JPH0599749A - Non-contact temperature measuring method - Google Patents

Non-contact temperature measuring method

Info

Publication number
JPH0599749A
JPH0599749A JP12676991A JP12676991A JPH0599749A JP H0599749 A JPH0599749 A JP H0599749A JP 12676991 A JP12676991 A JP 12676991A JP 12676991 A JP12676991 A JP 12676991A JP H0599749 A JPH0599749 A JP H0599749A
Authority
JP
Japan
Prior art keywords
wavelength
light
spectroscope
temperature
temperature measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP12676991A
Other languages
Japanese (ja)
Inventor
Koichi Kurita
耕一 栗田
Ikuo Wakamoto
郁夫 若元
Takashi Okai
隆 岡井
Nobuyuki Fukuda
信幸 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP12676991A priority Critical patent/JPH0599749A/en
Publication of JPH0599749A publication Critical patent/JPH0599749A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To perform accurate optical measurement without receiving any influence from emissivity at the time of performing non-contact temperature measurement by only measuring the wavelength-modulated spectrum of radiation spectrum from a measuring section. CONSTITUTION:The light emitted from a measuring section 1 is condensed into an optical fiber 3 through a lens 2 and, after the light is modulated by means of a chopper 4 which is operated by chopper driver 4, sent to a spectroscope 6 by which the light is dispersed into its spectral components. The wavelength of the dispersed light is periodically changed immediately before an exist slit by periodically vibrating a quartz plate 8 by means of a wavelength modulation driver 7. The light coming out from the spectroscope 6 is detected by means of a multiplier phototube 9 and the wavelength variation L against the wavelength of the originally emitted light is measured by means of a lock-in amplifier 10, while the intensity L of the originally emitted light is measured by means of another lock-in amplifier 11. The outputs of the amplifiers 10 and 11 are latched into a personal computer 12 which processes the outputs and displays a temperature. The wavelength of the spectroscope 6 is set by means of a spectroscope controller 13.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は非接触温度測定方法に関
する。
FIELD OF THE INVENTION The present invention relates to a non-contact temperature measuring method.

【0002】[0002]

【従来の技術】非接触温度測定方法として光学的手段を
用いた代表的な技術に2色温度計があり、これは、測定
部から放出される2つの異なる波長の光強度の強度比か
ら温度を求めるものであり、測定部の放射率が1に近い
場合すなわち黒体輻射と仮定できる場合には、精度の高
い温度測定が可能となる。しかしながら、通常の光学的
温度測定では、放射率は温度と波長の関数であり、表面
状態や測定雰囲気により影響を受けるので、このような
手段では、放射率が未知の測定対象を測定する場合には
多くの誤差を含み、従って、温度測定の際に、放射率に
よる温度測定の誤差を低減する技術の確立が必要とされ
ている。
2. Description of the Related Art A two-color thermometer is a typical technique that uses optical means as a non-contact temperature measuring method, and it measures temperature from the intensity ratio of light intensity of two different wavelengths emitted from a measuring section. When the emissivity of the measurement unit is close to 1, that is, when black body radiation can be assumed, highly accurate temperature measurement can be performed. However, in ordinary optical temperature measurement, the emissivity is a function of temperature and wavelength and is affected by the surface condition and the measurement atmosphere, so such a method is used when measuring an object whose emissivity is unknown. Contains a lot of errors, and thus there is a need to establish a technique for reducing the error of the temperature measurement due to the emissivity during the temperature measurement.

【0003】[0003]

【発明が解決しようとする課題】本発明は、このような
事情に鑑みて提案されたもので、温度測定部の放射率の
影響を受けずに精度良く光学的に温度測定をすることが
できる非接触温度測定方法を提供することを目的とす
る。
SUMMARY OF THE INVENTION The present invention has been proposed in view of such circumstances, and it is possible to accurately and optically measure temperature without being affected by the emissivity of the temperature measuring section. An object is to provide a non-contact temperature measuring method.

【0004】[0004]

【課題を解決するための手段】そのために本発明は、温
度測定部に分光器を含む光学的測定系を対向させ非接触
式に温度を測定するにあたり、温度測定部からの放射ス
ペクトルの波長変調スペクトルを測定することを特徴と
する。
Therefore, in the present invention, when the temperature measuring section is opposed to an optical measuring system including a spectroscope to measure the temperature in a non-contact manner, the wavelength modulation of the radiation spectrum from the temperature measuring section is performed. Characterized by measuring a spectrum.

【0005】[0005]

【作用】本発明非接触温度測定方法においては、放射率
の影響を低減してより精度の高い温度測定を行うため、
波長変調分光法を用いる。これは、測定部からの放射ス
ペクトル強度の波長に対する1階微分を得る方法であ
り、分光器内部の出口スリット直前で周期的に波長を変
化させる。
In the non-contact temperature measuring method of the present invention, in order to reduce the influence of emissivity and perform more accurate temperature measurement,
Wavelength modulation spectroscopy is used. This is a method of obtaining the first-order derivative of the intensity of the radiation spectrum from the measurement unit with respect to the wavelength, and the wavelength is periodically changed immediately before the exit slit inside the spectroscope.

【0006】[0006]

【実施例】本発明非接触温度測定方法の一実施例を図1
系統図について説明する。図1において、測定部1から
放射する光をレンズ2で集光し、光ファイバー3に導入
し、チョッパードライバー4で動作するチョッパー5に
より変調された後、分光器6の入射スリットから入射す
る。分光器6内で分光された光は、出口スリット直前で
波長変調ドライバー7により石英板8を周期的に振動さ
せ、周期的に波長を変化させる。分光器6から出射した
光は光電子増倍管9で検出され、放射光の波長に対する
変化分ΔLはロックインアンプ10で、一方放射光の強
度Lはロックインアンプ11で測定する。それぞれの出
力はパーソナルコンピューター12で取り込み、処理及
び温度表示する。なお分光器6の波長は分光器コントロ
ーラー13で設定する。
FIG. 1 shows an embodiment of the non-contact temperature measuring method of the present invention.
The system diagram will be described. In FIG. 1, light emitted from the measurement unit 1 is collected by a lens 2, introduced into an optical fiber 3, modulated by a chopper 5 operated by a chopper driver 4, and then incident from an entrance slit of a spectroscope 6. The light dispersed in the spectroscope 6 periodically vibrates the quartz plate 8 by the wavelength modulation driver 7 immediately before the exit slit to periodically change the wavelength. The light emitted from the spectroscope 6 is detected by the photomultiplier tube 9, and the change ΔL with respect to the wavelength of the emitted light is measured by the lock-in amplifier 10, while the intensity L of the emitted light is measured by the lock-in amplifier 11. Each output is captured by the personal computer 12, and the processing and temperature are displayed. The wavelength of the spectroscope 6 is set by the spectroscope controller 13.

【0007】しかして、この波長変調分光法における放
射率の影響の低減は、以下のようにしてなされる。すな
わち一般に、黒体輻射によるスペクトルの輝度L(λ,
T)は、プランクの式で数1のように与えられ、スペク
トルの短波長側では数2で表わすことができ、この式の
波長に対する1階微分は数3で表わせる。ここで、右辺
の第1項目の放射率の波長に関する微分は他の項に比べ
て無視できるので、数4を得ることができる。従って、
温度Tは、数4を変形すると数5を得る。ここで、dL
(λ,T)/dλは波長変調スペクトルから得ることが
でき、L(λ,T)は発光強度であるので、数5から放
射率の影響を受けることなく、温度を決することが可能
となる。
Therefore, the influence of the emissivity in the wavelength modulation spectroscopy is reduced as follows. That is, generally, the luminance L (λ,
T) is given by the Planck's equation as in Equation 1, and can be represented by Equation 2 on the short wavelength side of the spectrum, and the first derivative with respect to the wavelength in this equation can be represented by Equation 3. Here, since the derivative of the emissivity of the first item on the right side with respect to the wavelength can be ignored as compared with the other terms, it is possible to obtain Formula 4. Therefore,
When the temperature T is transformed from the equation 4, the equation 5 is obtained. Where dL
Since (λ, T) / dλ can be obtained from the wavelength modulation spectrum and L (λ, T) is the emission intensity, it is possible to determine the temperature without being affected by the emissivity from the equation (5). ..

【数1】 [Equation 1]

【数2】 [Equation 2]

【数3】 [Equation 3]

【数4】 [Equation 4]

【数5】 [Equation 5]

【0008】[0008]

【発明の効果】要するに本発明によれば、温度測定部に
分光器を含む光学的測定系を対向させ非接触式に温度を
測定するにあたり、温度測定部からの放射スペクトルの
波長変調スペクトルを測定することにより、温度測定部
の放射率の影響を受けずに精度良く光学的に温度測定を
することができる非接触温度測定方法を得るから、本発
明は産業上極めて有益なものである。
In summary, according to the present invention, the wavelength modulation spectrum of the radiation spectrum from the temperature measuring unit is measured when the temperature is measured in a non-contact manner with the optical measuring system including the spectroscope facing the temperature measuring unit. By doing so, a non-contact temperature measuring method that can accurately perform optical temperature measurement without being affected by the emissivity of the temperature measuring section is obtained, and therefore the present invention is extremely useful industrially.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明非接触温度測定方法の一実施例における
実施装置の系統図である。
FIG. 1 is a system diagram of an apparatus for implementing an embodiment of the non-contact temperature measuring method of the present invention.

【符号の説明】[Explanation of symbols]

1 測定部 2 レンズ 3 光ファイバー 4 チョッパードライバー 5 チョッパー 6 分光器 7 波長変調ドライバー 8 石英板 9 光電子増倍管 10 ロックインアンプ 11 ロックインアンプ 12 パーソナルコンピューター 13 分光器コントローラー 1 Measuring Part 2 Lens 3 Optical Fiber 4 Chopper Driver 5 Chopper 6 Spectrometer 7 Wavelength Modulation Driver 8 Quartz Plate 9 Photomultiplier Tube 10 Lock-in Amplifier 11 Lock-in Amplifier 12 Personal Computer 13 Spectroscope Controller

フロントページの続き (72)発明者 福田 信幸 広島県広島市西区観音新町四丁目6番22号 三菱重工業株式会社広島製作所内Front page continued (72) Inventor Nobuyuki Fukuda 4-6-22 Kannon Shinmachi, Nishi-ku, Hiroshima-shi, Hiroshima Mitsubishi Heavy Industries Ltd. Hiroshima Works

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 温度測定部に分光器を含む光学的測定系
を対向させ非接触式に温度を測定するにあたり、温度測
定部からの放射スペクトルの波長変調スペクトルを測定
することを特徴とする非接触温度測定方法。
1. A non-contact type temperature-measuring device which measures a wavelength modulation spectrum of a radiation spectrum from the temperature measuring unit when an optical measuring system including a spectroscope is opposed to the temperature measuring unit to measure the temperature in a non-contact manner. Contact temperature measurement method.
JP12676991A 1991-04-30 1991-04-30 Non-contact temperature measuring method Withdrawn JPH0599749A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12676991A JPH0599749A (en) 1991-04-30 1991-04-30 Non-contact temperature measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12676991A JPH0599749A (en) 1991-04-30 1991-04-30 Non-contact temperature measuring method

Publications (1)

Publication Number Publication Date
JPH0599749A true JPH0599749A (en) 1993-04-23

Family

ID=14943474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12676991A Withdrawn JPH0599749A (en) 1991-04-30 1991-04-30 Non-contact temperature measuring method

Country Status (1)

Country Link
JP (1) JPH0599749A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6682216B1 (en) * 1999-12-16 2004-01-27 The Regents Of The University Of California Single-fiber multi-color pyrometry

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6682216B1 (en) * 1999-12-16 2004-01-27 The Regents Of The University Of California Single-fiber multi-color pyrometry

Similar Documents

Publication Publication Date Title
US5098197A (en) Optical Johnson noise thermometry
JP4829995B2 (en) Emission spectrometer with charge-coupled device detector
WO2005074525A2 (en) Entangled-photon fourier transform spectroscopy
US11585758B2 (en) Microspectroscopic device and microspectroscopic method
JP2011232106A (en) Icp optical emission spectrometer
WO2005038436A2 (en) System and method for cavity ring-down spectroscopy using continuously varying continuous wave excitation
JP4324693B2 (en) Spectral response measuring device of photodetector, measuring method thereof, and spectral irradiance calibration method of light source
JP3960256B2 (en) Atomic absorption spectrophotometer
CN117490858A (en) Infrared detector spectrum testing device and method
JPH0599749A (en) Non-contact temperature measuring method
JP2007218860A (en) Strain measuring device and strain measuring method
JPH0572039A (en) Correcting method for spectrum of fluorescence spectrophotometer and fluorescence spectrophotometer with spectrum correcting function
JP4146697B2 (en) Temperature measuring method and temperature measuring device
JPH04248423A (en) Apparatus for measuring luminescence
KR101484695B1 (en) Connecting apparatus between obtical fiber and spectrometer, and system for measuring purity of hot slab
Wöllenstein et al. Miniaturized multi channel infrared optical gas sensor system
JP2002062197A (en) Temperature measuring device and method
JP4016113B2 (en) Two-wavelength infrared image processing method
JP4143513B2 (en) Spectrophotometer and spectroscopic analysis method
JP2002198342A (en) Polishing endpoint detector for wafer polishing apparatus
JP2897389B2 (en) Temperature measuring method and distributed optical fiber temperature sensor
JP2885980B2 (en) Temperature distribution detector
JP2018040623A (en) Spectrometer and temperature measurement device
JPH0712718A (en) Spectral analysis device
JPH11108868A (en) Method and apparatus for heat analysis control type raman spectroscopy

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980711