01 Torr, the flow rate of the gas that can be supplied becomes extremely small, and the film formation rate becomes extremely small, which is not practical. Further, it becomes difficult to maintain the discharge by the high frequency plasma, and the gas flow in the reaction tube becomes long, so that only a film having poor crystallinity can be obtained. In addition, the depressurization condition varies depending on the frequency used and the like.
In the case of Hz high frequency plasma, 0.5 to 5 Torr,
5-1 in case of microwave plasma of 2.45 MHz
A preferable range is about 00 Torr.

【0014】本発明により得られる窒化燐化ホウ素の膜
厚は成膜時間を変化させることにより制御できる。
The film thickness of the boron nitride phosphide obtained according to the present invention can be controlled by changing the film formation time.

【0015】[0015]

【実施例】以下、実施例により本発明を具体的に説明す
るが、本発明はこれに限定されるものではない。 〔実施例1〜14及び比較例1,2〕図1に示す装置
で、13.56MHz の高周波によるプラズマを用い
て、1時間成膜を行った結果を下記の表1、表2及び表
3に示す。得られる膜については薄膜X線回折法(XR
D)により結晶相を同定し、化学分析手法(ESCA)
により膜中に含まれる元素量を調べた。結晶性評価のた
めにはXRDにおいて得られた111反射の半値幅(結
晶性が良いと半値幅は小さくなる)を用いた。なお、各
実施例1〜14で得られる膜厚は5〜7μmである。比
較のために実施例と同じ条件で基板温度を700℃にし
て行った場合を比較例1に、また単に基板を1000℃
に加熱し高周波プラズマを形成しなかった場合を比較例
2として示す。表1〜表3における略号の意味するとこ
ろは下記のとおり。 c:cubic phase(立方晶系) a:amorphous(アモルファス、非晶質)
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited thereto. [Examples 1 to 14 and Comparative Examples 1 and 2] The results shown in Table 1, Table 2, and Table 3 below were obtained by using the apparatus shown in FIG. 1 and using plasma with a high frequency of 13.56 MHz for 1 hour. Shown in. Regarding the obtained film, the thin film X-ray diffraction method (XR
The crystal phase is identified by D), and the chemical analysis method (ESCA) is used.
The amount of elements contained in the film was investigated by. For the evaluation of crystallinity, the full width at half maximum of 111 reflection obtained by XRD (the half width becomes smaller when the crystallinity is good) was used. The film thickness obtained in each of Examples 1 to 14 is 5 to 7 μm. For comparison, the case where the substrate temperature is set to 700 ° C. under the same conditions as in the example is referred to as comparative example 1, and the substrate is simply set to 1000 ° C.
Comparative Example 2 shows the case where the high-frequency plasma was not formed by heating to 1. The meanings of the abbreviations in Tables 1 to 3 are as follows. c: cubic phase (cubic system) a: amorphous (amorphous, amorphous)

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【表2】 [Table 2]

【0018】[0018]

【表3】 [Table 3]

【0019】表1〜表3に示すように、実施例1〜14
のXRDの半値幅はいずれも0.5°以下と非常に結晶
性が良いことから、本発明により立方晶単相の窒化燐化
ホウ素が得られていることが明らかに判る。また、本発
明の減圧下高周波プラズマCVD法、基板加熱温度範囲
が有効なことがわかる。
As shown in Tables 1 to 3, Examples 1 to 14
Since the XRD half widths are all 0.5 ° or less and the crystallinity is very good, it is clear that the cubic single-phase boron nitride phosphide is obtained by the present invention. Further, it is understood that the high-frequency plasma CVD method under reduced pressure and the substrate heating temperature range of the present invention are effective.

【0020】[0020]

【発明の効果】本発明は高硬度被膜、高耐環境性被膜と
して有望な立方晶単相の窒化燐化ホウ素を製造すること
ができる。
INDUSTRIAL APPLICABILITY The present invention can produce a cubic single-phase boron nitride phosphide which is promising as a high hardness coating and a high environmental resistance coating.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の窒化燐化ホウ素製造方法の一実施例
を説明する概略図である。
FIG. 1 is a schematic diagram illustrating an example of the method for producing boron nitride phosphide according to the present invention.

【符合の説明】[Explanation of sign]

1 基板 2 基板ホルダー 3 高周波電源 4 電極 5 加熱ヒーター 6 反応チェンバー 1 substrate 2 substrate holder 3 high frequency power supply 4 electrode 5 heating heater 6 reaction chamber

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 窒素原子、燐原子、ホウ素原子をそれぞ
れ必ず1種類以上含む気体及び水素含有ガスから窒化燐
化ホウ素を基板上に合成する方法において、減圧下で高
周波プラズマCVD法を用い、且つ基板加熱温度を85
0℃〜1400℃とすることを特徴とする窒化燐化ホウ
素の製造方法。
1. A method of synthesizing boron nitride phosphide on a substrate from a gas containing at least one kind of nitrogen atom, phosphorus atom, and boron atom and a gas containing hydrogen, using a high-frequency plasma CVD method under reduced pressure, and Substrate heating temperature is 85
The method for producing boron nitride phosphide is characterized in that the temperature is 0 ° C to 1400 ° C.
【請求項2】 上記水素含有ガスの少なくとも一部をハ
ロゲンガス及び/または希ガスで置換することを特徴と
する請求項1記載の窒化燐化ホウ素の製造方法。
2. The method for producing boron nitride phosphide according to claim 1, wherein at least a part of the hydrogen-containing gas is replaced with a halogen gas and / or a rare gas.
JP24962492A 1992-09-18 1992-09-18 Production of boron phoshide nitride Pending JPH06100399A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24962492A JPH06100399A (en) 1992-09-18 1992-09-18 Production of boron phoshide nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24962492A JPH06100399A (en) 1992-09-18 1992-09-18 Production of boron phoshide nitride

Publications (1)

Publication Number Publication Date
JPH06100399A true JPH06100399A (en) 1994-04-12

Family

ID=17195799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24962492A Pending JPH06100399A (en) 1992-09-18 1992-09-18 Production of boron phoshide nitride

Country Status (1)

Country Link
JP (1) JPH06100399A (en)

Similar Documents

Publication Publication Date Title
JP5265376B2 (en) Novel silicon germanium hydride, its production and use
JP5265377B2 (en) Novel silicon germanium hydride, its production and use
JPH02233591A (en) Method for forming single crystal diamond layer
JP2730144B2 (en) Single crystal diamond layer formation method
JP3716440B2 (en) Boron-containing aluminum nitride thin film and manufacturing method
JPH0948694A (en) Method for forming diamond single crystal film
JPH0658891B2 (en) Thin film single crystal diamond substrate
JPH06100399A (en) Production of boron phoshide nitride
JPH05315269A (en) Forming method for thin film
JP3932017B2 (en) Method for producing iron silicide crystal
JP3728466B2 (en) Method for producing single crystal diamond film
JPS6115150B2 (en)
JPS62224674A (en) Manufacture of microcrystalline silicon carbide film
JPH0666273B2 (en) Thin film single crystal diamond substrate
JPH04139014A (en) Production of silicon carbide
JP2004210559A (en) Diamond laminated film and its manufacturing method
JPH05102048A (en) Diamond substrate and its manufacture
JP3008455B2 (en) Method for manufacturing crystalline silicon film
JP3728555B2 (en) Single crystal diamond film substrate
JPS63252998A (en) Hetero-junction structure
JPH05102047A (en) Diamond substrate and its manufacture
Nayak et al. Electron beam activated plasma chemical vapour deposition of polycrystalline diamond films
JP2618408B2 (en) Manufacturing method of single crystal alloy film
JPH0869974A (en) Manufacturing method of semiconductor film
JPH0777203B2 (en) Method for manufacturing sapphire substrate having silicon single crystal film